
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.8, February 2014

11

A Comparative Analysis of Agent Oriented Requirement

Engineering Frameworks

Shambhu Bhardwaj

 Teerthanker Mahaveer Institute of Management &
Technology,

Teerthanker Mahaveer University,
Moradabad, India

Achal Kumar Goyal, Ph.D
Guru Kul Kangri Vishwavidhalaya

 Haridwar, India

ABSTRACT

The success of the software system is measured by the degree

to which it meets the purpose for which it was intended.

Requirement Engineering is the process of discovering that

purpose, by identifying stakeholders and their needs and

documenting these in a form that is amendable to analysis,

communication and implementation. Agent –oriented

concepts are becoming very popular in software engineering

as modelling frameworks for requirement engineering. This

paper introduces the current Agent Oriented Requirement

Engineering (AORE) Methodologies. It discusses what

approaches have been followed; the suitability of these

approaches for agent modelling; compares these approaches

in a tabular form and some conclusions drawn from review.

Keywords

Requirement Engineering, Agent Orientation, Software

Agent, Modelling Frameworks.

1. INTRODUCTION
The primary measure of success of a software system is the

degree to which it meets the purpose for which it was

intended. Requirement Engineering (RE) is the process of

discovering that purpose. RE is a branch of Software

engineering whose ultimate goal is to deliver some system

behaviour to its stakeholders. It is receiving increasing

attention due to abstract and invisible nature of software and

the vast range and variety of problems that admit to software

solution. Many approaches to RE are suggested in the

literature.

Agent oriented techniques [24] can make a substantial

contribution to the implementation of information system by

providing additional functionality and better user interface. In

this paper we focus on the use of agent oriented framework in

the early stages of the design of a system mainly in

requirement engineering. Agent concepts have been

introduced in RE primarily as modelling constructs to

characterize active elements in the environment, usually

including the target system. These active elements may be

human or machine and may contain hardware or software. In

RE, agent orientation brings several important benefits.

First, in AORE the agent’s mental states (beliefs, goals,

commitments, etc.) allows modelling at a higher level of

abstraction. By assigning such mental states to agents, we

may be able to explain or predict their behaviour even when

we have little information about their internal control

structure. Mental states are also very useful in understanding

how the behaviour of agents changes in response to changes

in their environment or organization. Second, in modelling the

organization or environment in which a system operates,

representing communication as various types of ``speech acts''

being performed by agents abstracts over the form and

mechanism of messages. Third, Requirements engineering

tools can draw on implementation techniques for agent-

oriented frameworks to provide more powerful and effective

modelling and analysis techniques. Fourth, AORE is

motivated by the need for the open architectures that

continuously change and evolve to accommodate new

components and new requirements. Finally, the move to

agent-oriented frameworks is consistent with a long-standing

recognition of the need to adequately model the organizations

in which information systems operate. In section 2 we review

a few selected RE frameworks in which agent play a centric

role. Among these Agent Oriented RE frameworks, some are

formal and some are informal. Each one is discussed briefly.

Section 3 compares the different AORE methodologies in a

tabular form. Finally, section 4 concludes the paper.

2. AGENT ORIENTED REQUIREMENT

ENGINEERING FRAMEWORKS
In this section, we will discuss briefly some of the agent

oriented requirement engineering frameworks.

2.1 i* Modelling Framework

i* modelling framework [5] was given by Eric C. Yu . It was

developed for modelling and analysing organization to help

support business process re-engineering and requirement

engineering. It consist of two main component-i) the strategic

dependency model (SD Model) and ii) the static rational

model (SR Model). The SD model is use to describe the

relationship among the actors. The SR model is used to

describe the stakeholder’s interest and concern and how they

might be address by various configurations of system and

environment. i.e it describe the alternative methods for

completing the goal and task for the actors. It helps in

understanding the existing processes and in generating the

alternatives.

The SD is a diagram based model. It has some nodes and

links. Every node represents an actor (here an actor can be an

agent, a role or a position) and link between the actor’s

represent the dependency. i.e how one actor depends on

another for completing a task or a goal. The depending actor

is called depender and actor who is depended upon is called

dependee. The relation between depender and dependee is

called the dependum.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.8, February 2014

12

Depender DependeeDependum

Fig 1: Relation between depender and dependee

Fig 2: For example in a meeting scheduling

process

SD model suggest four types of dependencies: goal

dependency, task dependency, resource dependency and soft

goal dependency.

SD model focus on the intentional dependency among the

actors, instead of the flow of entities among activities [6].

This allows analysis of opportunity and vulnerability. This

model does not support the process of suggesting and

evaluating the alternative solutions. The SR model addresses

this issue. The SR model provides a more detailed level of

modeling. It looks inside the actors to model the internal

intentional relationship. The intentional elements are goal,

task, resource and soft goals. These intentional elements

appear in SR model not only as external dependency but also

as internal elements. Two types of links are proposed in SR

models. These are: - Means-end relationship and task-

decomposition. Mean-end link specifies how a goal may be

achieved. Task decomposition link specifies how a task can

be decomposed into subtask.

2.2 ConGolog Modeling Framework
The ConGolog modeling framework [24] is based on the

language ConGolog. The ConGolog language was originated

developed as a high level language for programming robots

and software agents. ConGolog’s semantics is based on

situation calculus, a language of predicate logic for

representing and reasoning about action. ConGolog model has

two components: the first component is a specification of the

domain dynamics i.e., how to model the state, what is the

initial state of the domain, what actions can be performed,

when the actions can be performed and what their effects are?

The model can include a specification of a agent’s mental

states i.e what knowledge and goal they have as well as of the

dynamics of these mental states i.e how knowledge and goals

are affected by communication actions (eg. Inform, request,

cancel request etc.) and perception actions. This component is

specified in a declarative way either in high level Golog

domain language (GDL) or directly in the situation calculus.

The second component of ConGolog model specifies the

behaviour of the agents. This component is specified

procedurally. For this there is ConGolog process description

language which provides a rich set of constructs for

specifying multiagent processes including concurrency,

priorities, interrupts and non determinism.

In ConGolog and the situation calculus [5], a domain

dynamics is modeled in terms of: agents, primitive actions,

situation and fluent entities.

The dynamics of a domain are specified using three kinds of

axioms: action precondition axioms, successor sate axioms

and initial state axioms.

2.3 An approach to the combined use of i*

and ConGolog

i* is an informal diagram based language for early phase

requirement engineering and ConGolog is a logic based

approach for specifying processes that involves multiple

agents. The two approaches are complement to each other. An

approach for the combined use of these two methodologies [5]

was suggested in requirement engineering. The major steps of

this combined methodology are as follows.

3.1.1 Building the i* SD (Strategic Dependency) model

3.1.2 Building the i* SR (Strategic Rationale) model:

3.1.3 Building the Annotated Strategic Rationale (ASR)

model

3.1.4 Developing the initial ConGolog model conforming to

mapping rules

3.1.5 Validating the ConGolog model by simulation and

verification

Iterate steps 3.1.1 to 3.1.5- Refining the i* and ConGolog

models until objectives are met.

Whenever the i* model or ConGolog model has to be

modified based on the results of the validation step, the

modeler refines the corresponding part of the other model.

This continues until the client’s objectives are achieved.

2.4 The Requirement Engineering

Framework

The REF framework is designed to deal with the WHY, What

and HOW of the organizational context [26, 27]. The

framework tackles the modeling effort by breaking the

activity down into more manageable components and by

adopting a combination of different approaches on the basis of

a common conceptual notation. Agents are used to model the

organization. Goals are used to model the agents’s

relationship and eventually to link organizational needs to

system requirements. Two types of goals are there- Hard goal

and Soft goal. A goal is called hard when its achievement

criteria are strictly defined (“get marks above 60 %”). In case

of a soft goal, the criteria depends on the originator to decide

when the goal is considered to have been achieved (“get good

marks”).In comparison to hard goals, soft goals can be highly

subjective and strictly related to a particular context. They

enable the analysts to highlight quality issues (e.g. the concept

of “good marks”) from the outset, making explicit the

semantics assigned to them by the stakeholders.

The proposed framework supports three inter-related

modelling efforts-

2.4.1 During Organization Modelling: the organizational

context is analysed and the agents and their goals

identified. Any agent may generate its own goals, may

operate to achieve goals on the behalf of some other

agents, may decide to collaborate with other agents for

a specific goal, and might clash on some other ones.

The found goals will then be refined, through

interaction with the involved agents (i.e. the

stakeholders), by hard goal and soft goal modelling.

2.4.2 The Hard Goal Modelling: determines how the agent

can achieve a hard goal placed upon it, by

decomposing them into more elementary subordinate

hard goals and tasks. The level of refinement of a hard

goal into subordinate hard goals and tasks depends on

the level of capability and autonomy of the agent.

Meeting

Initiator

Meeting

Scheduler

MeetingBeShedule

d

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.8, February 2014

13

2.4.3 The Soft Goal Modelling: aims at producing the

operational definitions of the soft goals, sufficient to

capture and make explicit the semantics that are

usually assigned implicitly by the involved agents and

to highlight the system quality issues from the start. A

soft goal is refined in terms of subordinate soft goals,

hard goals, tasks and constraints. Resulting soft goal,

in turn, will have to be progressively refined until a set

of hard goals, tasks and constraints is obtained

Constraints are associated with hard goals and tasks to

specify the corresponding quality attributes.

Three kinds of information flows [26] for dependencies

among different agents are suggested in REF-Development

flows, Verification flow, and Elicitation & Validation flow.

The adopted graphical notation is widely inspired by i*

framework and business analysis and re-engineering and thus

open to be integrated in or extended by the Tropos

methodology.

2.5 Tropos Methodology

The Tropos methodology [7, 10] is intended to support all

analysis and design activities in the software development

process, from application domain analysis down to the system

implementation. In particular, Tropos rests on the idea of

building a model of the system-to-be and its environment that

is incrementally refined and extended.

Five main development phases are suggested in the Tropos

methodology: Early Requirements, Late Requirements,

Architectural Design, Detailed Design and Implementation.

The ultimate objective of requirement analysis in Tropos is to

provide a set of functional and non-functional requirements

for the system-to-be. Requirements analysis in Tropos is split

in two main phases: Early Requirements and Late

Requirements analysis. Both share the same conceptual and

methodological approach. Thus most of the ideas introduced

for early requirements analysis are used for late requirements

as well. More precisely, during the first phase, the

requirements engineer identifies the domain stakeholders and

models them as social actors, who depend on one another for

goals to be achieved, plans to be performed, and resources to

be furnished. By clearly defining these dependencies, it is

then possible to state the why, beside what and how, of the

system functionalities and, as a last result, to verify how the

final implementation matches initial needs.

In the Late Requirements analysis, the conceptual model is

extended including a new actor, which represents the system,

and a number of dependencies with other actors of the

environment. These dependencies define all the functional and

non-functional requirements of the system-to-be.

The Architectural Design and the Detailed Design phases

focus on the system specification, according to the

requirements resulting from the above phases. Architectural

Design defines the system’s global architecture in terms of

sub-systems, interconnected through data and control flows.

The Detailed Design phase aims at specifying agent

capabilities and interactions. At this point, usually, the

implementation platform has already been chosen and this can

be taken into account in order to perform a detailed design

that will map directly to the code.

The Implementation activity follows step by step, in a natural

way, the detailed design specification on the basis of the

established mapping between the implementation platform

constructs and the detailed design notions.

2.6 Albert II

Albert II [1, 3] is a formal requirement specification language

based on a real time temporal logic. The name is an acronym

for Agent-oriented Language for Building and Eliciting Real

time requirements. The main purpose of the framework is to

model distributed heterogonous real time cooperative system.

The development of the language was started in 1992.

Throughout its development, the language was tested on

specification of non trivial systems like computer integrated

system, process control and telecommunication system.

The language [19] is based on the concepts that have been

proven useful for capturing functional requirement in real

time distribute systems. Its framework is based upon Albert-

Core. Its most important characteristic is its naturalness.

Naturalness stands for the language ability to map the

informal statements provided by the customer onto formal

statement expressed in the language.

The Albert II supports the modelling of the functional

requirements in terms of collection of agents interacting with

each other in order to provide organizational services. Each

agent is characterized by actions that may change its state of

knowledge of the external world. Actions are performed by

the agents to discharge contractual obligations expressed in

terms of internal and cooperative constraints.

A specification in Albert II is made up of a graphical part

where the vocabulary is declared and a textual part where the

logical formulae constraining the admissible behaviour are

stated.

Agents in Albert II [9] are not intentional and do not have

goals. Albert focuses on specification and is not concerned

with the examination of alternatives for meeting goals.

3. COMPARISON OF DIFFERENT

AGENT ORIENTED REQUIREMENT

ENGINEERING FRAMEWORKS
We have compared the different AORE frameworks based

upon some parameters and have obtained the analysis results

that are summarized in Table 1. Some frameworks are formal

and some are informal. Tropos is the only method that aims at

developing new software and thus, its lifecycle coverage goes

from early requirements to implementation. i* focuses on

early phase while Albert II focuses on late phase

requirements. Agents in Albert II are not intentional and do

not have goals.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.8, February 2014

14

Comparison among AORE Frameworks

4. CONCLUSION
In this paper, we have reviewed a number of Agent Oriented

RE frameworks. We presented the different frameworks of

RE and the advantages of AORE over these frameworks. Also

we discussed the different frameworks under the umbrella of

AORE and compare them in a tabular form.

We have presented six different AORE frameworks and

analysed them in order to inform their use. The comparison

focuses on the process, the resources involved and RE issues

addressed by each method.

As a result, and this is the main contribution of our work, this

comparison show under which circumstances one method

may be more valuable than the others and therefore their

selection may now depend upon the objective criteria rather

than on a subjective belief. Further work includes a deeper

analysis of these frameworks by evaluating the comparison

 i*

Modelling

Framework

ConGolog

Modelling

Framework

An approach

to combined

use of i* and

ConGolog

framework

The

Requirement

engineering

Framework

(REF)

Tropos

Methodology
Albert II

Informal/

formal

Framework

Informal formal formal Informal Informal formal

Complete

software

development

methodology

no no no no yes no

Agents have

goals
yes yes yes yes yes no

Agent's

participation

design choice

and

autonomy

constrained

behaviour

design choice

and autonomy

design choice

and autonomy

design choice

and autonomy

constrained

behaviour

Support for

early and late

phase

requirements

only early

phase

requirements

no
only early phase

requirements
no yes

only late

phase

requirements

Agent's goals

are same
no yes yes no no yes

Example

meeting

scheduler

system

meeting

scheduler

system

meeting

scheduler

system

electronic

record

management

system

e-cultural

system

generalized

railroad

crossing

problem

Resources

produced

complete SD

and SR

models

ConGolog

Model

implementation

using

ConGolog tool

a set of hard

goals, tasks

and constraints

system

implementation

system

requirement

document

Intermediate

artifacts

SD and SR

model before

considering

computer

based system

ConGolog

procedures

SD Model, SR

Model and ASR

Model

organizational

modelling,

hard goal

modelling and

soft goal

modelling

capability

diagram, plan

diagram, agent

interaction

diagram

graphical

declaration

and textual

specification

of constraints

Implementation

tool
_

ConGolog

tool
_ _ JACK tool _

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.8, February 2014

15

from different points of view (e.g., the authors, students,

industry practitioners and developers). Also a quantitative

approach should be adopted to allow a numerical evaluation.

A single case study can be used for the comparison of these

frameworks.

We should note that the move to agent-oriented frameworks is

consistent with a long-standing recognition of the need to

adequately model the organizations in which information

systems operate.

5. REFERENCES
[1] Du Bois, P., The Albert II Language - On the Design and

the Use of a Formal Specification Language for

Requirements Analysis, Ph.D. thesis, Dept. of Computer

Science, University of Namur, Namur, Belgium, 1995.

[2] Jennings, N.R. and Wooldridge, M. (Eds.), Agent

Technology: Foundations, Applications, and Markets,

Springer-Verlag, Berlin, 1998.

[3] Alexei Lapouchnian , “Modeling Mental States in

Requirements Engineering – An Agent-Oriented

Framework Based on i* and CASL”, A thesis submitted

to the Faculty of Graduate Studies in partial fulfillment

of the requirements for the degree of Master of Science

York University Toronto, Canada July, 2004

[4] Shapiro, S., Lespérance, Y., and Levesque, H.J.,

Specifying Communicative Multi-Agent Systems with

ConGolog, in Agents and Multi-Agent Systems -

Formalisms, Methodologies, and Applications, W.

Wobcke, M. Pagnucco, and C. Zhang, eds., 1-14, LNAI,

Springer-Verlag, Berlin, 1998.

[5] Wang, X., Agent-Oriented Requirements Engineering

Using the ConGolog and i* Frameworks,M.Sc. thesis,

Dept. of Computer Science, York University, Toronto,

ON, Canada, 2001, to appear.

[6] Yu, E.S.K., Towards Modelling and Reasoning Support

for Early-Phase Requirements Engineering, in Proc. of

the 3rd IEEE Int. Symp. on Requirements Engineering

(RE’97), 226-235, Washington, DC, 1997.

[7] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos,

and A. Perini. TROPOS: An agent oriented software

development methodology. Autonomous Agents and

Multi-Agent Systems, 2003. in Press

[8] E. Yu. Modeling Strategic Relationships for Process

Reengineering. PhD thesis, University of Toronto,

Department of Computer Science, University of Toronto,

1995.

[9] E. Yu. Why agent-oriented requirements engineering. In

Proceedings of 3rd Workshop on Requirements

Engineering For Software Quality, Barcelona, Catalonia,

June 1997.

[10] J.Castro, M.Kolp, J.Mylopoulos. Towards requirements

driven information system engineering: The Tropos

Project.

[11] D'Inverno M., Luck, M. “Development and Application

of an Agent Based Framework” Proceedings of the First

IEEE International Conference on Formal Engineering

Methods, Hiroshima, Japan, 1997.

[12] Rumbaugh, J., Jacobson I., Booch, G. The Unified

Modelling Language Reference Manual. Rational

Software Corporation, Addison Wesley, UK, 1999.

[13] Colette Rolland, Carine Souveyet, and Camille Ben

Achour, Guiding Goal Modeling Using Scenarios, IEEE

Transactions On Software Engineering, Vol. 24, No. 12,

December 1998

[14] J. A. Bubenko, Extending the Scope of Information

Modeling, Proc. 4th Int. Workshop on the Deductive

Approach to Information Systems and Databases, Lloret-

Costa Brava, Catalonia, Sept. 20-22, 1993, pp. 73-98.

[15] M. Jackson, System Development, Prentice-Hall, 1983

[16] Carlos A. Iglesias , M. Garijo, “ A Survey of Agent

Oriented Methodologies”

[17] Bubenko JA. Information modeling in the context of

system development. In S.H. Lavington, editor,

Information Processing 80, pages 395-411. North-

Holland, 1980

[18] S. Nwana “Software agents: An Overview” (1996)

[19] Phillippe Du Bois, Eric Dubois, Jean- Marc Zeippen, “

On the Use of a Formal Requirement Engineering

Language: The Generalized Railroad Crossing Problem”

, Springer-Verlag London Limited -1997

[20] Awais Rashid, Peter Sawyer, Ana Moreira, João Araújo,

Early Aspects: a Model for Aspect-Oriented

Requirements Engineering

[21] Ecole Polytechnique Federale de Lausanne, Goal Driven

Requirements Engineering Overview

[22] Smith, R. (1996a), “Software Agent Technology”,

Proceedings of The First International Conference on the

Practical Applications of Intelligent Agents and Multi-

Agent Technology, London, UK, 557-571

[23] Bashar N. and S. Easterbrook, “Requirement

Engineering: A Roadmap”

[24] Y. Lesperance , Steven Shapario, “On Agent Oriented

Requirement Engineering”

[25] E. Yu and J. Mylopoulos, Understanding Why in

Requirements Engineering – with an Example,Workshop

on System Requirements: Analysis, Management, and

Exploitation, Schloß Dagstuhl, Saarland, Germany,

October 4–7, 1994.

[26] Paolo Donzeli, “ Agents, goals and Quality in a

Structured Requirement Engineering Framework-a case

study”

[27] Paolo Bresciani and Paolo Donzeli, “ REF: a Practical

Agent Based Requirement Engineering Framework”

[28] Amund Tveit “A survey of Agent-Oriented Software

Engineering” (2001)

[29] Lespérance, Y. and Shapiro, S., On Agent-Oriented

Requirements Engineering, position paper, International

Workshop on Agent-Oriented Information Systems

(AOIS’99), Heidelberg, Germany, June 1999.

[30] Nancy R. Mead, Eric D. Hough, Theodore R. Stehney II,

Security Quality Requirements, Engineering (SQUARE)

Methodology, November 2005

[31] S. Ratchev, E. Urwin, D. Muller, K.S.Pawar, I. Moulek,

Knowledge based requirement engineering for one-of-a-

kind complex systems, Jan 2002

IJCATM : www.ijcaonline.org

