
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

5

Software Architecture Styles a Survey

Ashish Kumar
Computer Science and Engineering,

 Thapar University, Patiala -147004, Punjab, India

ABSTRACT
This research deals with an important issue in software

development. It is concerned with software development with

the help of software architecture styles. Software industry

uses many architecture styles namely, pipe and filter, object

oriented, event invocation, process control layered, data

centered architecture etc. All these architecture styles have

their own advantages and disadvantages as well. Therefore

main objective of this research is to represent different

architecture styles with their features and defects.

Keywords
Architecture styles, Advantages and disadvantages of

different architecture styles, Software Architecture styles and

patterns, Architecture styles in software engineering.

1. INTRODUCTION
An architecture style is a set of rules which tell how to

develop a system. It tells how components are organized, how

data is manipulated, how components communicate with each

other, so on…..? Architecture is very important role player

even for the making of a fountain pen to constructing a

multistory building. Somehow if we are able to build our

system once without architecture but it become deadly to

make changes, future enhancement in the system without the

proper architecture. A good architecture design has been a

major factor in determining the success of a system.

Now a day’s software architecture becomes the popular field

for the software engineering researchers. Researches has been

carried out in many different areas of architecture such as

modules interfaces, software reuse, architecture design

environment, domain specific environment etc.

The main purpose of software architecture is its benefits for

both development and maintenance. For development point of

view, it is very essential to be able to identify the common

pattern, so that relationship among the system modules can be

easily understood. In the complete life cycle of Software,

maximum time spends during the maintenance e.g.

understanding the code etc. If after development

documentation is done properly; the effort for understanding

the code can be reduced.

Using a wrong architecture can lead to disastrous result. A

detailed understanding of software architecture is very

Helpful to analyze the complex system; it also gives a power

to choose alternative architecture style. To get in depth

understanding of importance of good architecture consider an

example, suppose a small family wants to construct a three

room set, it has two options either construct a very compact

structure (focusing on the current needs only) or a well

detailed design (focusing on the future needs too), which

option would be better? Obviously smart answer will be

second option, reason is clear family size may grow in future

at that time modification feature should be possible in

architecture, what if family decided to sell the house? A poor

architecture style house is difficult to sell. In good architecture

house, accessing and managing the things is easy. The same

concept is also applied in software architecture i.e. our

software system must be easy to use, reuse, easy to enhance

etc.

Choosing the most appropriate architecture is not that much

easy. It is impossible to answer all the questions arises in the

Architect’s mind during the software design like, when should

a particular architecture should be chosen? What are the

consequences of choosing one structural decomposition over

another? Which architecture can be compared with others?

And many more.

2. ARCHITECTURE STYLES
An architecture style is constrained by a particular principle of

how to build a system and how components communicate to

manipulate the data? E.g. sequential processing of data,

hierarchy of components etc. Each architecture influence

some quality attributes in a positive and some in a negative

way, so each architecture style has its advantages and

disadvantages.

In this research paper we mainly focus on the following

architecture styles:

1. Pipe and filter architecture

2. Object oriented architecture

3. Layered architecture

4. Data- centered architecture

5. Interpreter

6. Event based implicit invocation

7. Process control

2.1 Pipe and Filter architecture
This architecture contains set of components and connectors.

Components are computations unit also known as filters.

These filters are connected with the help of connectors

(known as pipe) through which data flow from one filter to

other. Each filter take data as input then perform some

computation on it and send it to the other filters for further

processing. Interestingly filters do not know the identity of

other filters either they are connected or not and all the filters

are independent entities. These filters can be used in

sequential or in parallel or in both.

Pipe and filter style has mainly three specialization include

pipelines which allow only linear sequence of filters; bounded

pipes which tells about amount of data that can reside on a

pipe; typed pipes which allow only a specific type of data to

be passed between the filters.

Well known example of pipe and filter is compiler. A

compiler has many filters (lexical analyses, parsing, sematic

and code generation) through which our program passes and

we get final machine code after this. Other well-known

examples of pipe and filter style are programming in Unix

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

6

shell [1], signal processing domain [2], parallel programming

[3], functional programming [4] and distributed systems.

Fig.1 Pipes and filters.

Advantages of pipe and filter architecture are as follows:

1. Easy to understand the overall input and output

behavior of the system.

2. Support reuse.

3. Support deadlock analyses feature.

4. Concurrent execution which improve performance.

5. Easy to maintain and enhance; new filter can be

added or can replace older filters with improved

ones.

Disadvantages of pipe and filter architecture are as

follows:

1. Batch oriented processing.

2. Not suitable for interactive applications

3. Must agree on lowest common denominator on data

transmission which leads to loss of performance and

increase complexity.

2.2 Object oriented architecture
In this style, data representation and their associated primitive

operations are encapsulated in an abstract data type or object.

Instances or objects of abstract data type are the components

of this style. Objects interact with each other with the help of

functions and procedure call. A problem can be decomposed

in to set of small problems; solutions of these small problems

are shared with other small problems with the help of

procedure invocation to solve a big problem. It can be

multithreaded or single threaded.

Fig. 2: Object Oriented Architecture.

Advantages of object oriented architecture are as follows:

1. Data hiding i.e. changes in an object is possible

without affecting its clients.

2. Allow designer to decompose problem in to

collection of interacting objects.

Disadvantages of object oriented architecture are as

follows:

1. Object must know the identity of other objects with

which it want to interact via procedure call.

2. Whenever identity of object changes it must modify

all other objects that explicitly invokes it.

3. Side effect problem[5]

Object oriented architecture has mainly two variants- client

server and object broker. In client server, objects (clients) do

not need to know anything about each other. Clients just need

to know about the server with which it has to be connected

and further responsibility is of server only.

In object oriented, a broker is used between clients and

servers. Now clients no longer need to know the server they

are using. Clients only need to know the broker and broker

decide with which server it has to be connected. There can be

many brokers and many servers. But it has serious drawback

that at peak time broker can be bottleneck and performance of

system degraded.

2.3 Layered architecture
It is a hierarchical organization, each layer provide services as

a server to the layer above it and serving as a client the layer

below. Depending on the number of layers architecture can be

2-tier architecture (only 2 layers present), 3-tier architecture

(only 3 layers present) and so on. Each layer has its own

responsibilities. Together all the layers work to achieve a

single goal. Two well-known examples of layered architecture

are operating system and OSI reference model.

In operating system, mainly three types of layers are used-

kernel layer (closer to hardware), it provides the services to

the utilities (compilers, drivers etc.) to be installed and then

application layer come in to the existence which help user to

interact with the system.

Fig. 3: Different layers of operating system.

In OSI reference model, seven layers are used application

layer, presentation layer, session layer, transport layer,

network layer, data link layer and physical layer (in the order

upper to lower layer). Physical layer provide its services to the

data link layer and data link layer provide its services to the

network layer and so on.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

7

Fig.4: Different layers of OSI reference model.

Layered architecture has mainly two variants- open layered

architecture and closed layered architecture. In open layered

architecture an upper layer can use the services of any below

layer directly. As a result it increases the dependency between

the layers, so layers are not reusable.

In closed layered architecture, an upper layer can use the

service of layer directly below it. In this architecture layers are

less dependent on each other hence reduce the impact of

changes and increase reusability. But its performance is

poorer then the open layered architecture as it has to traverse

all the layers for performing any computation.

Advantages of layered architecture are as follows:

1. High abstraction level.

2. Easy to enhance (new layers can be easily added or

deleted).

3. Reusable (change in one layer can affect only two

adjacent layer i.e. one upper layer and one lower

layer).

Disadvantages of layered architecture are as follows:

1. Level of abstraction is difficult to decide.

2. Low performance (layer by layer path need to be

followed).

3. Dividing every system into layers and deciding the

functionality of layers is difficult.

2.4 Data-centered architecture
As its name implies our main focus is on data. Several

knowledge experts use it to get a common conclusion. These

knowledge experts access the common data in synchronized

manner to preserve the consistency of data. Transactions on

the data are in same order for all the knowledge sources. In

this architecture our focus is mainly on data that is why it is

called data centered architecture.

Blackboard architecture has mainly three components-

knowledge sources (KS), blackboard data structure and

controller.

 The knowledge source (KS): these are independent

knowledge specialists. Each provides specific

expertise needed for the application. These experts

interact with each other throughout the life of

problem to achieve a common target.

 The blackboard data structure: is a shared

repository of problems, partial solutions,

contributed information and suggestions.

Knowledge sources make changes to the data

repository that lead incrementally to a solution to

the problem. It can be treated as dynamic library of

contributions to the current problem that have been

recently published by other knowledge sources.

 The controller: it controls overall flow of problem

solving activities in the system. It is used mainly to

organize the knowledge sources so that they can

make use of data repository in a coherent and

effective manner.

Fig. 5: The blackboard architecture.

To make these components more understandable take an

example, in a class teacher write a problem on the board and

ask students to come in front and solve it one by one. Each

student write the solution according to his thinking then next

student came and can modify or suggest any alternative for

providing better way to solve the problem. This process is

keep repeating till we get a good optimized solution. Here

students act as knowledge experts, board which share

problem, intermediate and final solution act as blackboard

data repository. And teacher which control all the activities of

the process i.e. order of accessing data repository by a

particular student, state of data repository etc. act as

controller.

Advantages of blackboard architecture are as follows:
1. Suitable for complex problem e.g. speech and

pattern recognition.

2. Very helpful for network based applications.

3. Useful in the systems that involve shared access to

data with loosely coupled agents [6].

Disadvantages of blackboard architecture are as follows:
1. Not suitable for every problem.

2. Designing of good controller is very important.

3. If number of knowledge sources requested to access

the shared data increases then bottleneck problem

arises at the controller.

2.5 Interpreter
An interpreter basically used to produce a virtual machine. It

is suitable for applications in which most appropriate machine

is not directly available. Java language uses interpreter. When

a java program is compiled with the help of JVM (Java virtual

machine) JVM create a byte code which is an intermediate

code not binary code. Now this byte code can be run on any

machine. It has four states- one for engine and rest three are

memories. These states are:

1. Interpreter engine for executing the program.

2. Current state of interpreter engine.

3. Program being interpreted.

4. Current state of program being interpreter.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

8

Fig. 6 Interpreter.

Advantages of interpreter are as follows:

1. It produces the machine independent code.

Disadvantages of interpreter are as follows:

1. Slow performance.

2.6 Event based implicit invocation
In event based implicit invocation instead of invoking a

procedure directly, a module or a component broadcast one or

more events. While other components can register an interest

in an event by associating a procedure with it. Whenever the

event is announced, the system invokes implicitly all the

procedures that have been registered their interests for the

event.

Interface of component in an implicit invocation style

provides both a collection of procedures and set of events. A

component can register some of its procedures with events of

the system. This will cause procedures to be invoked when

their associated events are announced at run time.

Interestingly the announcer of events even do not know which

component will be affect by which event. Hence even

components cannot make assumptions about what processing

will happen as a result of their events. For web application

developed in programming language like in java also

announces event when user interact with application and then

corresponding listener handles that announcement for

example when user clicked then corresponding listener

mouseClicked listen this event and handle it.

Fig. 7 Implicit invocation-event handling

This architecture is used in many applications for example in

database systems to ensure consistency constraints[7], in user

interfaces to separate presentation of data from applications

that manage the data[8], by syntax-directed editors to support

incremental checking[9].

Advantages of implicit invocation are as follows:

1. It supports reuse.

2. System evolution is easy in this architecture.

3. It is suitable for asynchronous communication.

Disadvantages of implicit invocation are as follows:

1. Components do not have control over computation

since they can generate events only.

2. Responses to the events are not ordered.

3. Analysis via pre and post condition is difficult.

4. Exchange of data requires global data or shared

repository, so resource management become

challenging.

2.7 Process control
This architecture is not widely used in the software industry.

In software design other architecture styles are dominated

over this architecture. This architecture is characterized by the

components and their relationship.

A continuous process converts input material in to product

with specified properties by performing operations on the

inputs and intermediate products. Process control architecture

involves several paradigms, these are as follows:

 Input variable measures the input to the system.

 Controlled variable are those variables whose

value the system is intend to control.

 Manipulated variable are those variables which

can be changed by the control system in order to

monitor the process.

 Set point in order to maintain specific property of

output of process, we set specific standards or

values, these standards are called set points.

 Open loop system if a process can run without any

surveillance, that system is called open loop system.

E.g. a hot air furnace system that uses a constant

burner setting to raise the temperature of air that

passes through. If we use timer to turn on or off at

regular interval even then it is called open loop

system.

Fig.8 Open loop system

 Close loop system in real world rarely it happens,

we do not need to control the physical processes.

Many times property like temperature, pressure and

flow rate are need to be monitor and their values are

used to change the setting of apparatus like valves,

heaters etc. such systems are called close loop

system.

This architecture is used in industrial production lines, power

stations, chemical engineering etc.

Fig.9 Close loop system

Advantages of process control are as follows:

1. Suitable for the control of the processes even at

runtime especially where control algorithm is

subjected to change.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.9, February 2014

9

2. Suitable when software is embedded in a physical

system that involves continuing behavior.

Disadvantages of process control are as follows:

1. Difficult to specify the timing characteristics and

responses to disturbances.

3. CONCLUSION
Each architecture style has its own merits and demerits. It

may happen that one architecture may fit for some application

but not fit to other application. None of the architecture is

suitable for all the application but it depends on the architect

which architecture he prefer for what type of application

depending upon the need of the application.

Table 1. Architecture styles and their qualities

Performance Scalable Simplicity Reusable

Pipe and

Filter
+- ++ ++ ++

Object

Oriented
+ +- - +

Layered

Arch.
- +- + ++

Data

Centered

Arch.

+ + -- +

Interpreter -- + + +

Implicit

Invocation
+ -- +- +

Process

Control
+ +- - +

4. ACKNOWLEDGMENT
I would like to express the deepest appreciation to Dr. Parteek

Bhatia, Assistant Professor at Thapar University, Patiala who

has attitude and substance of a genius. Without his expert

guidance and persistent help this paper would not have been

possible in this shape.

5. REFERENCES
[1] Maurice J. Bach. The design of the UNIX operating

system, chap. 5,pp. 111-119. Software series. Prentice

Hall, 1986.

[2] Norman Delisle and David Garlan. Applying formal

specification to industrial problems: A specification of an

oscilloscope. IEEE software, 7(5):29-37, September

1990.

[3] J.C. Browne, M. Azam, and S. Sobek. Code: A unified

approach to parallel programming. IEEE Software, July

1989.

[4] G. Kahn. The semantics of a simple language for parallel

programming. Information Processing, 1974.

[5] Mary Shaw and David Garlan, Software Architecture,

Prentice Hall of India, 2004.

[6] Vincenzo Ambriola, Paolo Ciancarini, and Carlo

Montangero. Software process entactment in Oikos. In

proceedings of the Fourth ACM SIGSOFT Symposium

on Software Development Environments, SIGSOFT

Software Engineering Notes, 183-192. Irvine, California,

December 1990.

[7] Carl Hewitt. Planner: A language for proving theorems in

robots. In proceedings of the First international Joint

Conference in Artificial Intelligence, 1969.

[8] G.E. Krasner and S.T.Pope. A cookbook for using the

model-view-controller user interface paradigm in

smalltalk-80. Journal of object oriented programming,

1(3):26-49, August/September 1988.

[9] A.Nico Habermann and david S.Notkin. Gandalf:

Software development environment. IEEE Transactions

on Software Engineering, SE-12(12):1117-1127,

December 1986.

IJCATM : www.ijcaonline.org

