
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

19

On the Choice of an Appropriate Software Reliability

Growth Model

Neha Miglani

Assistant Professor, Department of Computer Science and Engineering, JMIT, Radaur, Kurukshetra
University, Kurukshetra, Haryana-136119, India

ABSTRACT
Software reliability is an active field of research over the past

35 years. Software developers often feel the necessity of

selecting an appropriate software reliability model that not

only best depicts the past history but also can predict

reasonably well the future behavior of the software being

developed in respect of detected bugs and errors. This helps in

estimating in advance the time of delivery as well as the

overall cost of the software project. Several models have been

proposed in literature for estimating software reliability under

different environments. However from amongst the models

developed thus far, there is not a single model that best fits all

or even a majority of the real life situations and so can be

universally recommended.

In this study, a technique is proposed to serve as a guide for

the selection of an appropriate software reliability model for

an ongoing software development project. The proposed

technique has been tested on various sets of available software

development project datasets and it has been observed that

model recommended on the basis of proposed technique is

better in comparison with models recommended on the basis

of other models proposed.

General Terms

Curve fitting technique, Goodness-Of-Fit, Non-Homogeneous

Poisson process, Software reliability, Software reliability

growth models.

1. INTRODUCTION
Software plays an important role in today’s life. It is

embedded in commonly used appliances such as computers,

automobiles, and televisions etc, which are widely used. There

is an exponential boom in the software industry. As a result,

there is greater competition among software producers.

Software customers are now more conscious about the quality

of the products and services which these can provide.

Software is essentially an instrument for transforming discrete

sets of inputs into discrete sets of outputs [2]. A software

controls functions of the entire system. The faults in the

software may cause critical problems leading to financial

losses, human injury and even death. It is, therefore,

important to develop robust and reliable softwares and for this

techniques are needed, which can measure and predict the

reliability of the software being developed during

development stage itself.

During the last two decades there has been enormous growth

of literature on software reliability theory. Statistical models

have been developed that can be used to evaluate the

reliability of a software system. For development of an

effective software reliability model, one needs to understand

how software is produced and tested, the types of errors that

can occur, and how these errors get introduced.

More than 50 software models have been proposed in

literature [2], [3], [8], [9], [13], [14]. However none of these is

effective in even types of situation. The problem therefore is

as to how to make choice of an appropriate software model

for a given practical situation. Certain methods have been

proposed in literature for this [4], [6], [7], [10], [11]. However

none proves equally effective in all the circumstances. In this

paper, a method is proposed for the choice of an appropriate

Software Reliability Growth Model which can be effective in

majority of the situations.

 The remainder of the paper is organized as follows: Section 2

reviews in brief the available literature on ranking and

selection of different Software Reliability Growth Models and

the recommended criteria for selection of an appropriate

model. In Section 3 a method for selecting an appropriate

reliability model is proposed. Effectiveness of the proposed

method is next demonstrated in Section 4 with the help of

certain case studies Conclusions based on the present study

are finally presented in Section 5.

2. CHOICE OF APPROPRIATE

SOFTWARE RELIABILITY MODEL
Software reliability is an important attribute of software. It is

of prime importance for mission critical systems, which

demand high reliability. In safety related applications and in

products with long lifetime, reliability is a must. Counter-

measures need to be taken to ensure product level reliability

[1]. Thus reliability modeling of software products and

predicting reliability via such models at different phases of the

software life cycle is of prime importance. Methods that

estimate remaining defects (or failures) in software can help

test managers make release decisions during testing stage

itself. Various estimation models exist to estimate the

expected number of total defects (or failures) and the expected

number of remaining defects (or failures) [11].

Most of the available techniques for predicting software

reliability are based purely on the observation of software

product failures. These methods generally require a

considerable amount of failure data to achieve an accurate

reliability prediction. In these methods, information

concerning the development of software product, the method

of failure detection, environmental factors, etc, is generally

not used.

Both static and dynamic software reliability methods exist to

assess the quality aspect of software. A static model uses

software metrics, like complexity metrics, results of

inspections, etc. to estimate the number of defects (or faults)

in the software. A dynamic model uses the past failure

discovery rate during software execution or cumulative failure

profile over time to estimate the number of failures. It

includes a time component, typically time between failures.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

20

A large number of software reliability models have been

proposed in the literature to predict the reliability. Sixteen

most commonly used software reliability growth models

(categorized as Non-Homogenous Poisson Process

Models(NHPP)) are Generalized Goel Model[2], Goel-

Okumoto Model[3], Gomperts Model[13], Inflection S-

Shaped Model[13], Logistic Growth Model[13], Modified

Duane Model[5], Musa-Okumoto Model[8], Yamada

imperfect debugging Model1[14], Yamada Rayleigh

Model[14], Delayed S-Shaped Model[13], Yamada imperfect

debugging Model2[14], Yamada exponential Model[13], P-N-

Z Model[9], P-Z Model[9], Pham Zhang IFD Model[15] and

Zhang-Teng-Pham Model[15].

 Following assumptions have generally been made in

developing these models [15]:

i. A software program can fail during execution.

ii. The occurrence of software failures follows NHPP with

mean value function m (t).

iii. The software failure detection rate at any time is

proportional to the number of faults remaining in the

software at that time.

iv. When a software failure occurs, a debugging effort

occurs immediately. This effort removes the fault

immediately with the probability p, (where p>>1-p).

v. At each debugging, whether the detected fault is

successfully removed or not, some new faults may get

introduced into the software system with probability

β (t) (β (t) <<p).

Alongwith NHPP models, certain other categories of models

also exist on the basis of different phases of software

development life cycle (SDLC).

Takmasa et. al [12] reported the suitability and stability of the

NHPP and trend curve software reliability growth models.

The study showed that NHPP model fitted well the software

development projects, which they considered (mainly custom-

made application programs) of Hitachi Ltd. consisting of

several sub-systems with several test phases individually.

Quality control limit curves have also been recommended for

more effective application of these models.

Efforts have been often made to decide about the model from

amongst the existing models (as listed in Sharma et. al [6]),

that best fits the software under study. No model available

thus far, proves best for all the situations. Techniques have,

therefore, been proposed to decide about the effectiveness of

various models in a given context and to choose the best one.

Stringfellow and Amschler [11] proposed an empirical method

for selecting Software Reliability Growth Models (SRGMs) to

make release decisions. The method provides guidelines on

how to select among the SRGMs the best model to use as

failures are reported during the test phase of the software

being developed. Kharchenko [7] designed a method for the

choice of the software reliability model based on the analysis

of assumptions and compatibility of input and output

parameters. For choice of SRGM an assumptions matrix is

developed taking into account the features of software

engineering and testing processes. Sharma et. al [6] proposed

a deterministic quantitative model based on distance based

approach (DBA) and applied it for selection and ranking of

SRGMs. This method incorporates both quantitative and

qualitative factors. Garg et al [10] presented a computational

methodology based on matrix operations for a computer based

solution to the problem of performance analysis of software

reliability models (SRMs). A set of seven comparison criteria

have been formulated to rank various non-homogenous

Poisson process software reliability models proposed during

the past 30 years Duygulu and Tosun [4] focused on selecting

the reliability model that best describes the collected failure

data. The proposed algorithm was aimed to be a guideline for

the potential user who wants to evaluate the reliability of the

developed software.

Some of the points that need to be kept in mind while

developing a software reliability model selection are [11]:

• As no model is expected to match company’s

development and test process exactly, the selected model

should yield a curve fit that shows Goodness-Of-Fit

value as high as possible.

• Data is usually grouped by weeks and it takes longer for

the predicted total number of failures to stabilize.

• Testing effort may vary from week to week. This is a

problem with a small dataset, when data is only for a few

test weeks.

• Models are usually based on execution time whereas

most of the information available is based on calendar

time.

A careful study of the available literature shows that when a

software has been reasonably developed one should choose a

model that

• gives as far as possible reasonably accurate estimate of

known past defects.

• is able to predict reasonably accurate future defects

expected.

• provides a mechanism for estimating the earliest possible

release date of the software.

 (If the software is released earlier, it may contain bugs which

may start appearing in a very short span of time and thus,

lower acceptance of product by the users. On the contrary, if

one takes too long to make release decision, it may results in

wastage of time, money as well as resources).

In the next section, a method is proposed for choosing an

appropriate software reliability model.

3. THE PROPOSED METHOD

Keeping in view the above facts, a method is proposed for

selecting software reliability model that best fits the available

data and can be used to make predictions about the date of

release. It tries to take care of the issues listed above in an

appropriate way. The proposed method works as under:

1. Keep a periodic record of the cumulative number of

failures observed in the software project till the decided

date of testing.

2. Use appropriate software (such as one available in

MATLAB for curve fitting) to determine the values of

the parameters of the probable models for which these

best fit the data available thus far in the sense of least

square error curve fitting and use these to compute for

these models the values of parameters:

 Rsq: that measures how appropriate the model fits the

available data. (A value closer to 1 indicates a better fit.)

 RMSE: Root Mean Square Error measures the closeness

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

21

with which the model predicts the observation. (A value

closer to 0 indicates a better fit.)

3. From amongst the models under consideration choose the

models for which

Rsq specified value (it was chosen as 0.90 for early

stages of testing and 0.95 for later stages)

(1)

 and

RMSE specified value (it was chosen 15 for early

stages and 10 for later stages)

(2)

4. For each of the models satisfying the above two criteria,

compute the currently predicted number of errors (mean

value function m(t)), denoted by PREDF and compare

these with their actual values from the actual data, to

compute APF. Thus, the relation between the two can be

represented as:

(3) |APF))PREDF,APF)/(max(-(PREDF|1-=PRED

where

 PREDF represents current value of predicted number of

errors using the selected model and APF denotes the

actual errors observed in the dataset.

 Next, using the selected model, compute the total number

of expected errors ‘a’ and remaining errors a-m(t) and the

estimated time EST by which 95% confidence limit i.e.

95% of total errors (or 95% reliability) is expected to be

achieved using

 (4) |ACR))ESTR,ACR)/(max(-(ESTR|1-=EST

 where ESTR denotes the estimates of number of

errors detected till date (m(t)) and ACR is the actual

number of errors detected thus far.

5. The model which gives value of EST closest to one is the

most appropriate model. Using computed data, models

may be ranked as:

 (5) 0.2*EST)+(RM+0.3*PRED)+(Rsq=Rank

 where

CRMSEM/RMSERM (RMSEM represents the

minimum value amongst all the values of RMSE from

selected models and RMSEC represents the calculated

value of RMSE for that specific model.)

6. Select suitable model from amongst the top ranked

models which gives best future predictions.

4. VALIDATION ON TEST DATA
Proposed technique has been tested on the following datasets.

Dataset -1: A dataset having 100 reported defects has been taken

from the open literature [6] for evaluation, optimal selection and

ranking of these sixteen NHPP software reliability growth

models. The data set consists of weeks, CPU Hours and Defect

values.

Dataset-2: For testing the effectiveness of proposed method,

dataset considered by [10] is used in the research paper. This

data set is from the testing process on a middle-size software

project. Failure data consisting of failure time in weeks and

cumulative number of failures. The dataset comprises of 192

reported defects corresponding to 21 weeks.

Dataset -3: For next dataset, the failure data from [11] is taken.

The failure data set comes from three releases of a large

medical record system, consisting of 188 software

components. Each component contains a number of files.

Initially, the software consisted of 173 software components.

All three releases added functionality to the product. Over the

three releases, 15 components were added. Between three and

seven new components were added in each release. Many

other components were modified in all the three releases as a

side-effect of the added functionality. In this paper, we have

considered all the three releases (Release-1, Release-2 and

Release-3)

In case of each dataset, sixteen NHPP Software Reliability

Growth Models listed in Sharma et. al [6] were considered and in

each case ranks of these models were obtained Eventually, four

top ranked models were selected in each case and the best model

was chosen from amongst these which gives the best future

predictions.

The results are listed in Table I - Table III. Earlier results of

authors are given for comparison. Results of two datasets are also

depicted graphically in Fig. 1 - Fig.3.

5. CONCLUSIONS
Use of the proposed technique for deciding the choice of an

appropriate reliability model that best fits available data of an

ongoing software project has shown that the proposed approach

provides a better choice of the model as compared with models

using available approaches in literature.

DATASET-1 Tandems Computers Software Failure [6]

TABLE I

Best Model after each of three stages (DS-1)

Release

Date

Actual Data Based on proposed technique Best known results based on existing

technique [Sharma et. al,6]

Errors

detected

Remaining

errors

Selected

Model

Errors

detected

Remaining

errors

Selected

Model

Errors

detecte

d

Remaining

errors

After 12

weeks

86 14 Zhang-

Teng-

Pham

86.19 16.31 Inflection

S-Shaped

84.96 97.34

After 15

weeks

96 4 Zhang-

Teng-

Pham

95.73 5.37 Inflection

S-Shaped

97.50 69.8

After 18

weeks

100 0 Zhang-

Teng-

Pham

99.9 1.8 Inflection

S-Shaped

102.76 18.14

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

22

DATASET-2 Middle Size Software Project Failure Data [10]

TABLE II

Best model after each of three stages (DS-2)

DATASET-3 Failure Data of Large Medical Record System [11]

TABLE III

Best model after each of three stages

Release

Date

Actual Data Based on proposed technique Best known results based on existing

technique [Garg et. al,10]

Errors

detected

Remaining

errors

Selected

Model

Errors

detected

Remaining

errors

Selected

Model

Errors

detecte

d

Remaining

errors

After 13

weeks

157 35 P-N-Z

Model

155.25 11.05 P-Z Model 155.32 11.18

After 16

weeks

182 7 Generalized

Goel

178.07 27.73 P-Z Model 182.18 1.58 * 104

After 19

weeks

187 5 Generalized

Goel

187.88 19.12 P-Z Model 185.51 14.29

Release-1

Release

Date

Actual Data Based on proposed technique Best known results based on existing

technique [Stringfellow,11]

Errors

detected

Remaining

errors

Selected

Model

Errors

detecte

d

Remainin

g errors

Selected Model Errors

detecte

d

Remaining

errors

After 11

weeks

139 37 Zhang-

Teng-

Pham

146.55 30.45 Delayed S-

Shaped[16]

143.64

[16]

687.06 [16]

After 13

weeks

164 12 Zhang-

Teng-

Pham

166.47 10.53 Delayed S-

Shaped[16]

169.31[

16]

281.7 [16]

After 15

weeks

165 11 Zhang-

Teng-

Pham

173.32 3.68 Delayed S-

Shaped[16]

178.69

[16]

107.81 [16]

Release-2

After 11

weeks

192 12 P-Z Model 195.511 20.81 Yamada-

Exponential

195.16 35.84

After 13

weeks

192 12 Zhang-

Teng-

Pham

193.32 13.68 Yamada-

Exponential

195.90 15.3

After 15

weeks

203 1 Zhang-

Teng-

Pham

202.63 4.37 Yamada-

Exponential

201.02 2.52

Release-3

After 8

weeks

63 14 Delayed

S-Shaped

64.98 17.83 Delayed S-

Shaped

64.98 17.83

After 10

weeks

75 2 Gompertz 73.20 7.08 Delayed S-

Shaped

73.89 11.65

After 12

weeks

76 1 Gompertz 76.72 3.39 Delayed S-

Shaped

77.67 5.96

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

23

DATASET-1 Tandems Computers Software Failure [6]

Fig. 1. Based on data available upto 15 weeks

Fig. 2. Based on data available upto 18 weeks

Dataset-3 Failure Data of Large Medical Record System: Release-3[11]

Fig. 3. Based on data available upto 12 weeks

6. ACKNOWLEDGEMENTS
The author would like to thank Dr. C.Mohan, Prof Computer

Science, Ambala College of Engineering and Applied

Research for his critical review. Constructive comments made

by him were helpful in improving the quality of the paper.

7. REFERENCES
[1] Aitken Robert , Fey Gorschwin , Kalbarczyk Zbigniew

T. , Reichenbach Frank , Sonza Reorda, Matteo,

“Reliability analysis reloaded: How will we survive?”

Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp.358 – 367, March 2013.

[2] Goel, A.L. “Software Reliability Models: Assumptions,

Limitations, and Applicability,” IEEE Trans. Software

Engg. Vol SE-11, No 12, 1985 Dec, pp 1411-1423

[3] Goel A. L and Okumoto K., "Time-dependent error-

detection rate model for software reliability and other

performance measures," IEEE Trans. Rel., vol. R-28, pp.

206-211, Aug. 1979.

[4] Hakan Burak Duygulu, Oğuz Tosun, “An Algorithm for

Software Reliability Growth Model Selection”

IADIS International Conference Informatics 2008.

[5] Huang C. Y., Lyu M. R., and Kuo S. Y., “A unified

scheme of some non-homogenous Poisson process

models for software reliability estimation,” IEEE Trans.

Weeks

D
e
fe

c
ts

 f
o
u
n
d

YT20 vs. XT20

 Present Model

 Author's Model[6]Weeks

D
e
fe

c
ts

 f
o
u
n
d

YT20 vs. XT20

 Present Model

 Author's Model[6]Weeks

D
e
fe

c
ts

 f
o
u
n
d

YT20 vs. XT20

 Present Model

 Author's Model[6]Weeks

D
e
fe

c
ts

 f
o
u
n
d

YT20 vs. XT20

 Present Model

 Author's Model[6]

5 10 15 20 25 30 35 40 45 50

50

100

150

Weeks

D
ef

ec
ts

 f
ou

nd

Actual Data

 Selected Model

 Best Model[6]

5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

Weeks

D
ef

ec
ts

 f
ou

nd

Actual Data

 Selected Model

 Best Model[6]

5 10 15 20 25 30 35 40 45 50

20

40

60

80

Weeks

D
ef

ec
ts

 f
ou

nd

Actual Data

 Selected Model

 Best Model[13]

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Aitken,%20Robert.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fey,%20Gorschwin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kalbarczyk,%20Zbigniew%20T..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kalbarczyk,%20Zbigniew%20T..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Reichenbach,%20Frank.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sonza%20Reorda,%20Matteo.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6507370
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6507370

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

24

on Softw. Engineering, vol. 29, no. 3, pp. 261-269,

March 2003.

[6] Kapil Sharma, Rakesh Garg, C. K. Nagpal, and R. K.

Garg, “Selection of Optimal Software Reliability Growth

Model using Distance Based Approach”, IEEE

Transactions. June 2012, Volume 59, Issue: 2, Pages:

266-276.

[7] Kharchenko, V.S. et al, 2002, “The Method of Software

Reliability Growth Models Choice Using Assumptions

Matrix” Proceedings of the 26th Annual International

Computer Software and Applications Conference

(COMPSAC’02).

[8] Musa J. D., and Okumoto K., “A logarithmic Poisson

execution time model for software reliability

measurement,” Conf. Proc. 7th International Conf. on

Softw. Engineering, 1983, pp. 230-237.

[9] Pham H., Nordmann L., and Zhang X., “A general

imperfect software debugging model with s-shaped fault

detection rate,” IEEE Trans. Reliability, vol. 48, June

1999, pp. 169–175.

[10] RajPal Garg, Kapil Sharma, Rajiv Kumar, R. K. Garg,”

Performance Analysis of Software Reliability Models

using Matrix Method” World Academy of Science,

Engineering and Technology 71 2010.

[11] Stringfellow, C., and Amschler, A.A., 2002,”An

Empirical Method for Selecting Software Reliability

Growth Models” Empirical Software Engineering, 7,

319-343.

[12] Takmasa Nara Masahiro Nakata Akihiro Ooishi,

“Software Reliability Growth Analysis- Application of

NHPP Models and Its Evaluation “1995 IEEE.

[13] Yamada S., Ohba M., and Osaki S., "S-shaped reliability

growth modeling for software error detection," IEEE

Trans. Rel., vol. R-32, pp. 475-478, 484, Dec. 1983

[14] Yamada S., Tokuno K., and Osaki S., “Imperfect

debugging models with fault introduction rate for

software reliability assessment, “International J. Syst.

Science, vol. 23, no. 12, 1992.

[15] Zhang Xuemei, Teng Xiaolin, and Pham Hoang,

“Considering Fault Removal Efficiency in Software

Reliability Assessment” IEEE Transactions on Systems,

Man, and Cybernetics—Part A: Systems and Humans,

Vol. 33, No. 1, January 2003

IJCATM : www.ijcaonline.org

