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ABSTRACT

In this paper we consider a limited capacity Markovian
queueing system with two heterogeneous servers subjected to
varying catastrophic intensity. The transient solution of the
model has been obtained and various measures of
performance have been computed numerically with the help
of simulation technique. The steady state solution of the
system has also been provided.
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1. INTRODUCTION

The single server Markovian queueing system has been the
object of systematic and through investigation for a long time.
In real life it is not necessary that a queueing system should
have only one server. Practically they may have more than
one server identical or non-identical in their functioning.
Heterogeneity of service is a common feature of many real
multi server queueing situations. The heterogeneous service
mechanism allows the customers to receive different types of
services. Queueing model with heterogeneous server were
rarely treated in research. A Markovian queueing system with
balking and two heterogeneous servers has been discussed by
Singh [1970]. In recent year the attention has been focused on
queueing model with catastrophes. A large number of
research papers are available for queueing model under the
influence of catastrophe see. e.g. Chao (1995), Kumar and
Avrivudainambi (2000), Jain and Kumar (2005a, b, c; 2006),
[Crescenzo et al. (2003), and Jain and Kanethia (2006)],
Brockwell et al., (1982) and Bartoszynski et al., (1989)].
Recently, the queueing system with two heterogeneous
servers subject to catastrophes has been discussed by Kumar,
B.K., Madheswari, Pavai S. and Venkatakrishnan, K.S.,
(2007). In the above mentioned work, all the researchers’
have used the assumption that the occurrence of catastrophe
destroys all the customers in a queuing system. But it is not
always the case. So necessary amendment is incorporated in
the paper of Jain and Bura [2010] in the form of varying
catastrophic intensity to destroy a finite number of customers
at a time. As a result of varying intensity of catastrophe the
number of customers destroyed instantaneously on the
occurrence of a catastrophe varies between 1 and N not
necessary all in the queueing system. Although result has been

reported on queueing models with two heterogeneous servers
subjected to catastrophes, but no work has been found in the
literature which studies queueing model with two
heterogeneous servers subjected to varying catastrophic
intensity. The catastrophic intensity may follow any
appropriate distribution but in this paper we have considered
discrete uniform distribution and modified binomial
distribution. The concept of varying catastrophic intensity has
numerous applications in a wide variety of areas such as
computer communications, agriculture and biosciences etc.

2. QUEUEING MODEL

The queueing model investigated in this chapter is based on
the following assumptions:-

(i) The customers arrive in the system one by one in
accordance with a Poisson Process in a single queue with rate

A>0.

(ii) There are two servers: server 1 and server 2. The service
times of the customers are independently identically

exponentially distributed with rates |1, and L, respectively.
(iii) A customer who arrives, when there are zero customers in

the system, joins the server 1with probability p and the server
2 with probability 1- p.

(iv) The queue discipline is first- come- first- served.
(v) Initially, there are zero customers in the system.

(vi)When the system is not empty, catastrophes occur
according to a Poisson process with rate & and intensity C,

(r=1, 2,3,...., N), icr =1 1t depends upon
r=1

the intensity of the catastrophe that how many customers are
destroyed instantaneously.

(vii) The capacity of the system is limited to N. i.e., if at
any instant there are N customers in the system, then the
customers arriving in the duration for which the system
remains in state N are not permitted to join the queue and
considered lost for the system with probability one.

(viii) In case the catastrophe leaves only one customer in
the system then the probability of his being served by server 1
is p and that of server 2 is (1 - p).
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Define

Pn (t)z The probability that there are n customers in the system at time t.
Pl 0 (t)z The probability that there is one customer in the system and he is being served by the server 1.

Po 1 (t)z The probability that there is one customer in the system and he is being served by the server 2.
The differential- difference equations governing the system are:

P(1) = —P0) s Pus() + P42 D R W
P1/,o(t) = _(7”‘ Ky + ‘g)Pl,o(t)"'}“pPo( )+M2 "‘é pZC Pl+r )
Pé,1(t) = _(}“"'“2 +§)Po,1(t)+7“(l' p)Po( )+H1 "‘ZS l p Nz‘,cr Pl+r ©)

P; (t) = _(}‘4‘”1 +H, +FB)P2 (t)+7‘P1,o(t)+ 7LPo,l(t)+(lvll +H2)P3 t +§Zcr P(2+r)(t) )

Pri(t) = _(7“+H1+Hz +§)Pn(t)+xp(n—l)(t)+(ul+p‘2 (n+1) +§ZC Pn+r n=3’415""'1N_1
()

PU(t) == (py +py +EP(H)+AP () ©)
Taking, Laplace Transform of equations (1) to (6) w.r.t.t’, we have
SP(:(S) :1—7LPS(S)+LL1P;0 ( )+M2 0,1 +EJZ Zcr Pn

n=l r=n (7)
SPEO(S) == (7‘ +H, + &)Pl*’o (S)+kag( )+H2 +E.. pzcr P[1+r] 8)
SPoa(s) =—(t+p, +E)Py,(s)+ 1~ p)Py () +1,P; (s)+E(L-p Zcr Pr1() ©)

sP,(s) = _(}“" Hy T Ho +§)P;(S)+7‘P;o(s)+ APy, (S)"'(Hl +H2)P3 (s +§ZC P2+r ) 10)

N-—n

SPy(s) = —(A+py +p, +E)P;(S)+ AP 1 (S)+ (g + 1, Py (8)+E D ¢, Py (S) (1)

r=1

SPu(s) = — (1, +1, +E)PL(S)+AP_y(s) (12)
Where

_ j: e™'P_(t)dt ad  P,(0) =1

Solving equations (11) and (12) recursively, we have
ol i [ [Ag] Lon .
[ > [ne""D (P

{M}[zm—n)—(i(ifﬂ)} N
lj=(i-j) Jm=0

O R I |

i=1 |0 i J=

Where
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I(i-p ~1(i-(-1))
il

ki
r=

p:( A J ,n=ll[ S+§[1_J

S+ +u, +E -1 | St tp, +E

1
, [k] —> An integral function.

i-m-1 m-1
N—n_(l—m)lo+ z Ia_ km I(l—m)_ (k(m—b) k(m—(b—l)))l(i+b_m)
a=1 b=1
A, =
IO_I(i—m)
i 0 if j=i LN-n-L =gy
L = Z(I(if')_l(if(i—l)))k' ;i :{ . .. and D :H[ !
= 1 i I, if 1<j<i i1 |(i7j)_|(i7(H))

Now, the probabilities Py (S), Py 1(S), Py o(S), and P; (S) remain to be found. For this, we consider the equations (7) - (10).
After simplification, we have

8,026+ 9 U, pRR,)

N (s+&)
B,p "P(s))+ 1Q,-RR,R, “ () = s
L ( A ) 0 s
(14)
o) H5H oy e ()] [H6EET,
P&(S):(Bsp X0 S@(xul 1-pRR) . Bop pN(s»_(s)
e © 17)

In terms of unknown P,: (S) and the constants:

[ (}\'(:(Cl +C2 )Ql+(H1+HZ)Q2 _Rl RZ (R (Cl +C2)+C1 (ul +u2)))P1;(S)_

(@ -RRR, (S, (e re)E + 5 S, Jere) |-

r=3n=r+1
N-3
é;(QZ _ClRl RZ{pN CN—Z + ZCrP12+r(S)j+
r=1

A2-p)S, (1, =)+ APS, (1, — 1)) N_2 )
+§[_R2pL1_R1(1_p)L2 j[p CN1+rZ_ICrP11+r(S)j
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[( (W &(c,+,)+hp, (1, +1,) U1+R2(>Lp( (e, ve;)ve,( ”1+“2))BP1§(S)+
c,)

(S+A+E)(uy +11,)S

N-1

n=4

((—xz U,+ApRR, )& ( Zc +| (¢, +c, z izf jPl (S)B

N-3
(_kéuz U, +Ap&c, R, - S+7\+é éstzip Z_:C P12+r(s)j

+(AE(S+A+E)U, —(s+A+E)EPRR, )(p C,. Z le(s)j

[((2§<c1+c2>+xul<u1+u2>>)ul+R1(m | S

~(s+2+8)(my +1,)S,

(62020 p)RR (o 5 005+ 5 5, Jri -
83 _ r=1 =4 +1

()\’E.)ul U1+}‘(1_p)§cl Rl—(5+7~+§)§R15 )(p Cu- 2+ZC P12+r( )j

+<-xa(s+x+a>ul—<s+x+a>a<1—p>RRl{chN1+zcrm;r(s>]
(7"2 &(Cl +C, )T +7‘(M1 +“2)T _(S+7\’+2;)(p“1 +H2)R1 RZ)P]-;(S)

+ACT, &( Zc +[(c +02)21+'\|22N2c jPl’,:(s)j+

r=3n=r+1

V

a(xn—@uw)am{& cN_2+zch1;r(s>j

—xa<s+x+a)T1[chN1+“icrm;r(s>]

G = {Xsl(Xp(uz—p1)+(3+k+§)R1)+7»32 (k(l_p)(ul_H2)+(5+7”+§)R2)+7‘p|—1}
~l+a(l-p)L, —(s+A+E)RR, R,

R = (S+7‘+P~1+Hz+§)’ R12(3+7‘+H1+§)’R :(s+7“+“2+§) S :(“1"'&(1 p)Cl),
S, =, +Epcy).Ly = (R =28c,), L, = (Rp, —1&e;), Ty = (PR, +(1-p)Ry),

T, (HlpR "’Hz(l p) )Ql:(SZR2+SlRl)’ Q, —(Hlsz R2+H281R1)’

U, = (pS,~(1-p)s,)

Where
[—3+W}{2(N—n)—(i(i—l))} - -
4 i-1 -1~ i-1 An
PL(s) = 1p s 8 o
i=1 lo=i =1 \Uj=(-1) Jm=0\ K(m1)=km +1
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(6-(s+£JrQu -RRiRy ~(R+1)0Ty))

Puls) =
G (B,+B,+By+By)

- 2
S N
P e Y "+

n=3 i=1

After using (18), equations (14)-(17) becomes:

-RypLy-Ry(1-p)L,

(Bl+Bz+B3+B4)
Lol S
+GY "+ Y
n=3 i=1

lp=i

N-1
<xQ1-xRR1Rz>a[pN ZCr+[(01+Cz)
r=1

r=1

[7\(1—P)52 (g =11 )+ 2 pSy (g —11p)

{-wm 2(N—n)—(i(i—1))}
i-1

N-1 N-2 N-1
22
n=4

= r=3n=r+1

—MW}F(N@G(M))}
i-1

(7@(01 +Cp )Ql +(11+12)Q2 ~R1 Ry (R +65)+ ¢ (g +H2)))P1§(5)—

N-3
Z;(Qz—Cl Ry Rz)[PN Cno2t X CrP12+r(S)]+

N-2
N *
p Cn_1t ZCrPllH(s)]
r=1

(G- (5+8)0 Q1 -RRR, ~(R+ 12Ty )+ ((5+£) (2 Q1 ~RRRy))

a1 | i Lo
M X || X pme™D
= 1j=G-1) Jm=0{ k(1) =km +1

lj-1-1 _
H[ ) ] [ ) }1 pti " D;
=1 1j=(i=1) jm=0{ K(m+1) =km +1

[Am]

(18)

2¢

]Pf;(s)] ;

i-1 Am]

[1

N
sG| (B +By+B3+B,)+G Y p"+
n=3

{—3+,/9+8(N—n)

2

i=1

}{

4

)

lg =i

2(N-n)(

i(i -1))}
i-1

i-1 Am]

lig-1
H[ D ]H[ 5 ]n ACRLE
i1 1j=G-1) Jm=0{ K(m+1) =k +1

(19)
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U%va@+%»xmmﬁun»w+R{kﬂR@“%’”““*“»DP@@+

~(5+A+E) (1, +1,)S

U*WﬁMRRmvaﬁﬁﬂﬁl§ECj(ﬂj

n=4 r=3n=r+l

(1, Uy +hpEC, R, e%%mRsﬁcmﬁzcmxﬂ

4%@%%wf@w@meﬁwmﬁzquﬂ

(G- (s+E)rQ,-RRR,~(R+MAT,))) +

(B,+B,+B,+B,)
{ {fwm}[zm-m-n(km
p+

2 4 } i1 lal )ia (Ay] Ln
> I 2 [np"D,
i=1 lo=i JFL\J=l-]) Jm=0\ k(1) =k +1

{M}{z(mn)—(i(i*ﬂ)}
) i1

N 4 A gt Via [An]
sG (B1+BZ+BS+B4)+GZ {Pn*' > 2 [ j [ 2 jﬂ p’ D]
n=3 i1 lo=i 1\ 1) Jm =0l K(pyag) ko +1

Ms+E)AU,-pRR,J* 6%

n=3

(((Vi(cl+Cz)+Mt1(uﬁuz)))UﬁRl[x(l_p)( e, e, (”1+”2))]]P13(s)+

~(s+M+E)(n +1,)S,

o0, at-pRm 5 o5 S

n=4 r=3n=r+l *

(Kiuluﬁm—P)iClR (SH""&)Z}R S )[P Cy. 2+ZC P12+r( )j

4ﬁmﬁﬁwfmmammmaﬁ%Mfyma@j

(6 -(5+2)10,-RR R, -(R+1T,)) -
(B,+B,+B,+B,)
{M}{zm—n)—(i(ifl})}

~AS+E)AU, +{L-p)RR | & 2 s Lt \ial () .
+G "+ )
n; P ; |OZ::i 11:! I;=(i-j) Jm=0 k(mﬂ)Z—:kmu e I

{*“W}[Z(N—n)—(i(i—l))] B

N 2 4 i1 [l )i [An]
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(G - (s+&)1Q,~RRR,~(R+2AT, ))) -
(B,+B,+B,+B,)
=3+4/9+8(N-n] | 2(N-n)-(i(i-1))
ME+HET A N, { 2 M ] e Yl g "
+GY "+ X > Il 2 np "D,
n=3 i-1 lo=i i1 =) Jm=0\ k{msg) =k +1
F2ls) = {-3+«/m}{2(N—n)—(i(i—1))}
N 2 4 i-1( ol i1 (AL
sG (Bl+BZ+B3+BA)+GZ "+ Z ( jﬂ[ Z jn PL'+n D,
n=3 = lo=i i1 =) Jm=0\ K(mg)=kn +1
(22)
{ J9+8{N n M (N=n)(i(i 1))}
; 4 i-1 (1l )i (Ap] Lo
oo SIS o
i=1 lp=i =L\ Uj=(i=0) Jm=0\ k(1) =Ky +1
- (6 -6+, AR R, -(R 1))
' {*“WMZ(N—n)—(i(i—l))}
N ) 2 4 i1 a1 ) ia [An] Lon
S (Bl+BZ+BS+BA)+GZ p+ Z Z H[ jH[ jﬂ p" D,
n=3 = lo=i i1\ 1j=-) Jm=0\ K(pyop) =k +1
(23)

After taking Laplace inverse of (19) to (23), we can find all the probabilities.
3. SIMULATION RESULTS

We obtain numerically the various measures of performance
of this model by using simulation technique. The simulation
analysis of the queueing model under investigation is carried
out by using a computer program written in C language. The
simulation results have been shown in tables 1-6. In tables 1-
3, the simulation results are obtained by assuming that the
catastrophic intensity follows the uniform distribution while
in tables 4-6, the simulation results are obtained by assuming
that the catastrophic intensity follows the modified binomial
distribution.
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Table-1
Simulation results of an M/M/2/N queueing model with
two heterogeneous servers subject to uniformly
distributed catastrophic intensity Effect of change in mean

inter arrival time % Mean service time of server 1 =6

minutes, Mean service time of server 2 = 8 minutes, mean
inter catastrophe time= 100 minutes, simulation length=

480, N=5
Mean Averag | Avera | Serverl Server 2
inter e delay | ge No. | Utilization | Utilization
arrival in in
time gueue gueue
1 12.1858 | 3.9533 | 0.9154 0.9154
2 8.8038 | 0.1333 | 0.0643 0.0669
3 6.6864 | 0.7411 | 0.3213 0.3307
4 8.7736 | 0.5198 | 0.2050 0.2056
5 4.0348 | 0.3452 | 0.2650 0.2693
6 3.1294 | 0.0000 | 0.0051 0.0089
7 2.3818 | 0.1015 | 0.1347 0.1396
8 2.2160 | 0.0800 | 0.0720 0.0745
9 2.2716 | 0.0629 | 0.2946 0.2335
10 4.6215 | 0.0814 | 0.1076 0.1081
Table-2

Simulation results of an M/M/2/N queueing model with
two heterogeneous servers subject to uniformly
distributed catastrophic intensity Effect of change in mean

service time of server 1 (}/ ) Mean inter arrival time
Ky

= 2 minutes, Mean service time of server 2 =5 minutes,
mean inter catastrophe time= 100 minutes, simulation
length= 480, N=5

Mean Averag | Average | Server 1 | Server 2
service | e delay | No. in | Utilization | Utilizati
time of | in queue on
server 1 | queue
1 0.5793 0.1374 0.2253 0.3426
2 3.0729 0.6185 0.4241 0.4593
3 4.7255 1.1797 0.5258 0.5459
4 4.6241 0.1946 0.1213 0.1308
5 7.3049 0.9741 0.3504 0.3509
6 8.5041 1.5390 0.4739 0.4718
7 8.8002 0.8844 0.2583 0.2566
8 8.9714 1.0563 0.3111 0.3048
9 11.7780 | 2.9511 0.7905 0.7789
10 10.4079 | 1.7684 0.4886 0.4873

Table-3
Simulation results of an M/M/2/N queueing model with
two heterogeneous servers subject to uniformly
distributed catastrophic intensity Effect of change in mean

service time of server 2 [}/ j Mean inter arrival time
Mo

= 2 minutes, Mean service time of server 1 =5 minutes,
mean inter catastrophe time= 100 minutes, simulation
length= 480, N=5

Mean Average | Averag Serverl Server 2
service | delayin | e No.in | Utilization | Utilizati
time of queue queue on
server 2

1 0.6742 0.0479 0.0446 0.0321
2 1.5226 0.4428 0.5231 0.4007
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3 4.1287 0.2043 0.1320 0.1174
4 5.1984 0.5185 0.2159 0.2143
5 7.3049 0.9741 0.3504 0.3509
6 7.7834 0.7722 0.2613 0.2628
7 8.1628 1.0034 0.3231 0.3290
8 11.6083 | 2.9928 0.7859 0.8010
9 10.2921 | 2.6730 0.7819 0.7713
10 8.9250 0.6030 0.1918 0.1989

Table-4
Simulation results of an M/M/2/N queueing model with
two heterogeneous servers subject to uniformly
distributed catastrophic intensity Effect of change in mean

inter catastrophic time (}éj Mean inter arrival time =

2 minutes, Mean service time of server 1= 6 minutes, mean
service time of server 2 = 8 minutes, simulation length=
480, N=5

Mean inter | Average | Averag | Server 1 | Server
catastrophi | delay in | e No. in | Utilizatio | 2
c time queue queue n Utilizati
on
101 12.2138 | 3.0654 | 0.7954 0.7882
102 9.7799 0.2531 | 0.1107 0.1097
103 11.6128 | 2.1070 | 0.5458 0.5415
104 9.3843 1.0284 | 0.3111 0.3113
105 10.2497 | 1.3395 | 0.3909 0.3812
106 9.9494 0.8560 | 0.2587 0.2556
107 10.4430 | 1.0812 | 0.3006 0.2922
108 9.8635 1.5633 | 0.4620 0.4479
109 10.1851 | 1.0888 | 0.3306 0.3355
110 12.1654 | 1.5348 | 0.4485 0.4424
Table-5

Simulation results of an M/M/2/N queueing model with
two heterogeneous servers subject to modified
binomially distributed catastrophic intensity.

Effect of change in mean inter arrival time (%)

Mean service time of server 1 = 6 minutes, Mean service
time of server 2 = 8 minutes, mean inter catastrophe time=
100 minutes, simulation length= 480, N=5

Mean Average | Average | Server 1 | Server 2
inter delay in | No. in | Utilization | Utilization
arrival | queue queue

time

1 11.8935 | 4.2028 0.9806 0.9806

2 9.0571 0.1052 0.0499 0.0505

3 6.8118 0.8650 0.3777 0.3920

4 8.7793 0.4342 0.1777 0.1792

5 4.0348 0.3452 0.2630 0.2693

6 3.1294 0.0000 0.0051 0.0089

7 2.3051 0.1043 0.1419 0.1451

8 2.2160 0.0800 0.0720 0.0745

9 2.2716 0.0629 0.2946 0.2335

10 4.4700 0.0922 0.0890 0.0896
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Table-6 1 0.6727 0.0640 0.0599 0.0438
Simulation results of an M/M/2/N queueing model with 2 1.5360 0.5795 0.6849 0.5215
two heterogeneous servers subject to modified binomially 3 4.0723 0.2473 0.1597 0.1395
distributed catastrophic intensity. 4 5.2788 0.5434 0.2217 0.2210
Effect of change in mean service time of server 1 [ }/ ) 5 7.3563 0.8923 0.3362 0.3395
231 6 7.6520 1.0865 0.3643 0.3662
Mean inter arrival time = 2 minutes, Mean service time 7 8.1255 1.3601 0.4388 0.4436
‘ 8 12.1733 3.6002 0.9382 0.9542
of server 2 = 5 minutes, mean inter catastrophe time= 100 9 10.1551 | 3.1477 0.9384 0.9256
minutes, simulation length= 480, N=5 10 8.6107 0.8195 0.2621 0.2627
Mean Averag | Average | Serverl | Server?2
service | edelay | No.in | Utilizati | Utilization Table-8
time of in queue on Simulation results of an M/M/2/N queueing model with
server 1 queue two heterogeneous servers subject to modified binomially
1 0.5793 0.1374 0.2253 0.3426 distributed catastrophic intensity.
2 31418 | 0.9103 | 0.4159 0.4500 Effect of change in mean inter catastrophic time (}/j
3 4.7255 1.1797 0.5258 0.5459 g
4 4.4515 0.0916 0.0847 0.0970 Mean inter arrival time = 2 minutes, Mean service time of
5 7.3563 0.8923 0.3362 0.3395 ,
6 8.9504 1.7259 0.5161 0.5192 server 1= 6 minutes, mean service time of server 2 = 8
7 8.6378 0.7640 0.2275 0.2256 minutes, simulation length= 480, N=5
8 8.9829 1.2061 0.3489 0.3417 Mean Average | Averag | Server 1 | Server 2
9 11.8682 | 3.4734 0.9425 0.9284 inter delay in | e No. | Utilizatio | Utilizatio
10 10.8180 | 1.8999 0.5136 0.5116 catastrop | queue in n n
hic time queue
Table-7 101 12.8427 | 3.6938 | 0.9433 0.9434
Simulation results of an M/M/2/N queueing model with 102 9.7839 0.1349 | 0.0783 0.0781
two heterogeneous servers subject to modified 103 12.0068 | 2.3648 | 0.6054 0.6008
binomially distributed catastrophic intensity. 104 9.6638 1.0964 | 0.3287 0.3294
Effect of change in mean service time of server 2 (}/ ) 105 10,5273 | 1.5314 | 0.4582 0.4469
M2 106 10.3545 | 1.1666 | 0.3428 0.3408
Mean inter arrival time = 2 minutes, Mean service time of 107 10.9170 | 1.1578 | 0.3221 0.3248
. 108 10.1586 | 1.9845 | 0.5836 0.5662
server 1 = 5 minutes, mean inter catastrophe time= 100 109 10.5369 | 0.9082 | 0.2831 0.2846
minutes, simulation length= 480, N=5 110 12.1190 | 1.1724 | 0.3512 0.3458
Mean Average | Average Server 1 Server 2
service | delayin No. in Utilization | Utilization
timeof | queue queue Steady State Solution
server 2

Using the property Iirrg S P: (S) = P, We have from (19) to (23),
s—
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4. CONCLUSION

In this paper we consider two heterogeneous servers
Markovian queueing system subjected to varying catastrophic
intensity. The system size probabilities are calculated
explicitly. The concept of varying catastrophic intensity has
tremendous applications in vide variety of areas such as
computer communications, agriculture and bio-sciences etc.
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