
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.13, February 2014

30

Object Caching Design Framework for Improving Data

Access Performance in Enterprise Applications

Nilayam Kumar Kamila

Tech Architect
TATA Consultancy Services

G-Axis EPIP Area
Bangalore 560066 India

Renu Raghavan
IT Analyst

TATA Consultancy Services
28A High Street

Jersey City, NJ 07306 USA

Naveen Chalicheemala
Asst. Consultant

TATA Consultancy Services
G-Axis EPIP Area

Bangalore 560066 India

ABSTRACT

In today’s technological world, applications are designed to

communicate across different interfaces and databases with

high speed mode. The data communication between

applications and the database needs accuracy as well as quick

fire. There have been many designs implemented to reduce

the transfer time. Caching is one of such attempt to reduce

data access time. But it becomes difficult to cache database

results (dynamic data) when the database is manipulated by

various external applications. The caching technique provides

a faster way to access data, but at same time it should capable

to provide the data accuracy. There is no such generic model

or design available till today which could capable to cache the

highly dynamic data [4]. Here a model is presented, where by

implementing this design, the data results will be cached with

complete data accuracy in application level and will reduce

the repetitive transmission time and hence increase the overall

performance of the system.

General Terms

Application Caching Design

Keywords

Database Caching, Caching framework, Data Caching,

Application Performance, Performance Improvements

1. INTRODUCTION
The Data Caching [1] is an existing technique to cache the

application objects. Many concepts and frameworks have

been evolved to cache the data and use repetitively in the

application instead of invoking remote calls, file read, service

calls etc. [2]. But for dynamic data(which changed most often

by different applications or users), applications more rely on

calling the remote calls than using the cached data as the

cached data and the source data will not be in synch, if the

data is dynamic in nature.

Most applications use cache technique to make static data

available throughout the application scope. Also in most

cases, developers or designers use their own style of caching

rather than to implement any existing framework [2]. This

paper explains different scenarios of the caching mechanism

approach in order to resolve the caching issues for all types

e.g. static, dynamic data. The proposed approach is based on a

basic pluggable technique with few changes in database level

(study applied and verified only to Oracle and MS SQL; other

database change is under further study) which will provide a

better performance over the repetitive remote calls.

This solution provided in this paper is well suited to the

enterprise level console, windows and online based

applications. We have also distinctively taken multiple data

structures into consideration to improve the caching

performance.

In next section we discussed existing problem and section 3

focuses on the proposed solution approach. The caching frame

design is explained in Section 4. The performance analysis on

different data counts is presented in Section 5. The inference

and future scope of this paper is discussed in section 6.

2. THE EXISTING PROBLEMS
Enterprise applications retrieve data from database for which

the application hit database multiple times. The primary

problem in this respect is that, the application has high

response times which need to be reduced. For this purpose,

caching is adopted to hold frequently retrieved data in

application objects, but the problem still exists as there is no

model is framed to handle different nature of data e.g. static

and dynamic data.

All business or enterprise applications in today’s world are

communicating with database. The data is retrieved from

database to be displayed and modified by the users through

online or windows based screens. In this process, the

application is retrieving same data contents multiple times

from database even if there is no change or minimal change

on database. The enterprise applications are referring

application and business related data multiple times by

multiple users, there is a more number of database call which

results a delayed response time. Another problem that arises

is, if all data is cached in application without considering the

data nature, then application data and database data will be

out of synch frequently.

In order to abstract the complete application problem on

caching point of view, the data in database is categorized into

three categories.

i. Static data: In this category, data which are never

changed during the complete life cycle of the

application. These static data are never modified by

application or by any other external application or

users e.g. lookup tables data, constant data etc.

ii. Self controlled data: The data which are modified

only by the application. These types of data are

never modified by the external applications e.g.

application self transaction data.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.13, February 2014

31

Figure 1. Design Solution for Object Caching – Static Data

D
A

T
E

 O
R

IG
IN

A
L

L
A

T
E

S
T

 R
E

V
IS

IO
N

S
C

A
L

E

J
O

B
 N

O
.

R
E

V
IS

IO
N

S

N
O

.
D

A
T

E
D

E
S

C
R

IP
T

IO
N

D
R

A
W

N
C

H
E

C
K

E
D

T
IT

L
E

9/17/2013

Application

Cache

Config.

xml

O
ra

cl
e

Data Results
Cache Plugin

Figure 3. Design Solution for Object Caching – Fully

Dynamic Data in Oracle database

O
R

A
C

L
E

 D
B

DML
Trigger

DBMS_SCHEDULER

Advanced
Queue(AQ)

Batch Job

D
A

T
E

 O
R

IG
IN

A
L

L
A

T
E

S
T

 R
E

V
IS

IO
N

S
C

A
L

E

J
O

B
 N

O
.

R
E

V
IS

IO
N

S

N
O

.
D

A
T

E
D

E
S

C
R

IP
T

IO
N

D
R

A
W

N
C

H
E

C
K

E
D

T
IT

L
E

Cache
Config.

xml

CacheLive

Figure 2. Design Solution for Object Caching – Self

Controlled Data

D
A

T
E

 O
R

IG
IN

A
L

L
A

T
E

S
T

 R
E

V
IS

IO
N

S
C

A
L

E

J
O

B
 N

O
.

R
E

V
IS

IO
N

S

N
O

.
D

A
T

E
D

E
S

C
R

IP
T

IO
N

D
R

A
W

N
C

H
E

C
K

E
D

T
IT

L
E

Cache

Config.

xml

CacheLive

9/17/2013

Application

O
ra

cl
e

iii. Fully Dynamic data: Fully dynamic data are

dynamic in nature and could be modified by

external applications and or by db users.

All the above category data in database are playing their

respective roles in applications. Application data and database

data at any specific instance of time must be in synch to make

the application reliable and consistent; otherwise the

application will show up stale data which in turn gives

incorrect results and inconsistent database and application

state.

In next section the solution approach will be visualized to

make all above categories data to be in consistent state

through the object caching methodology.

3. PROPOSED SOULTION APPROACH
The object caching technique is implemented to resolve all

types of above discussed problems. The proposed approach

provides necessary setups for caching and processes to

identify whether the data available in cache is db synch up

data or stale data. Let’s discuss the proposed caching design

solution for different category of data.

3.1 Object Caching – Static Data
The static data caching methodology is a simple technique

which most of the designers or developers implement in their

web or windows application. But the developers’ technique is

formalized in this proposed approach. All static data related

database stored procedure name key will be put in the

CacheConfig.xml. The application now loads the

CacheConfig.xml files and will compare for each

application’s database request. If the request matches with an

entry in DataConfig.xml, it will then attempt to search the

results in Object Cache area. In first time data search, it will

not find the result set in the caching area, so it will retrieve

from database and will put in the cache area, and then return

the result set to the calling unit. In next successive hit, it will

search the cache area and will find the result set and directly

return the result set without invoking the database call.

As shown in figure – 1, application will always try to find the

desired result set object from the data results cache area. If

application does not find the object in cache area, then it will

hit the database; and after successful retrieval, it will store the

result set object in cache area. This way the application

becomes intelligent as the application life progress.

The approach also includes loading all the data results for

static data at the time of application initialization. This way

when request comes in runtime, then that result set could be

found from cache immediately and is returned back. This

strategy could be adapted by setting the flag in

ConfigCache.xml.

3.2 Object Caching – Self Controlled Data
 In this section it will be seen that how to cache the result set

of the database for which the database is modified by the

application only. For this purpose a CacheLive (refer figure 2)

area is defined in the proposed design solution. The

CacheLive area remains in memory and mainly contains the

information about the Data Objects with their dirty flag

information. If any time the application is invoking to update

or delete or insert data in the database, then the corresponding

dirty flag in CacheLive area is made to true(means the

CacheLive dataset and database dataset are not in synch).

When next invocation for the data occurs, it will verify the

CacheLive information, and if found dirty (dirtyflag=true)

then it will retrieve the data from database and store in the

CacheLive area and return the fresh results to the calling unit.

CacheLive area is used to maintain the dirty flags as shown in

table 1, which provides the information whether the

application hold cached data are in synch with database or

not. If for any cached information, the data is out of synch,

then CacheLive information makes the dirtyflag to true.

Table 1: Data Structure for CacheLive Area

CacheLive

DataObjectName dirtyflag

GET_FUND true

GET_CASH false

At initialization time all the entries for dirty flag in

CachedLive made to true. So in first database result set search

the framework will retrieve the data from database and make

the corresponding entry as false. The next time onwards, if

there is a result set retrieval, then the framework will retrieve

the result set either from cache area or from database

depending on the CacheLive dirty flag information.

3.3 Object Caching – Fully Dynamic Data
This type of data is being modified by the external

applications and (or) may be manually through the database

insert, update or delete statements. As the application has no

control over this category of data, so a separate caching

mechanism is adopted to handle such dynamic contents. There

are basically three steps to establish this caching mechanism.

3.3.1 Data Update Trigger
There need a trigger mechanism implemented on the tables

whenever there is an insert, update or delete. So when there is

a modification to the data tables, this data manipulation

triggers will be invoked. In oracle, this trigger will put a

message e.g. database named object’s information to a queue

known as Oracle Advanced Queue(refer figure 3)[6]. In MS

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.13, February 2014

32

SQL, this trigger will invoke a SQL Job through SQL Job

Agent[5].

3.3.2 Oracle Event Job Scheduler
There is a package in Oracle known as DBMS_SCHEDULER

which will poll the message whenever there is a message

available in Oracle Advanced Queue. This scheduler then

invokes an application batch job.

3.3.3 Batch Job CacheLive Communication
The batch job would run either on database local system or on

the remote system where the application is running. This

batch job will update and refresh the CacheLive area for the

respective data object. This batch job will run in thread

mechanism to handle concurrent requests from the DBMS

scheduler. However the update to CacheLive will be handled

programmatically through the synchronized block with

respect to data object.

Figure 4 depicts the approach in MS SQL Server. When there

is a modification on data set in MS SQL database, it will

invoke the trigger and trigger will invoke the named job in

SQL Job Agent. The SQL Job agent has the capability to

invoke the external batch job which will refresh the

CacheLive in the proposed design.

4. CACHING FRAME DESIGN
In this section the low level caching frame design will be

overviewed and how best it could be pluggable to new or

existing applications. There are several algorithms out of

which some are presented here to explain the basic structure

of this solution approach. As in previous section, It is seen

that there is an xml file CacheConfig.xml for configuration.

The detail is shown next. Here it is shown for static data, and

similar fields could be used for self controlled and fully

dynamic data. When the application will be initialized, then

this CacheConfig.xml will be loaded to a static collection

object. The application is then refer to that static collection

object each time to take a decision whether to lookup the

results from cache area or from database server.

<dbload-on-statrtup>-1</ dbload-on-statrtup>

<Staticdata>

 <DBobjects>

 <StoredProcs>

 <Name>SP_GET_STATDATE</Name>

 <Name>SP_GET_ENDDATE</Name>

 </StoredProcs>

 <Functions>

 <Name>FN_CAL_PERIOD</Name>

 </Functions>

 <Tables>

 <Name>TBL_COMPANY</Name>

 <Name>TBL_INFRASTRUCTURES</Name>

 </Tables>

 </DBobjects>

</Staticdata>

In algorithm 1, It is shown that the CacheCofig.xml file is

completely loaded into the application. There as three distinct

sections e.g. static, self controlled and fully dynamic in the

xml file and each section again contains the stored procedure,

function and table objects names.

Algorithm 1. initCache()

load CacheConfig.xml to CacheConfig Object.

if(dbload-on-statrtup)

 for(each staticDBObjects in CacheConfig)

 loadDBDatatoAppOjects(cachObjectName);

 endloop

 for(each selfConDBObjects in CacheConfig)

 initializeCacheLive(selfConDBObjects);

 loadDBDatatoAppOjects(selfConDBObjects);

 endloop

 for(each dynamicDBObjects in CacheConfig)

 initializeCacheLive(dynamicDBObjects);

 loadDBDatatoAppOjects(dynamicDBObjects);

 endloop

end if

There is a tag named as “dbload-on-startup” which flags

whether to load the static and CachLive data to the application

at the start up time. If it is configured to set as -1 then it will

not load at startup time. It will load the db objects into cache

during the respective runtime db requests.

Let’s discuss how this design will work during the run time db

requests. The db request item will be compared with

CacheConfig collection. If the db requested item is found in

CacheConfig, then it will check if the type is static or self

controlled or fully dynamic.

If the db request is a static type then it will attempt to retrieve

the data from static cache area through the lookupCache()

method. In lookupCache(), the application will verify whether

the data set is available in Cache area, if not then it will

retrieve the data from database and will update the static

cache.

Figure 4. Design Solution for Object Caching –

Fully Dynamic Data in MS SQL database

M
S

 S
Q

L

MS SQL
Trigger

SQL Job
Agent

Batch Job

D
A

T
E

 O
R

IG
IN

A
L

L
A

T
E

S
T

 R
E

V
IS

IO
N

S
C

A
L

E

J
O

B
 N

O
.

R
E

V
IS

IO
N

S

N
O

.
D

A
T

E
D

E
S

C
R

IP
T

IO
N

D
R

A
W

N
C

H
E

C
K

E
D

T
IT

L
E

Cache
Config.

xml

CacheLive

Figure 3. Design Solution for Object Caching –

Fully Dynamic Data in Oracle database

O
R

A
C

L
E

 D
B

DML
Trigger

DBMS_SCHEDULER

Advanced
Queue(AQ)

Batch Job

D
A

T
E

 O
R

IG
IN

A
L

L
A

T
E

S
T

 R
E

V
IS

IO
N

S
C

A
L

E

J
O

B
 N

O
.

R
E

V
IS

IO
N

S

N
O

.
D

A
T

E
D

E
S

C
R

IP
T

IO
N

D
R

A
W

N
C

H
E

C
K

E
D

T
IT

L
E

Cache
Config.

xml

CacheLive

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.13, February 2014

33

Figure 6. Proposed Cache Model Simulation Run -

Proposed Cache Model elapsed response time Vs non-

cache elapsed response time in .NET Application.

Algorithm 2. retriveDataObjects(dbRequest)
if(CacheConfig contains dbRequest)

 if(typeOf(dbRequest) is static)

 lookupCache (dbRequest);

 else if (CachLive contains dbRequest)

 checkDirtyness(dbRequest);

 if(dirty)

 invokeDBOperation(dbRequest);

 updateLiveCache();

 else

 lookupLiveCache(dbRequest);

 end if

 end if

else

 invokeDBOperation(dbRequest);

 //Item not eligible for Caching

end if
Similarly if the db request data is for self controlled type or

fully dynamic type, it will verify the CacheLive area and will

verify the dirtiness of the requested object. If it is in synch

with database (i.e. dirtiness is false) then it will retrieve from

Cache, otherwise it will invoke the database call and will

update the CacheLive accordingly.

5. PERFORMANCE STUDY
This section shows how the proposed design is performing

against the direct database call. It is also studied and verified

that the other existing caching frameworks e.g. EHCache[7],

JBoss Cache[8] are compatible with the proposed design.

Here it is enlisted few results by hitting the database multiple

times for static data which gives excellent results for proposed

design as shown in Table 2.

Table 2: Response time against database hits

Number of db

hits

With Cache

(in ms)

Without Cache

(in ms)

1 13456 12659

2 7865 11985

4 2774 12106

8 1398 11426

12 934 11201

15 758 11339

20 558 11622

30 371 11394

40 284 11431

50 235 11640

Figure 5 shows the performance of cached data against the

non-cached data. The initial performance is slightly less in

case of cache design as it load the CacheConfig.xml and

compare the db request with the cache area. The first request

always hit the database and store the result set in cache area.

However as the life of application increases, the cache system

performs better than the non-cached design.

The proposed design model is simulated in .NET application

and the elapsed time is captured with proposed cache model

and without cache model for different types of data. The

captured data are shown in below console figure (ref figure 6).

The resulted output is put on the graph which shows (refer

figure 7) that the proposed cache model for db results is

performing better than without cached model. Here in this

simulation the total response time elapsed is taken during the

data retrieval from proposed cache model vs non-cached

system. It is observed that the elapsed response time is

increasing in both the cases, but the response time gap is more

and more when the application is hitting the databases more

number of times.

The accuracy of the data is also verified and the data retrieved

from both the model is accurate with the Database data. In

reference to accuracy it is also observed that(ref figure 8) the

data when retrieved for the first time from data base is almost

same time or slightly more time because of the model to

gather the cache information and to verify whether the data

available in cache area or not. But subsequently, the response

time is reduced as compared to the non-cached system as the

application progresses.
Figure 5. Performance graph number of database

hit vs time

Figure 7. Performance graph number of database

hit vs time in .NET Simulation (Static Data)

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.13, February 2014

34

It is also compared the proposed caching performance for self

controlled data types. Figure 9 shows how the proposed model

performs against the self controlled data.

In figure 9, it could be seen that there is some instance where

cached system response time equals with non-cached response

time. This is due to the cached system hit the database where

it did not find the data in cache live area or it might find the

dirty flag as true for the requested data. However, on overall,

the proposed cached system performing better than the non-

cached system.

6. CONCLUSIONS
This proposed design is providing a better performance over

the existing design of repetitive database call. The static, self

controlled and fully dynamic data for oracle and MS SQL

based applications is considered in this paper which performs

with the proposed approach’s expectation. In addition to that,

different existing caching framework is included and

simulated to measure the compatibility which shows clear

distinctions that the proposed design is compatible with

existing caching and also performs in a better scale.

It is still in research process to include other (DB2, Informix,

MySQL etc) databases and to include the native joins by

taking two datasets into considerations which will enhance the

application performance in case of dual of multi - db calls

application requirements. The cached result set join also

include the dataset from different databases e.g. joining oracle

based data set with MS SQL based dataset; as part of the

future scope of this design approach.

7. ACKNOWLEDGMENTS
We are very much thankful to TATA Consultancy Services

Ltd, and the managers to provide us the infrastructure,

motivations and continuous guidance along with the

technology base which really help us in all way to write this

paper. We are thankful to Neelakanteshwar Palla, Hari

Chennuru, Suneel Satrasala, Vishnu Varadhan Kalyanam,

Manickam Thriponithura and other members for providing the

support all times to better execution of this proposed

framework. Never the less, the continued support from our

family is recommendable, without which this could not take a

complete shape in this design implementation.

8. REFERENCES
[1] H. Opfner, S. Wendland and E. Mansour, “Data Caching

On Mobile Devices The Experimental MyMIDP Caching

Framework”.

http://elab.ws/portal/files/publications/icsoft09-cach.pdf.

[2] Nilayam K Kamila and Prashanta K Patra, “An

Extensive Data Caching Framework Approach for

Enterprise Application. In Journal of Theoretical and

Applied Information Technology.

http://www.jatit.org/volumes/Vol52No1/11Vol52No1.pd

f

[3] Examples of Using the Scheduler.

http://docs.oracle.com/cd/B28359_01/server.111/b28310/

schedadmin006.htm

[4] Open Source Cache Solutions in Java. http://java-

source.net/open-source/cache-solutions

[5] EHCACHE. http://ehcache.org/documentation/code-

samples

[6] JBoss Cache Users' Guide.

http://docs.jboss.org/jbosscache/3.2.1.GA/userguide_en/h

tml_single/

Figure 9. Performance for Self Controlled

Data in proposed cache vs non-cache system

Figure 8. Data accuracy verification against

database data with response time details

IJCATM : www.ijcaonline.org

