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ABSTRACT 

The multi-objective integer programming problems are 

considered time consuming.  In the past, mathematical 

structures were used that can get benefits of high processing 

powers and parallel processing. A  general  approach  to 

generate  all  non-dominated  solutions  of  the  multi-

objective integer  programming  (MOIP)  Problem  is  

developed. In this paper, a hybridization of two different 

swarm intelligent approaches, stochastic diffusion search, and 

particle swarm optimization techniques is presented for 

solving integer multi-objective problems. The hybrid 

implementation allows us to avoid certain drawbacks and 

weaknesses of each algorithm, which means that we are able 

to find an optimal solution in an acceptable computational 

time. Our hybrid implementation allows the MOIP algorithm 

to reach the optimal solution in a considerably shorter time 

than is needed to solve the model using the entire dataset 

directly within the model. Our hybrid approach outperforms 

the results obtained by each technique separately. It is able to 

find the optimal solution in a shorter time than each technique 

on its own, and the results are highly competitive with the 

state-of-the-art in large-scale optimization. Furthermore, 

according to our results, combining the PSO with SDS 

approach for solving IP problems appears to be an interesting 

research area in combinatorial optimization. 
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1. INTRODUCTION 
Optimization can be viewed as one of the major quantitative 

tools in network of decision making, in which decisions have 

to be taken to optimize one or more objectives in some 

prescribed set of circumstances. In view of the practical utility 

of optimization problems there is a need for efficient and 

robust computational algorithms, which can numerically solve 

on computers the mathematical models of medium as well as 

large size optimization problem arising in different fields. 

Heuristics and bioinspired techniques have become efficient 

and effective alternatives for researchers in solving several 

complex optimization problems. These techniques are not able 

to reach the optimal solution for large-scale combinatorial 

optimization problems in spite of their effectiveness. But 

these techniques are able to provide satisfactory solutions for 

most of the applied problems within acceptable computational 

times. In contrast, mathematical programming techniques, 

particularly the Integer multi-objective problems, have been 

studied and developed by scholars over several decades with 

the main goal of obtaining optimal solutions to difficult 

problems using as little CPU time as possible. For these 

reasons, a hybrid swarm intelligence technique has been 

suggested. In recent years, swarm intelligence, which can be 

considered as a branch of Artificial Intelligence techniques, 

has attracted much attention of researchers, and has been 

applied successfully to solve a variety of problems. A swarm 

can be viewed as a group of agents cooperating with certain 

behavioural pattern to achieve some goal [12]. There are a 

number of different models of swarm intelligence that have 

been proposed and investigated, and among the most 

commonly used swarm intelligence models include ant colony 

optimization [5, 9], particle swarm optimization [7, 14], honey 

bee swarming [25, 26], stochastic diffusion search, and 

bacterial foraging [22, 23]. These algorithms have proved 

their mettle in solving complex and intricate optimization 

problems arising in various fields. The paper is organized 

such that the next section provides a brief overview of integer 

programming and some definitions. Section 3 describes 

Particle Swarm Optimization technique. Section 4 describes 

Stochastic Diffusion Search technique. Section 5 describes the 

method of the proposed hybrid swarm intelligence technique 

used. Section 6 discusses the computational results. In section 

7, a conclusion is introduced.  

2. MULTIOBJECTIVE PROBLEMS 
[6, 11, 17, 24] Most real world optimization problems involve 

the optimization of more than one function, which in turn can 

require a significant computational time to be evaluated. That 

is, decision makers are not able to base their decisions on a 

single criterion in order to identify one or more attractive 

courses of action. Moreover, real decision problems are such 

that conflicting criteria are often used to evaluate alternative 

solutions. Multiobjective Programming is the branch of 

Mathematical Programming that deals with problems for 

which more than one objective function is required to evaluate 

the merit of alternative decisions. Formally, the problem is 

stated as follows: 

MAX         (f1 (x), f 2 (x) ... f n (x))    

  S.t.           Xx                                        

        Where    nxxxx ,.........( 2,1 ) 

         X  is the set of feasible solutions 

F i is the i
th

objective function (or decision criterion). 

Then the problem doesn't have a single solution that could 

optimize all objectives simultaneously, but it has efficient 

(Pareto-optimal) solutions that can best attain the objectives as 

greatly as possible. In this context, deterministic techniques 

are difficult to apply to obtain the set of Pareto optimal 

solutions of many multiobjective optimization problems 

(MOPs), so stochastic methods have been widely used and 

applied. Among them, the use of evolutionary algorithms for 
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solving MOPs has significantly grown in the last years, giving 

raise to a wide variety of algorithms, such as NSGA-II, 

SPEA2, PAES, and many others. Most multiobjective 

programming techniques focus on finding the set of efficient 

points (E) for a given problem or, in the case of heuristic 

procedures, an approximation of the efficient set (E
^
). 

To select a suitable compromise solution from all efficient 

alternatives, a decision process is necessary. Depending on 

how the computation and the decision processes are combined 

in search for compromise solution, there exist three broad 

classes of multiobjective optimization methods: 

1. A prior articulation of preferences (a prior methods) 

2. A posterior articulation of preferences (posterior method). 

3. progressive articulation of preferences (Interactive 

methods) 

The DM provides global preference information during the 

optimization process. 

2.1 Definition 1 (complete optimal solution) 
*x Is said to be a complete optimal solution, if and only if 

there exists Xx *
 such that 

,,....,1),()( * kixzxz ii  for all Xx  . 

2.2 Definition 2 (Pareto optimal solution) 
*x Is said to be a Pareto optimal solution, if and only if there 

doesn't exist another Xx   such that

)()( *xzxz ii 
 

for all i and for all

)()( *xzxz jj  for at least one j. 

2.3 Definition 3 (Weak Pareto optimal 

solution) 
*x Is said to be a weak Pareto optimal solution, if and only if 

there doesn't exist another Xx  such that

kixzxz ii ,....1),()( *  . 

2.4 Definition 4 (Ideal Vector) 
Is the Vector which containing the decision variables 

corresponding to the optima of the objective functions of the 

problems considering each objective separately. 

2.5 Definition 2.5 (Pareto Front) 

For a given MOP )(xf


and Pareto optimal set P*, the Pareto 

front (PF*) is defined as: 

PF*:= { *|,...., 21 Pxffffu n 


}. 

2.6 Definition 6 Pareto Dominance 

A vector ),.....,( 1 nuuu 


is said to dominate 

),.....,( 1 nvvv 


(denoted by



 vu ) if and only if u is 

partially less than v. 

3. PARTICLE SWARM OPTIMIZATION 
The particle swarm optimization (PSO) was inspired by the 

observations of birds flocking and fish schooling. It differs 

from other well-known Evolutionary Algorithms (EA) [2, 10, 

13].  As in EA a population of potential solutions is used to 

probe the search space; but, no operators, inspired by 

evolution procedure, are applied on the population to generate 

a new promising solution. Instead, in PSO, each individual 

(named particle) of the population (called swarm), adjusts its 

trajectory towards its own previous best solution (called 

pbest) and the previous best solution attained by any member 

of its topological neighborhood. There are different kinds of 

sharing information between particles. In the global variant of 

PSO, the whole swarm is considered as the neighborhood. 

Thus, global sharing of information takes place and the 

particles benefit from the discoveries and the previous 

experiences of all other companions during the search for 

promising regions of the landscape [16]. Alternatively, there 

are some local variants of PSO wherein particles only make 

use of their own information and that of the best of their 

adjacent neighbors. Each particle in PSO has two main 

characteristics: its position and its velocity. Assume that the 

current position and velocity vector of the i-th particle in the 

d-dimensional search space are denoted as Xi= (xi1, xi2,….,xid) 

and Vi = (vi1, vi2,…., vid), respectively. The best earlier 

position of the i-th particle is represented as pbesti= (pbesti1, 

pbesti2,….,pbestid).There are different kinds of PSO including 

global vision of PSO with inertia weight (GWPSO), local 

vision of PSO with inertia weight (LWPSO), global vision of 

PSO with constriction factor (GCPSO), and local vision of 

PSO with constriction factor (LCPSO) [27]. In GWPSO, 

which is very popular among researchers, there are two 

methods for updating position and velocity of each particle. 

The best position of entire group at k-th iteration is used in the 

first method while in the second method; the best position of 

entire group up to the current search is employed. In the first 

method, the position    
 and velocity    

  of particle i in the k-

th iteration are updated as follow: 

   
       

     
    

   
        

              
     

                 
   

In the second equation w  is the inertia weight,  c1  and  c2  are 

positive constants called cognitive and social parameters, 

respectively, and  r1  and  r2  are random numbers selected in 

the interval [0 1]. The constants  c1  and  c2  represent the 

weighting of the stochastic acceleration terms that pull each 

particle towards  pbest  and  gbest  positions and usually are 

set c1=c2=2 . In the second method gbest is replaced by 

gbestk. As will be shown later, in the numerical examples of 

mixed-variables or in the problems that only have discrete 

variables, usage of gbestk is more suitable compared to the 

use of gbest. In other words, the success rate of gbestk is 

higher than that of gbest. The reason is firstly due to the fast 

convergence of gbest and secondly, the inability of particles to 

escape from local minima in gbest method. In other words, 

since the discrete variables are rapidly converged the 

continuous variables will be obliged to search in a limited 

specific area which might not be the optimum area. The role 

that inertia weight w plays in the convergence behavior of 

PSO is very important. The inertia weight is employed to 

control the effect of the previous velocities on the current 

velocity. This way, the parameter w makes a compromise 

between global and local exploration abilities of the swarm. In 

PSO, when the search continues, the inertia term decreases 

linearly as follows: 
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Where      and      are the maximum and minimum 

values of the inertia term, respectively, and     is the 

maximum number of iterations. These parameters are 

assumed to be: 

              

Sometimes as particle oscillations become wider, the system 

will gain tendency to explode [13]. The usual means of 

preventing explosion is simply to define a parameter      

and curb the velocity of every individual i from exceeding that 

velocity on each dimension d. In the case that velocity 

violates, it will be modified as follows: 

If            then              

If             then            

The effect of this is to allow particles to oscillate within the 

bounds [13]. 

 

 

 

 

 

 

 

 

Fig 1: The pseudocode of PSO algorithm 

Although PSO has been used mainly to solve unconstrained, 

single-objective optimization problems, PSO algorithms have 

been developed to solve constrained problems, multi-

objective optimization problems, problems with dynamically 

changing landscapes, and to find multiple solutions. There are 

some disadvantages of PSO Algorithm as follow: 
 The  method  easily  suffers  from  the partial optimism,  

which  causes  the  less  exact  at  the regulation of its speed 

and the direction. 

 The method cannot work out the problems of scattering and 

optimization. 

 The method cannot work out the problems of non-

coordinate system, such as the solution to the energy field 

and the moving rules of the particles in the energy field. 

4. STOCHASTIC DIFFUSION SEARCH 
This section introduces Stochastic Diffusion Search (SDS) 

[3], a multi-agent global search and optimization algorithm, 

which is based on simple interaction of agents. A high-level 

description of SDS is presented in the form of a social 

metaphor demonstrating the procedures through which SDS 

allocates resources.SDS introduced a new probabilistic 

approach for solving best-fit pattern recognition and matching 

problems. SDS, as a multi-agent population-based global 

search and optimization algorithm, is a distributed mode of 

computation utilizing interaction between simple agents [8]. 

Unlike many nature inspired search algorithms, SDS has a 

strong mathematical framework, which describes the behavior 

of the algorithm by investigating its resource allocation [19], 

convergence to global optimum [20], robustness and minimal 

convergence criteria [18] and linear time complexity [21]. The 

SDS algorithm commences a search or optimization by 

initializing its population. In any SDS search, each agent 

maintains a hypothesis, h, defining a possible problem 

solution. After initialization two phases are followed, test 

Phase, and diffusion phase. In the test phase, SDS checks 

whether the agent hypothesis is successful or not by 

performing a partial hypothesis evaluation which returns a 

boolean value. Later in the iteration, contingent on the precise 

recruitment strategy employed, successful hypotheses diffuse 

across the population and in this way information on 

potentially good solutions spreads throughout the entire 

population of agents. In the Test phase, each agent performs 

partial function evaluation, pFE, which is some function of 

the agent’s hypothesis; pFE = f(h). In the diffusion phase, 

each agent recruits another agent for interaction and potential 

communication of hypothesis. 

 

 

 

Fig 2: The pseudocode of SDS algorithm 

Passive recruitment mode is employed In SDS algorithm. In 

this mode, if the agent is inactive, a second agent is randomly 

selected for diffusion; if the second agent is active, its 

hypothesis is communicated to the inactive one. Otherwise a 

completely new hypothesis is generated for the first inactive 

agent at random. The main disadvantage of the SDS is in the 

case of search spaces distorted heavily by noise, diffusion of 

activity due to disturbances will decrease an average number 

of inactive agents taking part in random search and in effect 

will increase the time needed to reach the steady state. 

 

 

 

 

 

Fig 3: Passive Recruitment Mode 

5. PROPOSED SDS-PSO TECHNIQUE 
Because of the drawbacks of PSO algorithm, a hybrid swarm 

intelligence technique called SDS-PSO technique has been 

proposed for solving integer programming problems to 

produce better solution by improving the effectiveness and 

reducing the limitations. The motivating thesis justifying the 

merging SDS and PSO is the partial function evaluation 

deployed in SDS, which may mitigate the high computational 

overheads entailed when deploying a PSO onto a problem 

with a costly fitness function. In the hybrid algorithm, each 

PSO particle has a position, and a velocity; each SDS agent, 

on the other hand, has hypothesis and status. Every PSO 

particle is an SDS agent too together termed psAgents. In the 

psAgent, SDS hypotheses are defined by the PSO particle 

positions and a status which determines whether the psAgent 

is active or inactive (see Figure 4). 

 

 

Initialise particles 

While ( stopping condition is not met ) 

     For all particles 

          Evaluate fitness value of each particle 

          If (current fitness <pbest ) 

pbest = current fitness 

          If (pbest<global (or local ) best) 

global (or local ) best = pbest 

          Update particle velocity 

          Update par ticle position 

     End 

End 

Initialisingagents() 

While ( stopping condition is not met) 

     Testing hypotheses () 

     Diffusion hypotheses () 

End 

For ag = 1 to No of agents 

    If (ag. activity () == false ) 

        rag = pick a random agent () 

        If (r ag. activity () == true) 

              ag. setHypothesis ( r ag .getHypothesis()) 

        Else 

              ag. setHypothesis (randomHypothsis()) 

End 
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Fig 4. psAgent 

Figure 5 shows the pseudocode of the proposed SDS-PSO 

technique. In the test-phase of a stochastic diffusion search, 

each agent has to partially evaluate its hypothesis. The fitness 

of each psAgent’s particle’s personal best is compared against 

that of a random psAgent; if the selecting psAgent has a better 

fitness value, it will become active, otherwise it is flagged 

inactive. On average, this mechanism will ensure 50% of 

psAgents remain active from one iteration to another. In the 

Diffusion Phase, each inactive psAgent picks another psAgent 

randomly, if the selected psAgent is active, the selected 

psAgent communicates its hypothesis to the inactive one; if 

the selected psAgent is inactive too, the selecting psAgent 

generates a new hypothesis at random from the search space. 

In the proposed technique, after each n number of PSO 

function evaluations, one full SDS cycle is executed. 

5.1 Different Performance Measures  
The use of performance measures (or metrics) allows a 

researcher or computational scientist to assess in a 

quantitative way the performance of their algorithms. The 

SDS-PSO field has no different. SDS-PSO performance 

measures tend to focus on the phenotype or objective domain 

as to the accuracy of the results. This is different to what most 

operations researchers do. They tend to use metrics in the 

genotype domain. But since there is an explicit mapping 

between the two, it doesn't really matter in which domain that 

define that metrics. There are many techniques for measuring 

the performance of Multiobjective problems [15] such as 

Hyperarea and Ratio, and Generational Distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.  Pseudocode of the proposed technique 

5.1.1 Hyperarea and Ratio (H, HR) 
These metrics define the area of coverage

KNOWNPF  has with 

respect to the objective space. This would equate to the 

summation of all the areas of rectangles, bounded by the 

origin and ))(),(( 21



xfxf , for a two-objective SDS-PSO. 

 

 

 

Where iv is a nondominated vector in
KNOWNPF

 
and ia is the 

hyperarea calculated between the origin and vector iv . But if

KNOWNPF
 
is not convex, the results can be misleading. It is 

also assumed in this model that the origin is (0, 0) [4]. 

5.1.2 Generational Distance (GD) 
It reports how far, on average,

KNOWNPF
 
is from

TRUEPF . This 

metric requires that the researcher knows
TRUEPF . It is 

mathematically defined as in the following equation 

n

d

GD

pn

i

p

i

/1

1

)(
  

Solving problem using LP 

Initialize psAgents 

While (stopping condition is not met) 

       For all psAgents 

              Evaluate fitness value of each particle 

              If (evaluation counter MOD n == 0) 

              //START SDS 

              // TEST PHASE 

             For ag = 1 to No of psAgents 

                rag = pick−random−psAgent () 

                If ( ag. pbestFitness() <=r ag . pbestFitness() ) 

                   ag. setActivity (true) 

                Else 

                   ag. setActivity ( false ) 

                End i f 

             End for 

             // DIFFUSION PHASE 

            For ag = 1 to No of psAgents 

            If ( ag. activity () == false ) 

               rag = pick−random−psAgent() 

            If ( r ag . activity () == true ) 

ag. set-psAgentHypothesis(r ag.get-psAgentHypothesis()) 

            Else 

             ag. set-psAgentHypothesis( randomHypothesis()) 

            End if 

            End for 

            End if 

             // END SDS 

            If (current fitness <pbest) 

               pbest = current fitness 

               If (pbest< global (or local ) best) 

                   global (or local) best = pbest 

             Update particle velocity 

             Update particle position 

     End 

End 

 

}|{ KNOWNii
i

PFvaH 

psAgent 
SDS agentHypothesis 

 

Status 

PSO Particle 
Memor
y 

Positio
n 

Velocit
y 

Active/Inactiv
e 
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Where n is the number of vectors in
KNOWNPF , p=2 and 

id is 

the Euclidean distance between each member and the closest 

member of
TRUEPF , in the phenotype space. When GD = 0,

KNOWNPF =
TRUEPF . 

6. COMPUTATIONAL RESULTS 
This section presents computational results of the proposed 

SDS-PSO technique to solve integer multi-objective 

problems. The computational results show performance 

comparison between the Non-Dominated Sorting Genetic 

Algorithm (NSGAII) and our proposed SDS-PSO technique. 

The proposed SDS-PSO technique runs on computer (Core 2 

Due CPU, 2.2GHz, 2048MB RAM.). The technique has been 

compared to NGSAII with different measures. The first 

measure used is: Hyperarea and Ratio, the results are shown 

in table 1. 

Table 1. Hypervolume area according the two techniques 

          Technique 

 

Problem size 

Hyperarea 

NSGAII SDS-PSO 

10 149674 149294 

50 309855 335271 

100 263880 263475 

500 844427 852897 

1000 15647268 17156790 

It's appears from the previous table that the hyperarea covered 

by SDS-PSO is larger than the hyperarea covered by NGSAII. 

Another comparative measure have been used is the average 

of the nearest neighbor, the results of this measure are shown 

in table 2.  

Table 2. Average distance to the nearest neighbor 

Average Distance for  Nearest Neighbor 

               size 

Technique 
10 50 100 500 1000 

NSGAII 

Min 

Max 

Avg. 

40.6 

59.4 

48.5 

33.0 

42.2 

36.1 

32.3 

65.3 

43.3 

14.0 

23.1 

18.1 

22.2 

126.4 

50.5 

SDS-PSO 

Min 

Max 

Avg. 

28.6 

71.8 

42.7 

63.5 

142.5 

89.8 

34 

62.3 

43.3 

47.5 

161.4 

50.6 

22.1 

246.8 

129.8 

For more analysis, in 1000 variables problem size we made 

parametric analysis to see the appropriate technique in defined 

range of weights. 

 

 

 

 

 

 

 

 

Table 3. Parametric analysis for 1000 variables problem 

 Parametric 

 

Technique 

17.0

,3.00

2

1





w

w

 

7.03.0

,7.03.0

2

1





w

w

 

0.13.0

,0.17.0

2

1





w

w

 

NGSAII 28.076 44.237447 43.9664 

SDS-PSO 36.03377 41.8739 31.6227 

The result was: for 7.00.13.00 21  wandw
 

NSGAII 

produces the smallest average distance to the nearest 

neighbor. For 0.13.00.17.0 21  wandw
 

SDS-PSO 

produces the smallest average distance to the nearest 

neighbor. For 3.07.07.03.0 21  wandw the SDS-

PSO produces the smallest average distance to the nearest 

neighbor. The results of parametric analysis for 1000 variables 

problem are shown in table 3. 

7. CONCLUSION 
This paper proposed a hybrid swarm intelligence technique 

called SDS-PSO to solve integer multi-objective problems, 

and compares its performance with the Non-Dominated 

Sorting Genetic Algorithm (NSGAII). The proposed 

technique effectively overcomes the drawbacks of PSO 

technique, such as the partial optimism, which causes the less 

exact at the regulation of its speed and the direction. It also, 

overcomes the drawbacks of SDS technique. SDS-PSO 

technique also, increases the efficiency of the solution 

process, improves the performance scalability, and increases 

the diversification of solutions at the same time, reducing the 

execution time in comparison with NSGAII technique. The 

proposed technique has been tested by solving a set of 

different knapsack problems. It is capable to provide a 

considerable reduction of time compared with other 

techniques most obviously at lower scale problems. In 

general, the proposed SDS-PSO technique seems an efficient 

alternative for solving Integer multi-objective problems, when 

deterministic approaches fail, or it could be considered as an 

algorithm for providing good initial points to deterministic 

methods, as the Branch and Bound technique, and thus, help 

them converge to the global minimizer of the integer problem. 
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