
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.18, February 2014

14

Cloud Resource Allocation as Preemptive Scheduling

Approach

Suhas Yuvraj Badgujar

PG Student (CE)
SKN-SITS, Lonavala

Anand Bone
PG Guide (CE)

SKN-SITS, Lonavala

ABSTRACT

The increased degree of connectivity and the increased

amount of data has led many providers to provide cloud

services. Infrastructure as a Service (IaaS) is one of the Cloud

Services it provides greater potential for a highly scalability of

computing resources for demand in various applications like

Parallel Data processing. The resources offered in the cloud

are extremely dynamic and probably heterogeneous due to

this dynamic load balancing, access balancing and scheduling

of job is required. To achieve this many scheme are proposed,

Nephele is one of the data processing framework which

exploits the dynamic resource allocation offered by IaaS

clouds for both task scheduling and execution. Specific tasks

of processing a job can be allotted to different types of virtual

machines which are automatically instantiated and terminated

during the job execution. However the current algorithms are

homogeneous and they do not consider the resource overload

or underutilization during the job execution this increase task

completion time. This paper introduces a new Approach for

increasing the efficiency of the scheduling algorithm for the

real time Cloud Computing services. Proposed method utilizes

the Turnaround time Utility efficiently by discerning it into a

gain function and a loss function for a single task based on

their priorities. Algorithm has been executed on both

preemptive and Non-preemptive methods. The experimental

results show that it overtakes the existing utility based

scheduling algorithms and also compare its performance with

both preemptive and Non-preemptive scheduling approaches.

Hence, Turnaround time utility scheduling approach which

focuses on both high and the low priority jobs that arrives for

scheduling is proposed.

General Terms

Task scheduling, Resource utilization, Cloud Computing,

make-span, slope index

Keywords

Gain utility, Critical Point

1. INTRODUCTION
Today a increasing number of companies have to process data

in a cost efficient way. Cloud computing is the use of

computing resources such as hardware, software as well as

service that are delivered as a service over a network(typically

the Internet). Cloud computing is deliver services on user's

data, software and computation. Cloud computing allows

companies to keep away from infrastructure costs and focus

on projects that separate their work instead of infrastructure

for large amount of data.

Cloud computing is a alternative for distributed computing

over a network which means that it has ability to run a

program on many connected computers at the same time but

cloud computing served up by virtual hardware, simulated by

software system running on one or a number of real machines.

Such virtual servers are physically does not exist. These

virtual servers serve the incoming requests and perform action

according to user’s request. Cloud computing is having

following types: 1) Paas -Platform as a Service 2) Iaas -

Infrastructure as a Service, 3) Saas - Software as a Service.

Cloud computing has a promising approach to rent a large

infrastructure on pay per usage basis. This is known as IaaS

cloud. IaaS cloud’s feature is the providing computing

resources on demand for customer. Customer request for

resources, provider allocates access and provides control a set

of Virtual Machines which run at cloud provider.

Dynamic resource allocation is in implementation so these

frameworks are processed on cluster environments. These are

designed for Virtual machines are allocated at computing the

job. Because of nature of framework is static the resources

and computing environment cannot change until execution of

program. Execution task may vary their requirement during

the processing. So as a impact of static resource allocation

may be insufficient in terms of processing job, which may

decrease performance of task and increase the cost.

One of an IaaS cloud’s key feature is the provisioning of

compute resources on demand. The computer resources

available in the cloud are highly dynamic and possibly

heterogeneous. Nephele is the first data processing framework

to explicitly exploit the dynamic resource allocation offered

by today’s IaaS clouds for both task scheduling and execution.

Particular tasks of a processing a job can be assigned to

different types of virtual machines which are automatically

instantiated and terminated during the job execution.

To improve the performance of cloud computing, one

approach is to employ the traditional Utility Accrual (UA)

approach first proposed to associate each task with a Time

Utility Function (TUF), which indicates the task’s importance.

Specifically, the TUF describes the value or utility accrued by

a system at the time when a task is completed to improve the

performance of cloud computing, it is important to not only

measure the profit when completing a job in time, but also

account for the penalty when a job is aborted or discarded.

Note that, before a task is aborted or discarded, it consumes

system sources including network bandwidth, storage space

and processing power and thus can directly or indirectly affect

the system performance.

However Nephele does not consider resource overload or

underutilization during the job execution automatically. In this

study, a novel Turnaround time utility algorithm is proposed

for scheduling the real time cloud computing services. The

most unique characteristics of this approach is that, different

from traditional utility accrual approach that works under one

single Time Utility Function (TUF), which have two different

functions called a Gain and a loss Functions associated with

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.18, February 2014

15

each task at the same time, to model the real-time applications

for cloud computing. To compare the performance of cloud

computing, the traditional Utility approach is deployed in both

Non-Preemptive and Preemptive scheduling.

2. LITERATURE
In modern techniques systems are classified as high

throughput computing (HTC) [1] or many task computing

(MTC).Programming models share some similar objectives.

Generally all programs is in execution are written

consecutively in cloud area. The process framework takes

caution of program from assigned nodes and executes every

program on the execution instance. This framework is execute

the job by allocating resources which are ignores the

underutilization and overutilization during the processing of

job.

The Pegasus framework by Deelman [2] has been designed

for mapping complex workflows onto distributed resources

such as the Grid. Pegasus which stands for Planning for

Execution in grids. Jobs in this framework is represented as

DAG (directed acyclic graph) with vertices representing the

tasks to be processed and edges representing the dependencies

between them. The created workflows remain hidden until

Pegasus creates the mapping between the given tasks and the

computed resources available at processing the job. It deals

with DAGMan and Condor-G as its execution engine [3]. As

a result, different jobs can only exchange data via files.

Thao [4] introduced the Swift system to reduce the

management issues which occur when a job involving

numerous tasks has to be executed on a large, possibly

unstructured set of data. Swift mainly focuses on scientific

applications that process heterogeneous data formats with

applications and can manages schedule of computations in a

location independent way.

Isard [5] proposed Dryad, which is designed to scale from

powerful multi-core single computers through small clusters

of computers. A data center with thousands of computers

operates for processing of unstructured and heterogeneous

data. Current data processing frameworks like Google’s

MapReduce or Microsoft’s Dryad engine have been designed

for cluster environments. This is reflected in a number of

assumptions which are not necessarily valid in cloud

environments.

IoanRaicu [6] proposed Falkon, which is a Fast and

Lightweight task execution framework and it is designed to

enable the efficient execution of many small jobs. Dornemann

[7] presented an approach to handle peak situations of load in

BPEL workflows using Amazon EC2. Kao, presented

research project Nephele. Nephele is the data processing

framework to explicitly exploit the dynamic resource

allocation for both task scheduling and execution.

To improve the performance of cloud computing, one

approach is to employ the traditional Utility Accrual (UA)

approach first proposed to associate each task with a Time

Utility Function (TUF), which indicates the task’s importance.

Specifically, the TUF describes the value or utility accrued by

a system at the time when a task is completed.

While Jensen’s definition of TUF allows the semantics of soft

time constraints to be more precisely specified [8], all these

variations of UA-aware scheduling algorithms imply that

utility is accrued only when a task is successfully completed

and the aborted tasks neither increase nor decrease the accrued

value or utility of the system.

Yu proposed a task model that considers both the profit and

penalty that a system may incur when executing a task [9].

According to this model, a task is associated with two

different TUFs, a profit TUF and a penalty TUF. The system

takes a profit (determined by its profit TUF) if the task

completes by its deadline and suffers a penalty (determined by

its penalty TUF), if it misses its deadline or is dropped before

its deadline. It is tempting to use negative values for the

penalties and thus combine both TUFs into one single TUF.

However, a task can be completed or aborted and hence can

produce either a profit value or a penalty value.

3. IMPLEMENTATION

Task scheduling and load-balancing technique: A task is a

(sequential) activity that uses a set of inputs to produce a set

of outputs. Processes in fixed set are statically assigned to

processors, either at compile-time or at start-up (i.e.,

partitioning) avoids overhead of load balancing using these

load-balancing algorithms. The Grid computing algorithms

can be broadly categorized as centralized or decentralized,

dynamic or static or the hybrid policies in latest trend. A

centralized load balancing approach can support larger

system. Hadoop system takes the centralized scheduler

architecture. In static load balancing, all information is known

in advance and tasks are allocated according to the prior

knowledge and will not be affected by the state of the system.

Dynamic load-balancing mechanism has to allocate tasks to

the processors dynamically as they arrive. Redistribution of

tasks has to take place when some processors become

overloaded [10].

In cloud computing, each application of users will run on

virtual operating systems, the cloud systems distributed

resources among these virtual systems. Every application is

completely different and is independent and has no link

between each other whatsoever, For example, some require

more CPU time to compute complex task and some others

may need more memory to store data. Resources are

sacrificed on activities performed on each individual unit of

service.

In order to measure direct costs of applications, every

individual use of resources (like CPU cost, memory cost, I/O

cost) must be measured. When the direct data of each

individual resources cost has been measured, more accurate

cost and profit analysis.

Fig 1: Nephele Architecture

Nephele architecture: Nephele [11] is a new data processing

framework for cloud environment that takes up many ideas of

previous processing frameworks but refines them to better

match the dynamic and opaque nature of a cloud. Nephele’s

architecture follows a classic master-worker pattern as

illustrated in Fig. 1.

Before submitting a Nephele compute job, a user must start a

VM in the cloud which runs the so called Job Manager (JM).

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.18, February 2014

16

The Job Manager which receives the client’s jobs is

responsible for scheduling them and coordinates their

execution. It is capable of communicating with the interface

the cloud operator provides to control the instantiation of

VMs. It call this interface the Cloud Controller. By means of

the Cloud Controller the Job Manager can allocate or

deallocate VMs according to the current job execution phase.

It will comply with common Cloud computing terminology

and refer to these VMs as instances for the remainder of this

study. The term instance type will be used to differentiate

between VMs with different hardware characteristics. The

actual execution of tasks which a Nephele job consists of is

carried out by a set of instances. Each instance runs a so-

called Task Manager (TM). A Task Manager receives one or

more tasks from the Job Manager at a time, executes them and

after that informs the Job Manager about their completion or

possible errors. Unless a job is submitted to the Job Manager,

It expect the set of instances (and hence the set of Task

Managers) to be empty. Upon job reception the Job Manager

then decides, depending on the job’s particular tasks, how

many and what type of instances the job should be executed

on and when the respective instances must be

allocated/deallocated to ensure a continuous but cost-efficient

processing. The newly allocated instances boot up with a

previously compiled VM image. The image is configured to

automatically start a Task Manager and register it with the Job

Manager. Once all the necessary Task Managers have

successfully contacted the Job Manager, it triggers the

execution of the scheduled job. Initially, the VM images used

to boot up the Task Managers are blank and do not contain

any of the data the Nephele job is supposed to operate on.

The expected gain utility and the critical point

Since the task execution time is not known deterministically,

It do not know if executing the task will lead to positive gain

or loss. To solve this problem, It can employ a metric, i.e., the

expected gain utility, to help us make the decision. Given a

task T with arrival time of ati, let its predicted starting time be

ti. Then the potential Gain Pi (ti) to execute T can be

represented as the integration of the summation of gain over

time ti and the difference of the starting time of the process

and the arrival time of the process:

Similarly, the potential loss (Li (T)) to execute Ti can be

represented as:

Therefore, the expected increased efficiency η (T) to execute

Ti can be represented as:

A task can be accepted or chosen for execution when η(T)>0,

which means that the probability of to obtain positive gain is

no smaller than that to incur a loss. It can further limit the task

acceptance by imposing a threshold (δ) to the expected

accrued utility, i.e. a task is accepted or can be chosen for

execution if: Pi (T) ≥ µ

Furthermore, since the task execution time is not known a

prior, it needs to decide whether to continue or abort the

execution of a task. The longer it executes the task, the closer

to the completion point of the task. At the same time,

however, the longer the task executes the higher penalty the

system has to endure if the task cannot meet its deadline. To

determine the appropriate time to abort a task, It employ

another metric, i.e., the critical point. Let task Ti starts its

execution at t1, then the potential profit Ti >t (i.e., η(T)) can

be represented as the integration of the maximum gain the

difference of the completion of the task. The Potential loss

can be calculated by the integration of its completion time to

the max time. Hence, the expected efficiency η is the

difference believes the gain of a task and the loss of a task. If

It substitute η to be equal to 0, It can see that the gains & loss

are found to be equal in executing a task. As time increases,

the η decrease and after a critical point at deadline more loss

incurs then gains.

Preemptive scheduling: The Preemptive scheduling

algorithm belongs to a new family of real-time service

oriented scheduling problems. As the complementarily of

previous non-preemptive algorithm, real time tasks are

scheduled preemptively with the objective of maximizing the

total utility time. The preemptive scheduling heuristics is to

judiciously accept, schedule and cancel real-time services

when necessary to maximize the efficiency. The new

scheduling algorithm has much better performance than an

earlier scheduling approach based on a similar model does.

Algorithm for Preemptive scheduling:

1. Input: Let {T1, T2,...,Tk } be the accepted tasks in the

ready queue and let ei be the expected execution time of Ti.

Let current time be t and let T0 be the task currently being

executed. Let the expected utility density threshold be μ.

2. if a new task, i.e. Tp arrives then

3. Check if Tp should preempt the current task or not;

4. if Preemption allowed then

5. Tp preempts the current task and starts being executed;

6. End if

7. If Preemption not allowed then

8. Accept Tp if

9. Reject Tp if

10. End if

11. Remove Tj in the ready queue if

 µ

12. End if

13. If at preemption check point then

14. PREEMPTION CHECKING;

15. End if

16. If T0 is completed then

17. Choose the highest expected utility density task Ti to run.

18. Remove Tj in the ready queue if

 µ

19. End if

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.18, February 2014

17

20. If t = the critical time of p0 then

21. Abort p0 immediately

22. Choose the highest expected utility density task pi to run.

23. Remove pj in the ready queue

24. End if

The details of scheduling are described in above algorithm.

There are five main parts in the scheduling. They are the

preemption checking, feasibility checking, task selecting,

scheduling point checking and critical point checking. When

new tasks are added in to ready queue, no matter whether

there is preemption or not, the feasibility checking will work

to check if the new ready queue is feasible or not. If any task

cannot meet the requirement, it will be removed from the

ready queue. Scheduling point checking makes sure all the left

tasks in the expected accrued utility density task to run when

the server is idle. The critical point checking will always

monitor the current running task’s state to prevent the server

wasting time on the non-profitable running task. The

preemption checking works when there is a prosperous task

wants to preempt the current task. The combination of these

parts guarantees to judiciously schedule the tasks for

achieving high accumulated total utilities. It is worthy to talk

more about the preemption checking part in details, because

improper aggressive preemption will worsen the scheduling

performance. From Algorithm It can see that if a task can be

finished successfully before its deadline even in its worst case,

the scheduling will protect the current running task from

being preempted by any other tasks. Otherwise, if a

prosperous task has an expected accrued utility density which

is larger than the current running task’s conditional expected

utility density by at least a value equals to the pre-set

preemption threshold, the preemption is permitted.

Algorithm for Verification of Preemptive method

1. Input: Let T0be the task currently being executed and Tp be

the task wants to preempt T0, current time t, U (T0, t) be the

conditional expected utility density ofT0at time t, e0is the

remaining expected time of T0. Up (t) is the expected utility

density of Tp;

2. If the expected density is greater, then

3. Check what T0’s worst case finish time is;

4. If T0can be finished before its deadline even in the worst

case then

5. Preemption is not allowed;

6. End if

7. If T0’s worst case will miss as its deadline then

8. Preemption allowed;

9. End if

10. End if

The feasibility check is one more part deserves detail

description. In this part, scheduling simulates the real

execution sequence for the left tasks in readyqueue and check

following this sequence, if all of them can satisfy the

requirement or not. The thing needs to be discussed is how to

determine the sequence of the left tasks. From equation (1),

(2) and (3), It can clearly see that the expected utility of

running a task depends heavily on variable T, i.e., the time

when the task can start. If It know the execution order and

thus the expected starting time for tasks in the ready queue, It

will be able to quantify the expected utility density of each

task more accurately. In algorithm.5, It show utility metric

based on a speculated execution order of the tasks in the ready

queue. The general idea to generate the speculated execution

order is as follows. It first calculates the expected utility

density for each task in the readyqueue based on the expected

finishing time to the current running task. Then the task with

the largest one is assumed to be the first task that will be

executed after the current task is finished. Based on this

assumption, It then calculate the expected utilities for the rest

of the tasks in the ready queue and select the next task. This

process continues until all tasks in the readyqueue are put in

order. When completed, It essentially generate a speculated

execution order for the tasks in the ready queue and, at the

same time, calculate the corresponding expected utility

density for each task.

4. ACKNOWLEDGMENTS
I am grateful to Prof. V. D. Thombre, HOD, Department of

Computer Engineering, SKN-SITS, Lonavala, for his constant

motivation, encouragement and guidance. I would also like to

thank my guide, Prof. Anand,Bone for his constant support

and guidance. Special thanks to the experts who have

contributed towards development of this paper work.

5. CONCLUSION
In structure of Nephele scheduler, presented preemptive

scheduling as new approach to Nephele framework. The real-

time service system should be compatible with preemption in

respect that it is necessary for nowadays’ service requests. In

this approach automatically schedules flow steps of tasks to

underutilize and over utilized nodes using Cloud computing

infrastructures in resource allocation and preemptive

scheduling algorithm is effective in this regard. Also It present

a Turnaround time utility scheduling approach which focuses

on scheduling. The speed can be improved in the proposed

system from the existing Nephele framework. By using virtual

machines, It can improve the overall resource utilization also

reduce the processing cost.

Data dependency, failure handling and recovery approach that

takes advantage of the presented solution to dynamically

provide resources is another interesting area of further

research.

6. REFERENCES
[1] I. Raicu, I. Foster, and Y. Zhao, “Many-Task Computing

for Grids and Supercomputers,” Proc. Workshop Many-

Task Computing on Grids and Supercomputers, pp. 1-11,

Nov. 2008.

[2] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,

A. Laity, J. Jacob, and D. Katz, “Pegasus: A framework

for mapping complex scientific workflows onto

distributed systems,” Scientific Programming Journal,

vol.13(3), pp.219–237, 2005.

[3] J. Frey, T. Tannenbaum, M. Livny, I. Foster and S.

Tuecke, “Condor-G: a computation management agent

for multi-institutional grids,” journal of Cluster

Computing, vol.5 (3), pp.237–246, 2002.

[4] T. White, Hadoop: The Definitive Guide. O’Reilly

Media, 2009

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

”Dryad: distributed data parallel programs from

sequential building blocks,” in proceedings of the second

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.18, February 2014

18

ACM SIGOPS/EuroSys European Conference on

Computer Systems, New York, USA, pp. 59–72, 2007.

[6] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M.

Wilde, “Falkon: a fast and light weight task execution

framework,” proceedings of the ACM/IEEE conference

on Supercomputing, New York, USA, pp.1–12, 2007.

[7] T. Dornemann, E. Juhnke, and B. Freisleben. “On-

Demand Resource Provisioning for BPEL Workflows

Using Amazon‟s Elastic Compute Cloud.” In CCGRID

‟09: Proceedings of the 2009 9th IEEE/ACM

International Symposium on Cluster Computing and the

Grid, pages 140–147, Washington, DC,USA,2009.IEEE

Computer Society.

[8] Li, P, H. Wu, B. Ravindran and E. D. Jensen, April 2006.

A utility accrual scheduling algorithm for real-time

activities with mutual exclusion resource constraints.

IEEE Trans. Comput., 55: 454-469.

[9] Yu, Y., S. Ren, N. Chen and X. Wang, 2010. Profit and

penalty aware (PP-aware) scheduling for tasks with

variable task execution time. Proceedings of the 2010

ACM Symposium on Applied Computing, Mar. 22-26,

ACM, Sierre, Switzerland, pp: 334-339.

[10] Zaharia, M., D. Borthakur, J.S. Sarma, K. Elmeleegy and

S. Shenker et al., 2009. Job scheduling for multi-user

mapreduce clusters. EECS Department, University of

California, Berkeley.

[11] D. Warneke and O. Kao, “Exploiting dynamic resource

allocation for efficient parallel data processing in the

cloud,” IEEE transactions on parallel and distributed

systems, vol. 22, no. 6, June 2011

IJCATM : www.ijcaonline.org

