
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

45

A Hybrid Swarm Intelligence Technique for Solving

Integer Multi-objective Problems

Ibrahim M. El-henawy

Department of Computer Science, Faculty of
Computers and Informatics, Zagazig University,

Egypt

Mahmoud M. Ismail
Department of Operations Research, Faculty of
Computers and Informatics, Zagazig University,

Egypt

ABSTRACT

The multi-objective integer programming problems are

considered time consuming. In the past, mathematical

structures were used that can get benefits of high processing

powers and parallel processing. A general approach to

generate all non-dominated solutions of the multi-

objective integer programming (MOIP) Problem is

developed. In this paper, a hybridization of two different

swarm intelligent approaches, stochastic diffusion search, and

particle swarm optimization techniques is presented for

solving integer multi-objective problems. The hybrid

implementation allows us to avoid certain drawbacks and

weaknesses of each algorithm, which means that we are able

to find an optimal solution in an acceptable computational

time. Our hybrid implementation allows the MOIP algorithm

to reach the optimal solution in a considerably shorter time

than is needed to solve the model using the entire dataset

directly within the model. Our hybrid approach outperforms

the results obtained by each technique separately. It is able to

find the optimal solution in a shorter time than each technique

on its own, and the results are highly competitive with the

state-of-the-art in large-scale optimization. Furthermore,

according to our results, combining the PSO with SDS

approach for solving IP problems appears to be an interesting

research area in combinatorial optimization.

Keywords

Swarm Intelligence, Integer programming, Multi-objective,

Stochastic Diffusion Search and Particle Swarm Optimization

1. INTRODUCTION
Optimization can be viewed as one of the major quantitative

tools in network of decision making, in which decisions have

to be taken to optimize one or more objectives in some

prescribed set of circumstances. In view of the practical utility

of optimization problems there is a need for efficient and

robust computational algorithms, which can numerically solve

on computers the mathematical models of medium as well as

large size optimization problem arising in different fields.

Heuristics and bioinspired techniques have become efficient

and effective alternatives for researchers in solving several

complex optimization problems. These techniques are not able

to reach the optimal solution for large-scale combinatorial

optimization problems in spite of their effectiveness. But

these techniques are able to provide satisfactory solutions for

most of the applied problems within acceptable computational

times. In contrast, mathematical programming techniques,

particularly the Integer multi-objective problems, have been

studied and developed by scholars over several decades with

the main goal of obtaining optimal solutions to difficult

problems using as little CPU time as possible. For these

reasons, a hybrid swarm intelligence technique has been

suggested. In recent years, swarm intelligence, which can be

considered as a branch of Artificial Intelligence techniques,

has attracted much attention of researchers, and has been

applied successfully to solve a variety of problems. A swarm

can be viewed as a group of agents cooperating with certain

behavioural pattern to achieve some goal [12]. There are a

number of different models of swarm intelligence that have

been proposed and investigated, and among the most

commonly used swarm intelligence models include ant colony

optimization [5, 9], particle swarm optimization [7, 14], honey

bee swarming [25, 26], stochastic diffusion search, and

bacterial foraging [22, 23]. These algorithms have proved

their mettle in solving complex and intricate optimization

problems arising in various fields. The paper is organized

such that the next section provides a brief overview of integer

programming and some definitions. Section 3 describes

Particle Swarm Optimization technique. Section 4 describes

Stochastic Diffusion Search technique. Section 5 describes the

method of the proposed hybrid swarm intelligence technique

used. Section 6 discusses the computational results. In section

7, a conclusion is introduced.

2. MULTIOBJECTIVE PROBLEMS
[6, 11, 17, 24] Most real world optimization problems involve

the optimization of more than one function, which in turn can

require a significant computational time to be evaluated. That

is, decision makers are not able to base their decisions on a

single criterion in order to identify one or more attractive

courses of action. Moreover, real decision problems are such

that conflicting criteria are often used to evaluate alternative

solutions. Multiobjective Programming is the branch of

Mathematical Programming that deals with problems for

which more than one objective function is required to evaluate

the merit of alternative decisions. Formally, the problem is

stated as follows:

MAX (f1 (x), f 2 (x) ... f n (x))

 S.t. Xx

 Where nxxxx ,.........(2,1)

 X is the set of feasible solutions

F i is the i
th

objective function (or decision criterion).

Then the problem doesn't have a single solution that could

optimize all objectives simultaneously, but it has efficient

(Pareto-optimal) solutions that can best attain the objectives as

greatly as possible. In this context, deterministic techniques

are difficult to apply to obtain the set of Pareto optimal

solutions of many multiobjective optimization problems

(MOPs), so stochastic methods have been widely used and

applied. Among them, the use of evolutionary algorithms for

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

46

solving MOPs has significantly grown in the last years, giving

raise to a wide variety of algorithms, such as NSGA-II,

SPEA2, PAES, and many others. Most multiobjective

programming techniques focus on finding the set of efficient

points (E) for a given problem or, in the case of heuristic

procedures, an approximation of the efficient set (E
^
).

To select a suitable compromise solution from all efficient

alternatives, a decision process is necessary. Depending on

how the computation and the decision processes are combined

in search for compromise solution, there exist three broad

classes of multiobjective optimization methods:

1. A prior articulation of preferences (a prior methods)

2. A posterior articulation of preferences (posterior method).

3. progressive articulation of preferences (Interactive

methods)

The DM provides global preference information during the

optimization process.

2.1 Definition 1 (complete optimal solution)
*x Is said to be a complete optimal solution, if and only if

there exists Xx *
 such that

,,....,1),()(* kixzxz ii  for all Xx  .

2.2 Definition 2 (Pareto optimal solution)
*x Is said to be a Pareto optimal solution, if and only if there

doesn't exist another Xx  such that

)()(*xzxz ii 

for all i and for all

)()(*xzxz jj  for at least one j.

2.3 Definition 3 (Weak Pareto optimal

solution)
*x Is said to be a weak Pareto optimal solution, if and only if

there doesn't exist another Xx  such that

kixzxz ii ,....1),()(*  .

2.4 Definition 4 (Ideal Vector)
Is the Vector which containing the decision variables

corresponding to the optima of the objective functions of the

problems considering each objective separately.

2.5 Definition 2.5 (Pareto Front)

For a given MOP)(xf


and Pareto optimal set P*, the Pareto

front (PF*) is defined as:

PF*:= { *|,...., 21 Pxffffu n 


}.

2.6 Definition 6 Pareto Dominance

A vector),.....,(1 nuuu 


is said to dominate

),.....,(1 nvvv 


(denoted by



 vu) if and only if u is

partially less than v.

3. PARTICLE SWARM OPTIMIZATION
The particle swarm optimization (PSO) was inspired by the

observations of birds flocking and fish schooling. It differs

from other well-known Evolutionary Algorithms (EA) [2, 10,

13]. As in EA a population of potential solutions is used to

probe the search space; but, no operators, inspired by

evolution procedure, are applied on the population to generate

a new promising solution. Instead, in PSO, each individual

(named particle) of the population (called swarm), adjusts its

trajectory towards its own previous best solution (called

pbest) and the previous best solution attained by any member

of its topological neighborhood. There are different kinds of

sharing information between particles. In the global variant of

PSO, the whole swarm is considered as the neighborhood.

Thus, global sharing of information takes place and the

particles benefit from the discoveries and the previous

experiences of all other companions during the search for

promising regions of the landscape [16]. Alternatively, there

are some local variants of PSO wherein particles only make

use of their own information and that of the best of their

adjacent neighbors. Each particle in PSO has two main

characteristics: its position and its velocity. Assume that the

current position and velocity vector of the i-th particle in the

d-dimensional search space are denoted as Xi= (xi1, xi2,….,xid)

and Vi = (vi1, vi2,…., vid), respectively. The best earlier

position of the i-th particle is represented as pbesti= (pbesti1,

pbesti2,….,pbestid).There are different kinds of PSO including

global vision of PSO with inertia weight (GWPSO), local

vision of PSO with inertia weight (LWPSO), global vision of

PSO with constriction factor (GCPSO), and local vision of

PSO with constriction factor (LCPSO) [27]. In GWPSO,

which is very popular among researchers, there are two

methods for updating position and velocity of each particle.

The best position of entire group at k-th iteration is used in the

first method while in the second method; the best position of

entire group up to the current search is employed. In the first

method, the position
 and velocity

 of particle i in the k-

th iteration are updated as follow:

In the second equation w is the inertia weight, c1 and c2 are

positive constants called cognitive and social parameters,

respectively, and r1 and r2 are random numbers selected in

the interval [0 1]. The constants c1 and c2 represent the

weighting of the stochastic acceleration terms that pull each

particle towards pbest and gbest positions and usually are

set c1=c2=2 . In the second method gbest is replaced by

gbestk. As will be shown later, in the numerical examples of

mixed-variables or in the problems that only have discrete

variables, usage of gbestk is more suitable compared to the

use of gbest. In other words, the success rate of gbestk is

higher than that of gbest. The reason is firstly due to the fast

convergence of gbest and secondly, the inability of particles to

escape from local minima in gbest method. In other words,

since the discrete variables are rapidly converged the

continuous variables will be obliged to search in a limited

specific area which might not be the optimum area. The role

that inertia weight w plays in the convergence behavior of

PSO is very important. The inertia weight is employed to

control the effect of the previous velocities on the current

velocity. This way, the parameter w makes a compromise

between global and local exploration abilities of the swarm. In

PSO, when the search continues, the inertia term decreases

linearly as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

47

Where and are the maximum and minimum

values of the inertia term, respectively, and is the

maximum number of iterations. These parameters are

assumed to be:

Sometimes as particle oscillations become wider, the system

will gain tendency to explode [13]. The usual means of

preventing explosion is simply to define a parameter

and curb the velocity of every individual i from exceeding that

velocity on each dimension d. In the case that velocity

violates, it will be modified as follows:

If then

If then

The effect of this is to allow particles to oscillate within the

bounds [13].

Fig 1: The pseudocode of PSO algorithm

Although PSO has been used mainly to solve unconstrained,

single-objective optimization problems, PSO algorithms have

been developed to solve constrained problems, multi-

objective optimization problems, problems with dynamically

changing landscapes, and to find multiple solutions. There are

some disadvantages of PSO Algorithm as follow:
 The method easily suffers from the partial optimism,

which causes the less exact at the regulation of its speed

and the direction.

 The method cannot work out the problems of scattering and

optimization.

 The method cannot work out the problems of non-

coordinate system, such as the solution to the energy field

and the moving rules of the particles in the energy field.

4. STOCHASTIC DIFFUSION SEARCH
This section introduces Stochastic Diffusion Search (SDS)

[3], a multi-agent global search and optimization algorithm,

which is based on simple interaction of agents. A high-level

description of SDS is presented in the form of a social

metaphor demonstrating the procedures through which SDS

allocates resources.SDS introduced a new probabilistic

approach for solving best-fit pattern recognition and matching

problems. SDS, as a multi-agent population-based global

search and optimization algorithm, is a distributed mode of

computation utilizing interaction between simple agents [8].

Unlike many nature inspired search algorithms, SDS has a

strong mathematical framework, which describes the behavior

of the algorithm by investigating its resource allocation [19],

convergence to global optimum [20], robustness and minimal

convergence criteria [18] and linear time complexity [21]. The

SDS algorithm commences a search or optimization by

initializing its population. In any SDS search, each agent

maintains a hypothesis, h, defining a possible problem

solution. After initialization two phases are followed, test

Phase, and diffusion phase. In the test phase, SDS checks

whether the agent hypothesis is successful or not by

performing a partial hypothesis evaluation which returns a

boolean value. Later in the iteration, contingent on the precise

recruitment strategy employed, successful hypotheses diffuse

across the population and in this way information on

potentially good solutions spreads throughout the entire

population of agents. In the Test phase, each agent performs

partial function evaluation, pFE, which is some function of

the agent’s hypothesis; pFE = f(h). In the diffusion phase,

each agent recruits another agent for interaction and potential

communication of hypothesis.

Fig 2: The pseudocode of SDS algorithm

Passive recruitment mode is employed In SDS algorithm. In

this mode, if the agent is inactive, a second agent is randomly

selected for diffusion; if the second agent is active, its

hypothesis is communicated to the inactive one. Otherwise a

completely new hypothesis is generated for the first inactive

agent at random. The main disadvantage of the SDS is in the

case of search spaces distorted heavily by noise, diffusion of

activity due to disturbances will decrease an average number

of inactive agents taking part in random search and in effect

will increase the time needed to reach the steady state.

Fig 3: Passive Recruitment Mode

5. PROPOSED SDS-PSO TECHNIQUE
Because of the drawbacks of PSO algorithm, a hybrid swarm

intelligence technique called SDS-PSO technique has been

proposed for solving integer programming problems to

produce better solution by improving the effectiveness and

reducing the limitations. The motivating thesis justifying the

merging SDS and PSO is the partial function evaluation

deployed in SDS, which may mitigate the high computational

overheads entailed when deploying a PSO onto a problem

with a costly fitness function. In the hybrid algorithm, each

PSO particle has a position, and a velocity; each SDS agent,

on the other hand, has hypothesis and status. Every PSO

particle is an SDS agent too together termed psAgents. In the

psAgent, SDS hypotheses are defined by the PSO particle

positions and a status which determines whether the psAgent

is active or inactive (see Figure 4).

Initialise particles

While (stopping condition is not met)

 For all particles

 Evaluate fitness value of each particle

 If (current fitness <pbest)

pbest = current fitness

 If (pbest<global (or local) best)

global (or local) best = pbest

 Update particle velocity

 Update par ticle position

 End

End

Initialisingagents()

While (stopping condition is not met)

 Testing hypotheses ()

 Diffusion hypotheses ()

End

For ag = 1 to No of agents

 If (ag. activity () == false)

 rag = pick a random agent ()

 If (r ag. activity () == true)

 ag. setHypothesis (r ag .getHypothesis())

 Else

 ag. setHypothesis (randomHypothsis())

End

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

48

Fig 4. psAgent

Figure 5 shows the pseudocode of the proposed SDS-PSO

technique. In the test-phase of a stochastic diffusion search,

each agent has to partially evaluate its hypothesis. The fitness

of each psAgent’s particle’s personal best is compared against

that of a random psAgent; if the selecting psAgent has a better

fitness value, it will become active, otherwise it is flagged

inactive. On average, this mechanism will ensure 50% of

psAgents remain active from one iteration to another. In the

Diffusion Phase, each inactive psAgent picks another psAgent

randomly, if the selected psAgent is active, the selected

psAgent communicates its hypothesis to the inactive one; if

the selected psAgent is inactive too, the selecting psAgent

generates a new hypothesis at random from the search space.

In the proposed technique, after each n number of PSO

function evaluations, one full SDS cycle is executed.

5.1 Different Performance Measures
The use of performance measures (or metrics) allows a

researcher or computational scientist to assess in a

quantitative way the performance of their algorithms. The

SDS-PSO field has no different. SDS-PSO performance

measures tend to focus on the phenotype or objective domain

as to the accuracy of the results. This is different to what most

operations researchers do. They tend to use metrics in the

genotype domain. But since there is an explicit mapping

between the two, it doesn't really matter in which domain that

define that metrics. There are many techniques for measuring

the performance of Multiobjective problems [15] such as

Hyperarea and Ratio, and Generational Distance.

Fig 5. Pseudocode of the proposed technique

5.1.1 Hyperarea and Ratio (H, HR)
These metrics define the area of coverage

KNOWNPF has with

respect to the objective space. This would equate to the

summation of all the areas of rectangles, bounded by the

origin and))(),((21



xfxf , for a two-objective SDS-PSO.

Where iv is a nondominated vector in
KNOWNPF

and ia is the

hyperarea calculated between the origin and vector iv . But if

KNOWNPF

is not convex, the results can be misleading. It is

also assumed in this model that the origin is (0, 0) [4].

5.1.2 Generational Distance (GD)
It reports how far, on average,

KNOWNPF

is from

TRUEPF . This

metric requires that the researcher knows
TRUEPF . It is

mathematically defined as in the following equation

n

d

GD

pn

i

p

i

/1

1

)(


Solving problem using LP

Initialize psAgents

While (stopping condition is not met)

 For all psAgents

 Evaluate fitness value of each particle

 If (evaluation counter MOD n == 0)

 //START SDS

 // TEST PHASE

 For ag = 1 to No of psAgents

 rag = pick−random−psAgent ()

 If (ag. pbestFitness() <=r ag . pbestFitness())

 ag. setActivity (true)

 Else

 ag. setActivity (false)

 End i f

 End for

 // DIFFUSION PHASE

 For ag = 1 to No of psAgents

 If (ag. activity () == false)

 rag = pick−random−psAgent()

 If (r ag . activity () == true)

ag. set-psAgentHypothesis(r ag.get-psAgentHypothesis())

 Else

 ag. set-psAgentHypothesis(randomHypothesis())

 End if

 End for

 End if

 // END SDS

 If (current fitness <pbest)

 pbest = current fitness

 If (pbest< global (or local) best)

 global (or local) best = pbest

 Update particle velocity

 Update particle position

 End

End

}|{ KNOWNii
i

PFvaH 

psAgent
SDS agentHypothesis

Status

PSO Particle
Memor
y

Positio
n

Velocit
y

Active/Inactiv
e

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

49

Where n is the number of vectors in
KNOWNPF , p=2 and

id is

the Euclidean distance between each member and the closest

member of
TRUEPF , in the phenotype space. When GD = 0,

KNOWNPF =
TRUEPF .

6. COMPUTATIONAL RESULTS
This section presents computational results of the proposed

SDS-PSO technique to solve integer multi-objective

problems. The computational results show performance

comparison between the Non-Dominated Sorting Genetic

Algorithm (NSGAII) and our proposed SDS-PSO technique.

The proposed SDS-PSO technique runs on computer (Core 2

Due CPU, 2.2GHz, 2048MB RAM.). The technique has been

compared to NGSAII with different measures. The first

measure used is: Hyperarea and Ratio, the results are shown

in table 1.

Table 1. Hypervolume area according the two techniques

 Technique

Problem size

Hyperarea

NSGAII SDS-PSO

10 149674 149294

50 309855 335271

100 263880 263475

500 844427 852897

1000 15647268 17156790

It's appears from the previous table that the hyperarea covered

by SDS-PSO is larger than the hyperarea covered by NGSAII.

Another comparative measure have been used is the average

of the nearest neighbor, the results of this measure are shown

in table 2.

Table 2. Average distance to the nearest neighbor

Average Distance for Nearest Neighbor

 size

Technique
10 50 100 500 1000

NSGAII

Min

Max

Avg.

40.6

59.4

48.5

33.0

42.2

36.1

32.3

65.3

43.3

14.0

23.1

18.1

22.2

126.4

50.5

SDS-PSO

Min

Max

Avg.

28.6

71.8

42.7

63.5

142.5

89.8

34

62.3

43.3

47.5

161.4

50.6

22.1

246.8

129.8

For more analysis, in 1000 variables problem size we made

parametric analysis to see the appropriate technique in defined

range of weights.

Table 3. Parametric analysis for 1000 variables problem

 Parametric

Technique

17.0

,3.00

2

1





w

w

7.03.0

,7.03.0

2

1





w

w

0.13.0

,0.17.0

2

1





w

w

NGSAII 28.076 44.237447 43.9664

SDS-PSO 36.03377 41.8739 31.6227

The result was: for 7.00.13.00 21  wandw

NSGAII

produces the smallest average distance to the nearest

neighbor. For 0.13.00.17.0 21  wandw

SDS-PSO

produces the smallest average distance to the nearest

neighbor. For 3.07.07.03.0 21  wandw the SDS-

PSO produces the smallest average distance to the nearest

neighbor. The results of parametric analysis for 1000 variables

problem are shown in table 3.

7. CONCLUSION
This paper proposed a hybrid swarm intelligence technique

called SDS-PSO to solve integer multi-objective problems,

and compares its performance with the Non-Dominated

Sorting Genetic Algorithm (NSGAII). The proposed

technique effectively overcomes the drawbacks of PSO

technique, such as the partial optimism, which causes the less

exact at the regulation of its speed and the direction. It also,

overcomes the drawbacks of SDS technique. SDS-PSO

technique also, increases the efficiency of the solution

process, improves the performance scalability, and increases

the diversification of solutions at the same time, reducing the

execution time in comparison with NSGAII technique. The

proposed technique has been tested by solving a set of

different knapsack problems. It is capable to provide a

considerable reduction of time compared with other

techniques most obviously at lower scale problems. In

general, the proposed SDS-PSO technique seems an efficient

alternative for solving Integer multi-objective problems, when

deterministic approaches fail, or it could be considered as an

algorithm for providing good initial points to deterministic

methods, as the Branch and Bound technique, and thus, help

them converge to the global minimizer of the integer problem.

8. REFERENCES
[1] Arbel, A., and Korhonen, P.J. 2001. Using objective

values to start multiple objective linear programming

algorithms. European Journal of Operational Research,

128:587–596.

[2] Banzhaf, W., Nordin, P., Keller, R.E., and Francone,

F.D. 1998. Genetic Programming-An Introduction,

Morgan Kaufmann. San Francisco.Ding, W. and

Marchionini, G. 1997 A Study on Video Browsing

Strategies. Technical Report. University of Maryland at

College Park.

[3] Bishop, J. 1989. Stochastic searching networks, London,

UK, Proc. 1st IEE Conf. on Artificial Neural Networks.

329–331.

[4] Carlos, A. CoelloCoellol, and Gary, B., Lamont, A.

2004. Applications of Multi-objective Evolutionary

Algorithms. ISBN 978-981-256-106-0, 981-256-106-4.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.3, February 2014

50

[5] Colorni, A., Dorigo, M., Maniezzo, V. 1992. Distributed

Optimization by Ant Colonies. In: Varela, F., Bourgine,

P. (eds.) Proceedings of the First European Conference

on Artifical Life, MIT Press, Cambridge. 134–142.

[6] David, A., Van Veldhuizen, and Lamont, G.B. 1998.

Evolutionary Computation and Convergence to a Pareto

Front. In John R. Koza, editor, Late Breaking Papers at

the Genetic Programming 1998 Conference, Stanford

University, California. Stanford University Bookstore.

221-228.

[7] del Valle, Y., Venayagamoorthy, G.K., Mohaghenghi, S.,

Hernandez, J.C., Harley, R.G. 2008. Particle Swarm

Optimization: Basic Concepts, Variants and Applications

in Power Systems. IEEE Transactions on Evolutionary

Computation 12 .171–195.

[8] DeMeyer, K., Bishop, J.M., and Nasuto, S.J. 2003.

Stochastic diffusion: Using recruitment for search.

Evolvability and interaction: evolutionary substrates of

communication, signalling, and perception in the

dynamics of social complexity (ed. P. McOwan, K.

Dautenhahn& CL Nehaniv) Technical Report. 60–65.

[9] Dorigo, M., Maniezzo, V., Colorni, A. 1996. The Ant

System: Optimization by a Colony of Cooperating

Agents. IEEE Transactions on Systems, Man, and

Cybernetics 26. 29–41.

[10] Eberhart, R.C., Simpsonand, P.K. Dobbins, R.W. 1996.

Computational Intelligence PC Tools, Academic Press

Professional. Boston.

[11] Eckart Zitzler and Lothar Thiele. 1999. Multiobjective

Evolutionary Algorithms: A Comparative Case Study

and the Strength Pareto Approach. Evolutionary

Computation, IEEE Transactions on Volume 3, Issue 4.

257- 271.

[12] Grosan, C., Abraham, A., Monica, C. 2006. Swarm

Intelligence in Data Mining. In: Abraham, A., Grosan,

C., Ramos, V. (eds.) Swarm Intelligence in Data Mining.

SCI, vol. 34, Springer, Heidelberg. 1–16.

[13] Kennedy, J. and Eberhart, R.C. 2001. Swarm

Intelligence, Morgan Kaufmann Publishers.

[14] Kennedy, J., Eberhart, R. 1995. Particle Swarm

Optimization. In: Proceedings of IEEE International

Conference on Neural Networks, vol. 4. 1942–1948.

[15] Lai, T. H., Sahni, S. 1984. Anomalies in parallel B&B

algorithms, Res. Contrib. 27 (6) 594-602.

[16] Laskari, E.C., Parsopoulos, K.C. and Vrahatis, M.N.

2002. Particle Swarm Optimization for Integer

Programming, Proceedings IEEE Congress on

Evolutionary Computation, Hawaii, U.S.A. 1576-1581.

[17] Mezmaz,M., Melab, N., and Talbi,E.G. 2007. An

efficient load balancing strategy for grid-based branch

and bound algorithm. Parallel Computing, volume: 33,

number: 4-5, 2007, ISSN: 0167-8191. Elsevier Science

Publishers B. V., Amsterdam, The Netherlands. 302-313.

[18] Myatt, D.R., Bishop, J. M., and Nasuto, S.J. 2004.

Minimum stable convergence criteria for stochastic

diffusion search. Electronics Letters, 40(2). 112–113.

[19] Nasuto, S.J. 1999. Resource Allocation Analysis of the

Stochastic Diffusion Search.PhDthesis, University of

Reading, Reading, UK.

[20] Nasuto, S.J. and Bishop, J.M. 1999. Convergence

analysis of stochastic diffusion search. Parallel

Algorithms and Applications, 14(2).

[21] Nasuto, S.J., Bishop, J.M., and Lauria, S. 1998. Time

complexity of stochastic diffusion search. Neural

Computation, NC98.

[22] Passino, K.M. 2000. Distributed Optimization and

Control Using Only a Germ of Intelligence. In:

Proceedings of the 2000 IEEE International Symposium

on Intelligent Control. 5–13.

[23] Passino, K.M. 2002 Biomimicry of Bacteria Foraging for

Distributed Optimization and Control. IEEE Control

Systems Magazine 22. 52–67.

[24] Santana-Quintero, L.V. and Coello, C.A. 2005. an

Algorithm Based on Differential Evolution for Multi-

Objective Problems, International Journal of

Computational Intelligence Research, ISSN 0973-1873

Vol.1, No.2. 151–169.

[25] Seeley, T.D. 1996. The Wisdom of the Hive. Harward

University Press.

[26] Teodorovic, D., Dell’orco, M. 2005. Bee Colony

Optimization-A Cooperative Learning Approach to

Complex Transportation Problems, Advanced OR and AI

Methods in Transportation. 51–60.

[27] Yu, B., Yuan, X. and Wang, J. 2000. Short-Term Hydro-

Thermal Scheduling using Particle Swarm Optimization

Method. Energy Conversion and Management, Vol. 48.

1902-1908.

IJCATM : www.ijcaonline.org

