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ABSTRACT 

Due to increasing the number of decision-making criteria in 

today’s ever complicated geometrical optimization problems, 

the traditional multiobjective optimization approaches, 

whether a priori, a posteriori or interactive's, found to be 

insufficient and ineffective. In this paper the drawbacks of the 

current algorithms are reviewed and the urgent need for 

inserting a learning component in the optimization loop is 

discussed. In the following the methodology of reactive 

optimization for evolutionary interactive multiobjective 

optimization for solving complicated geometrical decision-

making problems is adopted. The proposed brain-computer 

optimization follows to the paradigm of learning while 

optimizing, through the use of online machine learning 

techniques as an integral part of a self-tuning optimization 

scheme. At the end the effectiveness of the approach to 

geometrical problems is emphasized by providing the study 

case of optimal design problem of curves and surfaces.   
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1. INTRODUCTION 
We According to [3] the general form of the Multiobjective 

optimization (MOO) problems is stated as   

Minimize                      Subjected to                 
  where    ℝn is a vector of   decision variables;     ℝn is 

the feasible region and is specified as a set of constraints on 

the decision variables;      ℝm is made of    objective 

functions subjected to be minimization. Objective vectors are 

images of decision vectors written as        
                 An objective vector is considered optimal 

if none of its components can be improved without worsening 

at least one of the others. An objective vector   is said to 

dominate  , denoted as      , if       
   for all   and there 

exist at least one   that       
 . A point    is Pareto optimal 

if there is no other     such that      dominates         The 

set of Pareto optimal points is called Pareto set (PS). The 

corresponding set of Pareto optimal objective vectors is called 

Pareto front (PF). 

Solving a MOO problem would be done by providing the 

decision-maker (DM) with the optimal solution according to 

some certain utility criteria allowing to choose among 

competing PF. Such utility criteria are often inconsistent, 

difficult to formalize and subjected to revision.  

Approaches to MOO are divided into the two broad categories 

of non-interactive and interactive ones [13].  According to 

[14], through interactive MOO the DM is building a 

conviction of what is possible and confronting this knowledge 

with the preferences that also evolve where learning task and 

the computer-supported solution processes are involved.  

On the other hand the non-interactive approaches are divided 

into a priori approaches, where the preferences are formulated 

in advance, and a posteriori approaches, where a PS is 

created. A priori methods have the drawback of requiring the 

user to accurately pre-specify the preferences which is 

actually hard for a DM. A posteriori methods, on the other 

hand, imply a confusing selection task among a large and 

complicated set of candidate solutions. 

2. FROM EVOLUTIONARY 

ALGORITHMS TO BRAIN-COMPUTER 

OPTIMIZATION 
All Evolutionary algorithms (EAs) are among the most 

popular a posteriori methods to generating PS to a MOO 

problem. The evolutionary algorithms of MOO for solving 

MCDM problems have been around for almost twenty years 

now [15]. EA are ideally suited to search for a set of PS to be 

presented to the DM. In this paradigm, evolutionary 

multiobjective optimization algorithms (EMOAs) aim at 

building a set of points near the PF. Currently, most 

evolutionary EMOAs apply Pareto-based ranking schemes.  

Some of the most successful EMOAs [16] rely on Pareto 

dominance classification as a fitness measure to guide 

selection of the new population. The work [17] indicates that 

resorting to Pareto dominance classification to assign fitness 

becomes ineffective for increasing number of objectives and 

proposes a refined preference ordering based on the notion of 

order of efficiency [18].  

MOO of curve and surfaces [5] would be a good example for 

such ineffective attempt and increasing complexity. The 

reviewed and applied approaches for solving the MOO of the 

curve and surfaces [5] whether a priori or a posteriori, in 

particular EA, involve plenty of various complications. The 

reason is that the proportion of PF in a set grows very rapidly 

with the dimension  . In fact the reality of applied DM has to 

consider plenty of priorities and drawbacks to both interactive 

and non-interactive approaches. Although the mathematical 

representative set of the DM model is often created however 

presenting a human DM with numerous representative 

solutions on a multi-dimensional PF is very far from reality. 

This is because the typical DM cannot deal with more than a 

very limited number of information items at a time [19]. 

Therefore a satisficing decision procedures should be 

developed according to human memory and data processing 

capabilities.  

Moreover often DMs cannot formulate their objectives and 

preferences at the beginning. Instead they would rather learn 

on the job. This is already recognized in the MOO 

formulation, where a combination of the individual objectives 
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into a single preference function is not executed. Considering 

[5] the DM is not clear about the preference function. This 

uncertainty is even more increased when the objectives such 

as beauty involved. In fact the assumption that a fixed, 

deterministic and error-free preference structure of the DM is 

available is often not realistic. Imprecisions, contradictions, 

changes of judgment over time are the characteristics of most 

human decision processes. This fact would employ lots of 

uncertainty and inconsistency.  

Interactive approaches try to overcome some of these 

difficulties by keeping the user in the loop of the optimization 

process and progressively focusing on the most relevant areas 

of the PF directed by DM. This is done when the fitness 

function is replaced by a human user. However most DM are 

typically more confident in judging and comparing than in 

explaining. They would rather answer simple questions and 

qualitative judgments to quantitative evaluations. In fact the 

number of questions that have to be asked from the DM 

before a satisfactory solution is identified is a crucial 

performance indicator of interactive methods. This would 

demand for selecting appropriate questions, for extracting as 

much information as possible from the answers, for building 

approximated models which may reduce the need to bother 

the DM.  

The above priorities, as it is indicated in [20], demand a shift 

of paradigm, from building a set of solutions which is 

representative of the true PF, to the interactive construction of 

a sequence of solutions, so called brain-computer 

optimization, where the DM is a crucial learning component 

in the optimization loop, a component characterized by 

limited rationality and advanced question-answering 

capabilities. This would be the motivation for the systematic 

use of machine learning techniques for online learning 

schemes in optimization processes. In fact in particular, the 

objective of reactive optimization (RO) [1] is to design 

problem solving schemes with an internal online feedback 

loop for the self-tuning of critical parameters. 

 

Fig 1: Schematic flowchart of the proposed optimization 

process [1]; learning the problem definition from the final 

user in interactive multiobjective optimization [4]. 

3. CASE STUDY 
A reliable optimal design process for the Non-uniform 

rational B-spline (NURBS) curves and surfaces would have a 

wide and foundational application in CAGD, CAD, image 

processing, etc.  Yet the optimal design and parameter tuning 

of the NURBS curves and surfaces is a complicated, highly 

non-linear and multiobjective optimization (MOO) problem. 

The complexity of the problem is even increased when the 

criteria of product beauty is included to the design process. 

More on the problem, applications and previous approaches 

are available in [5], where the use of MOO algorithms 

enhances the design process by enabling optimization of 

several design objectives at once. 

In this article the optimization process of NURBS including 

four conflicting and highly non-liner design objectives is 

described. For solving problems as such, with a high level of 

complexity,   modeling the true nature of the problem is of 

importance and essential.  For this reason a considerable 

amount of efforts is made in modeling the MOO problems in 

Scilab and the details are described. 

3.1 Statement of the case study 
A tensor product NURBS is defined as;                          
                 

   
   

   
   , where      are control points of the 

surface with the orders and the numbers of                    

are the NURBS basis function, depended on the design 

variables including weights,  , the knot vectors,      , the 

         orders of the surface and the parameterization,      .   

Handling the parameterization, knot vectors and NURBS 

weights is described in [4].  Tuning NURBS weights and knot 

vector all together dramatically increases the number of DOF 

which is proportional to    .  

According to the input points,       and the design variables, 

the control points        via utilizing the linear least squares 

fitting, are calculated and the surface is created [11].    

Let   be the collocation matrix used for surface fitting; 

         are the coordinates of  , the data to be 

fitted;         a diagonal matrix whose entries are the vector 

   

                                              

          

                                                                      
     

The position of the surface’s control points          are 

given by least solution of the following equations:      
                            

3.2 Optimization Objectives 
The goal of the optimization process is to produce a set of 

NURBS surfaces which approximates a set of input points   

                   ℝd         and are optimal with 

respect to the specified design objectives. Once the surface is 

created the quality of it could be considered by evaluating a 

set of specified design objectives, i.e.          ), . . ., 

               

Approximation Error,     the distance between the surface 

and the points   measured at the parametrization points      , 
is often subjected to minimization;  

                          
 
    

   
   
   , under            

                                      

       , under    norm.  

Surface Area,     in conflict with approximation error, 

controls artifacts due to over-fitting;          
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Surface Elastic Energy,     as an other conflicting objective is 

a highly non-linear term;  

              
        

    
 

 

 

 
, where A is the surface 

area. 

4. THE PROPOSED AND FORMER 

APPROACHES 
The mathematical modeling of the NURBS curves and 

surfaces design problem results in a multiobjective 

optimization problem which cannot be handled as such by 

traditional single objective optimization algorithms. 

Considering the problem with Conjugate Gradient and 

Newton based approaches, the optimization process is divided 

into several phases and each functional is optimized 

separately [7, 8, 9].  In this approach the multiobjective 

problem is solved via a single objective optimization 

algorithm. However the results obtained clearly are not 

promising.    

Previously an evolutionary MOO algorithm [5] is used to 

handle this case. In this approach the results are reported 

promising due to the robustness and efficiency of evolutionary 

algorithms. Evolutionary algorithms [9] are natural choice for 

multiobjective optimization since at each step the algorithms 

keeps a population, which is a set of solutions instead of a 

single, optimal, solution. Because of the robustness and 

efficient handling of highly non-linear objective functions and 

constrains the use of EA in geometrical problem has proved to 

be a powerful technique [11].    

In the proposed brain-computer algorithms, in contrast to the 

evolutionary algorithms, the DM guides the optimization in 

the desirable search locations and the final desirable surface. 

In this case the computation cost is minimized and the 

preferences of the decision maker are effectively considered.    

Here, as an alternative to the previous approaches the robust 

and interactive MOO algorithm of RSO [1,4] is  proposed in 

order to efficiently optimize all the design objectives at once 

including the criteria of beauty in which couldn’t be 

completely considered in the previous attempts. In this 

framework the quality of the surface, similar to the previous 

research workflows, is measured using a set of certain 

functions, then an optimization algorithm is applied in order 

to optimize the function to improve the quality of the surface.  

The problem is modeled in scilab and the model is integrated 

to the optimizer via advanced interfaces to the RSO algorithm 

and its brain-computer evolutionary multiobjective 

optimization implementations and visualization [1, 13]. In this 

framework the application of learning and intelligent 

optimization and reactive business intelligence approaches in 

improving the process of such complex optimization problems 

are described. Furthermore  the problem is further 

reconsidered by reducing the dimensionality and the dataset 

size [12],  multi-dimensional scaling, clustering and 

visualization tools [21- 28]. 

5. CONCLUTIONS 
A brain-computer approach characterized by its ability to 

learn an arbitrary utility function from a DM expressesing 

preferences between couples of selected solutions. The 

method is based on Support Vector Machines and derived 

tools from the machine learning community. The optimization 

methodology of Reactive Optimization based on the paradigm 

of learning while optimizing is utilized. The presented study 

case demonstrates the feasibility and effectiveness of the 

brain-computer algorithm with both linear and non-linear user 

preferences. 
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