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ABSTRACT 

In this paper design of non-recursive higher order low pass 

digital differentiators satisfying given specifications is 

investigated. The concept of low pass differentiation is further 

generalized to higher order differentiators. A formula is 

derived using Fourier integral to compute impulse response 

coefficients of the differentiator. The equation is then used to 

design first order differentiators and results are compared with 

Salesnick’s technique. The proposed FIR low pass 

differentiator has improvement in transition width and 

flexibility to choose cutoff frequency. The same technique has 

been demonstrated for second order design according to 

provided specifications. This method is used in the design of 

second order low pass differentiator for QRS detection in 

ECG. It is shown that the proposed implementation has low 

hardware and software complexity as compared to existing 

second derivative based techniques of QRS detection, giving 

advantage in optimization of current real time ECG systems.  
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1.  INTRODUCTION 
This paper describes the design of linear phase finite impulse 

response (FIR) higher order low pass digital differentiators. 

An expression is introduced, to calculate impulse response 

coefficients, by using Fourier series design method. Then 

window filter design technique is employed along with Kaiser 

Window to design filters. 

Low pass digital differentiators are used to avoid unwanted 

amplification of noise, as in case of full band ones [1]. 

Salesnick provided recursive formula to design first order FIR 

low pass differentiator’s impulse response coefficients in [1]. 

Alaoui described the recursive design procedure of low pass 

differentiators in [3]. Alaoui’s approach proved to better in 

transition width as compared to Salesnick’s method. The 

question of higher order case of low pass differentiators’ 

design becomes significant as they suffer from this limitation 

even more, because of their exponentially increasing gain. 

Corresponding higher order case is investigated in this paper. 

Higher order differentiation is an important signal processing 

technique, found in many applications such as biomedical 

signal processing and calculations of geometric moments [2]. 

Low pass differentiator can be implemented by a single filter 

or with cascading of differentiator and low pass filter [3]. The 

frequency response of higher order ideal full band 

differentiator is given by 

vjH )()(  
               

 
 

where v  is a natural number for differentiators.  

The higher order low pass differentiator is characterized by 

ideal frequency response as              

vjH )()(  
            c 

 

                c0    

             

where  2s
 is the sampling frequency in radians per 

second. Here 
c  is cutoff frequency such that  kc  , k  

is the parameter to control cutoff frequency in designing 

practical low pass differentiators. 

Accurate QRS complex detection is important in R peak 

detection and R-R interval extraction from ECG. An 

improvement in existing second derivative QRS complex 

detection methods could be achieved by low pass 

differentiators.  

The paper is developed as follows. In the first section, the 

formula to calculate filter coefficients of higher order low 

pass FIR digital differentiator is derived using Fourier 

integral. Then window method of FIR filter design and 

optimization algorithm used in design examples are discussed 

briefly. In second section, first order low pass differentiator is 

designed for different given specifications, the results are 

compared with present approaches. Then the same technique 

is explained for second order case design examples. Finally, 

an improved second order derivative based algorithm, for 

QRS complex detection, is proposed as an application of the 

discussed method 

2. HIGHER ORDER DIGITAL 

DIFFERENTIATOR 
All Impulse response coefficients of the differentiator is 

calculated by using Fourier series technique of filter design 

[4], [5], [6], expressed as 
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Using (1) and from [7], the integral can be written as 
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So the discrete time system is obtained as 
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The amplitude response of ideal digital differentiator is  

 )(iH
 

Then amplitude response of the designed differentiator is 

given by 


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The error in amplitude response of designed digital 

differentiator is  

)()()(  id HHE                 (5) 

The impulse response of a first order digital differentiator is 

shown in Fig. 1. 

 

 

               Fig. 1.  Impulse response k= 0.35, v=1 

 

In order to obtain finite length of impulse response, the 

Fourier series is truncated such that  

0)( nh  for 2/)1(  Nn  

where N is length of the filter and an odd integer. 

Due to truncation of Fourier series, Gibbs oscillations are 

introduced in the frequency response of the differentiator. 

These oscillations’ amplitude can be reduced by the use of 

window functions [4], [6]. This preconditioning result in 

transfer function of the filter given by 



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In this paper Kaiser window is used as it provides extra 

degree of freedom by providing shaping parameter . This 

feature of Kaiser Window helps in the designing process of 

digital differentiator. Kaiser window function is given by 

following expression 

)(/)()( 00  IInw  for      
1Nn   

         =  0                       otherwise                (7) 

Parameter   is given by 
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where 2/)1(1  NN  and )(0 xI  is zeroth order Bessel 

function of first kind. 

A parameter ),( NL   can be defined as maximum error in 

passband of the practical digital differentiator, such that 

)(max),(  ENL  for  
c 0                             

(8) 

In order to achieve minimum of ),( NL   with respect to 
,this optimum value can be calculated from an optimization 

procedure consisting of a combination of golden section 

search and successive parabolic interpolation as given in [8] 

and [9]. This algorithm requires three parameters, an initial 

interval of values of   and tolerance. The working of 

algorithm is reduction of the interval of uncertainty on each 

iteration by the factor 0.618 until it is less than the tolerance. 

Therefore it is better than bisection based counterparts. This 

method is faster computationally and is used to find optimum 

value of   in design examples of this paper. 

3. FIRST ORDER LOW PASS 

DIFFERENTIATOR  
The design process can be categorized into three parts, such 

that the differentiator is designed for given specifications. 

3.1 Differentiator design with minimum 

passband error for a given value of N  
Please Optimum value of   is found using the optimization 

algorithm for provided N . Once we know N ,   and v  the 

differentiator can be designed by using (6). Some results of 

the algorithm are given in Table I rows and columns show 

progression of optimization procedure for N = 29, v = 1 and 

c = 0.35 π.       

        Table I. Progress chart of optimization algorithm 

N  *  ),( * NL   
Number of 

Iterations 

25 4.44 0.0051 10 
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31 5.6 0.0016 10 

39 7.16 0.00034 11 

 

 

Fig.2. L( , N) curve for c = 0.35π and v = 1. 

3.2 Differentiator design with minimum N  

for a provided in band error  
An important observation from Fig. 2 and Table I, is linearity 

in plot as N  is increased. This linearity in plots of 

)/ln( 1ee  against 
1NN   for different values of 

1N  [10] 

can be exploited, to calculate value of N  only by two 

minimizations. As it can be seen in Fig. 2, global minima 

points almost lie on a straight line. 

Minimum value of N  which achieves the specified inband 

error can be calculated by procedure given in [10]. In this 

method if 

),( * NLe   and ),( 1

*

11 NLe   

Where 
*

1 and 
*  are global minima point for 

1N  and N  

respectively of designed digital differentiator for a particular 

normalized cutoff frequency c , then 

)(
)/ln(

)/ln(
12

12

1
1 NN

ee

ee
NN                  (9) 

This formula calculates N such that it satisfies user 

requirement given by 

 ),( * NL
 

Here   is maximum acceptable error in passband of low pass 

digital differentiator. 

For example, if c = 0.35 then by using optimization 

procedure described in previous  section, 
*

1  and 
*

2  are 

computed for 1N = 25 and 2N = 29 with   taken as 0.0005. 

Then following results are obtained 

1N = 25 
*

1 = 4.44 1e = 0.0051 

2N = 31
*

2 = 5.6 
2e = 0.0016 

It yields N = 39 and e comes out less than 0.0004.   

3.3 Differentiator design with given in band 

accuracy and N  to obtain minimum 

transition width 
In many applications error of 2% is acceptable in passband of 

low pass differentiator [3], therefore transition width can be 

optimized under this constraint. Salesnick’s and Alaoui’s  

approaches are compared with the Fourier series technique as 

in Fig 3 and Fig. 4. It can be seen that designed 

differentiator’s response is better in terms of transition region 

and sharp cut off characteristics. These features are important 

for suppression of high frequency noise. The 

overshoot,present in the amplitude response after reaching 
c

, decreases as   increases but so does error in passband. A 

relatively higher value of   is selected for minimum 

overshoot under 2% constraint as shown in Fig. 3. In this case 

 is taken 6.6.                  

 

Fig. 3.  Magnitude response comparison for c  = 0.35 

 

 

Fig. 4.  Error comparison for c  = 0.35 in passband 

4. SECOND ORDER LOW PASS 

DIFFERENTIATOR 
To obtain good performance at zero normalized frequency a 

constraint on coefficients is imposed [11] so that 

0)(
1

1




N

Nn

nh

 

Same options as in first order case can be taken here as well. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 87 – No.5, February 2014 

16 

4.1 Differentiator design with minimum 

passband error for a given value of N . 
Optimum   is found using golden section optimization and 

progress chart of some of them is provided in Table II. 

Table II Progress chart for c  = 0.35π and N = 29 

N  
*  ),( * NL 

 
Number of 

Iterations 

25 4.42 0.00757 10 

31 5.55 0.00245 11 

39 7.11 0.00047 10 

 

 

Fig.5. L( , N) curve for k = 0.35 and v=2 

4.2 Differentiator design with minimum N  

for a provided in band error   

Linearity in plots of )/ln( 1ee  against 
1NN   for different 

values of 1N  is present in second order differentiator also, as 

can be seen in Fig. 5. Therefore the procedure to design 

differentiator with minimum N  could be applied in this case 

also for given  . It can be easily verified by checking Table 

II and taking   as 0.0005. 

4.3 Differentiator design with given in band 

accuracy and N  to obtain minimum 

transition width. 

As discussed in last section amplitude response can be 

optimized to attain given accuracy in passband. This feature is 

due to the fact that   can be varied to any fractional value as 

opposed to Salesnick’s approach. The Fig. 6 shows the 

amplitude response of differentiator of impulse response 

length 29 and normalized cut off frequency 0.55π with applied 

constraint of 2%. has value of 5.5. Percentage error plotted 

in Fig. 7 of the designed differentiator shows in band error is 

less than specified constraint. 

 

 

Fig.6. Frequency response for v=2, c  =0.55 and N=29 

 

Fig.7. Percentage error for v = 2, c =0.55 and N=29 

Fig. 8 illustrates application of same technique for different 

values of c .  

 

Fig. 8. Magnitude response for v=2, N=29 and c =0.35π, 

0.42π, 0.52π, 0.7π 

5. QRS COMPLEX DETECTION  
In this section an application of higher order FIR low pass 

differentiator is demonstrated. Algorithms based on 

derivatives are suitable for real time applications [12]. It 

illustrates the use of these filters in biomedical signal 

processing, where low frequency components of signal are 

important. QRS complex detection is needed in beat and beat-

to-beat interval information in an electrocardiogram (ECG) 

recording [12]. It is crucial to accurately detect QRS, as it 

contains P and T wave, as well as noises [13] and artifacts as 

described here. An ECG with such distortions is shown in Fig. 

11 (a). 
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(i) Power line interference consisting of 60 Hz 

frequency and harmonics.  

(ii) Electromyographic interference, which is random 

high frequency noise. 

(iii) Baseline drift due to respiration or abrupt shift in 

baseline. 

Second derivative based method, as described in [12], is used 

here. The structure of the technique is shown in Fig. 9. A  

Kaiser window based FIR band pass filter is employed to pass 

the QRS complex frequencies such that 8 to 20 Hz passband. 

First differentiator is a center differentiation stage and second 

differentiator is forward differentiation stage. Zero crossings 

are formed in the locations of R waves after first 

differentiation process, therefore another differentiation is 

required to form peaks at R waves. This introduces delay in 

the sequence. 

The adaptive threshold is computed from root mean squared 

(RMS) value of a data segment. In the end, if a peak is 

detected then a search back algorithm is used, it based on 200 

ms physiological refractory period before another QRS 

complex can occur. Therefore another peak present in 200 ms 

window is stored for further analysis. 

Digital differentiators are high pass filters and their low pass 

case can be considered as a band pass filter, especially at 

higher order differentiation. The structure of this technique is 

modified such that band pass filter is no longer used and there 

is also no need of second stage of differentiation. Therefore 

the first three stages of the structure are highly simplified due 

to second order low pass differentiator as given in Fig. 10. 

 

Fig. 9. Second derivative method (the first technique) structure [12] 

 

 

Fig. 10. The proposed low pass differentiator method (the second technique) structure

This technique was applied on MIT/BIH arrhythmia database 

[14]. These ECG recordings have been sampled at 360 Hz 

with 11 bit resolution over the range of 10 mV. Record 108 is 

used in this paper to illuminate the proposed algorithm’s 

performance. This recording has rare long P waves and high 

noise contents [15], it has reversed polarity QRS complexes. 

The second order FIR differentiator’s impulse response length 

is 35 and window parameter is taken 6.33 (from optimization 

algorithm). The number of coefficients in bandpass filter is 

also 35. The resultant output, y[n], from both the 

arrangements is plotted in Fig. 11.  

The second derivative method produces peaks with more 

gradual transition from zero voltage, as given in Fig. 11 (b). 

The proposed algorithm exhibits sharp outstanding peaks in 

the location of R peaks, as illustrated in Fig. 11 (c). It should 

also be noted that number of coefficients in bandpass filter, of 

first technique, is the same as number of coefficients in 

second order low pass differentiator of the second technique. 

First method requires two stages of differentiation after the 

filter, however this method embeds the three operations in the 

filter of same length. Therefore number of operations required 

by the proposed method to detect QRS complex are reduced. 

This feature is crucial in real time implementation of QRS 

detection of patient’s ECG and Holter tape monitoring [16] 

also. Although this paper presents QRS complex detection 

application, the proposed approach can be employed in 

second derivative based biomedical signal processing. 

 

       (a) 
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         (b) 

 

                         (c) 

Fig. 11. (a) ECG signal from Record 108; (b)y[n] output 

from first algorithm; (c) y[n] output from proposed 

algorithm 

6. CONCLUSIONS 
This paper describes the design of higher order case of FIR 

low pass digital differentiators. It is based on Fourier series 

method for design of filters along with Kaiser Window 

function  

The derived expression is used to design first order 

differentiator with varying normalized cutoff frequency using 

Kaiser Window. It provides an easy way to change cutoff 

frequency without altering the sampling frequency, reducing 

aliasing risk in the system. The frequency response of 

designed differentiator is compared with Salesnick’s [1] and 

Alaoui’s [3] approaches. The proposed differentiator is having 

shorter transition regions and less overshoot in frequency 

response. Flexibility in design process is observed due to 

possibility of window shaping parameter to fractions. Second 

order differentiators are produced and error analysis is 

illustrated by graphs. Different design options available to 

user due to window shaping parameter are discussed 

separately. 

The formula is employed to obtain second order FIR low pass 

differentiator for QRS detection in ECG. The proposed 

algorithm enables us to detect R peaks even in presence of 

noise and baseline wanders, as demonstrated by using 

MIT/BIH ECG recording. This technique also has low 

complexity as compared to second derivative counterparts, 

which makes it suitable for real time processing of ECG 

waveform. This method could well be used in second 

derivative based biomedical signal processing at a lower 

computational cost. 
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