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ABSTRACT 

Let R be a commutative ring with Z(R), its set of zero 

divisors. The total zero divisor graph of R, denoted Z(Γ(R)) is 

the undirected (simple) graph with vertices Z(R)*=Z(R)-{0}, 

the set of nonzero  zero divisors of R. and for distinct    x, y   

z(R)*, the vertices x and y are adjacent if and only if x + y   

z(R). In this paper  prove that let R is commutative ring such 

that Z(R) is not ideal of R then Z((R(+)M)) is connected 

with diam(Z((R(+)M))) = 2 and the sub graphs Z((R(+)M)) 

and Reg((R(+)M)) of T((R(+)M)) are not disjoint. And also  

prove that let R be a commutative ring such that Z(R) is not  

an ideal of R with Z(R(+)M) = Z(R)(+)M and Reg(R(+)M) = 

Reg(R)(+)M then Z((R(+)M)) is connected if and only if  

Z((R) is connected and Reg((R(+)M))  is connected if and 

only if  Reg((R). 
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1. INTRODUCTION 
Let R be a commutative Ring with non zero unity. The 

concept of the graph of the zero divisors of R was first 

introduced by Beck [1], where he was mainly interested in 

coloring. In his work all elements of the ring were vertices of 

the graph. The investigation of colorings of a commutative 

ring was then continued by D. D. Anderson and Naseer [2],  

In [3], D. F. Anderson and Livingston associate a graph, Γ(R), 

to R with vertices Z(R)*=Z(R)\{0}, the set of non zero zero 

divisors of R,  and for distinct  x,y   Z(R)\{0}. The vertices x 

and y are adjacent if xy=0. In [5] D.F. Anderson and Badawi 

introduced the total graph of R, denoted by T(Γ(R)) as the 

graph with all elements of R as vertices, and for distinct x, y   

R are adjacent if x+y   Z(R), and studied some graphical 

parameters of this graph such as diameter and girth.  

In this paper studied some results of Total graphs of 

idealizations. In [5] D.F.Anderson, A.Badawi studied 

connectedness of Total graph of the idealization R(+)M and 

also investigate diameter and has proved some results on girth 

of Total graphs. Different aspects of the idealization are 

thoroughly investigated in [10],[11]. In this paper  also extend 

the study of D.F.Anderson, and A.Badawi . In this  proved 

that let R is commutative ring such that Z(R) is not ideal of R 

then Z((R(+)M)) is connected with diam(Z((R(+)M))) = 2 

and the sub graphs Z((R(+)M)) and Reg((R(+)M)) of 

T((R(+)M)) are not disjoint. And also  proved that let R be a 

commutative ring such that Z(R) is not an ideal of R with 

Z(R(+)M) = Z(R)(+)M and Reg(R(+)M) = Reg(R)(+)M then 

Z((R(+)M)) is connected if and only if  Z((R) is connected 

and Reg((R(+)M)) is connected if and only if  Reg((R) and 

also  investigate the diameter and girth of Reg((R(+)M)) that 

is diam(Reg((R(+)M))) ≤ 4 if Reg((R(+)M)) contains a 

cycle and diam(Reg((R(+)M))) ≤ 2 if Reg((R(+)M)) is 

connected.  

Preliminaries 

Complete Graph: A graph G in which every vertex is 

adjacent to every other vertex is called a complete graph. 

Complete graph is represented as Kn where  n is the number of 

vertices in Kn . 

Connected Graph: A graph G  is said to be a 

connected graph if there is at least one path between every 

pair of vertices in G. otherwise G is said to be a disconnected 

graph. 

Distance: Any two distinct vertices  a  and  b  in graph  G 

, the distance between  a  and   b, denoted by d(a,b) is the 

length of a shortest path connecting  a  and  b ,if such a path 

exist. Otherwise  d(G) =    

Diameter of G: diam(G) = Sup{d(x,y)   x & y are 

distinct vertices in G},where d(x,y) is the length of shortest 

path from x to y in G. if there is no such a path then d(x,y) = 

 . 

The girth of G: The girth of G is denoted by gr(G) is 

length of shortest cycle in G. if  G contains no cycles the 

gr(G) =    

Path: A trail in which all the vertices are distinct is called a 

path. 

Cycle: A path whose origin and terminus vertices are the 

same is called a cycle. 

The idealization of M over R: The idealization of  

M over R is the commutative ring formed from  R M by 

defining addition and multiplication as follows  

(i)       (r1,m1)+(r2,m2)=(r1+r2,m1+m2); 

(ii)      (r1,m1)(r2,m2)=(r1r2,r1m2+r2m1). 

 

The idealization of M in R, denoted by R(+)M,  here assume 

that neither the ring nor the module is trivial. Observe that 

if a∈Z(R)*, then (a,m)∈Z(R(+)M)*for all m∈M. To see this, 

consider b∈Z(R)* with ab=0. If bM=0, then (a,m)(b,0)=0. 

If bM≠0, then there exists some n∈M such that bn≠0. 

Hence, (a,m)(0,bn)=0. 

2. MAIN RESULTS      
Let M be an R-module , showed some results about the graph 

of idealization R(+)M.  In this paper assume that  

Z(R(+)M)=Z(R)+M.  Note that  Z(R(+)M)  Z(R)+M always 

holds. But inclusion may be proper since Z( (+) 2) = 2   +  2 

However equality holds if either M is an ideal of R or R is an 

integral domain and M is torsion free. 

The following results are some basic results in[5]. 
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Theorem : Let R be a commutative ring such that Z(R)is not 

an ideal of R and let M be an R-module such that 

Z(R(+)M)=Z(R)+M 

(i) T( (R(+)M)) is connected if and only if T( (R)) is 

connected 

(ii) diam(T( (R(+)M))) = diam(T( (R)))                            

In the view of the above theorem  have the following 

corollary. 

Corollary: Let R be a commutative ring such that Z(R)is not 

an ideal of R and let M be an      R-module if T( (R)) is 

connected then T( (R(+)M)) is connected with 

diam(T( (R(+)M))) ≤ diam(T( (R))). 

The following is an example of a commutative ring  R such 

that Z(R)is not an ideal of  R. both T( (R)) and T( (R(+)M)) 

are connected, but diam(T( (R))) diam(T( (R(+)M))). Thus 

the hypothesis that  Z(R(+)M)=Z(R)+M is needed in above 

theorem and the inequality in corollary above may strict. 

In this paper investigate the diameter and connectedness of 

sub graphs which are Z( (R(+)M)) , Reg( (R(+)M)) and 

Nil( (R(+)M)). 

Theorem : Let R be a commutative ring such that Z(R)is not 

an ideal of R 

(i)  Z( (R(+)M)) is connected with diam(Z( (R(+)M))) = 2. 

(ii)  some vertex of Z( (R(+)M)) is adjacent to a vertex of  

Reg( (R(+)M)) . In particular, the                     subgraphs 

Z( (R(+)M)) and Reg( (R(+)M)) of T( (R(+)M)) are not 

disjoint. 

(iii) if Reg( (R(+)M)) is connected then T( (R(+)M))is 

connected. 

Proof : (i) each (x,a) Z(R(+)M)* is adjacent to (0,0) thus 

(x,a)-(0,0)-(y,b) is a path in Z(R(+)M) of length two 

between any distinct (x,a),(y,b) Z(R(+)M)*. 

Moreover there are non adjacent (x,a),(y,b) Z(R(+)M)*  

since Z(R(+)M)=Z(R)+M and Z(R)is not an ideal of R  

    So diam(Z( (R(+)M))) = 2. 

(ii)  since Z(R)is not an ideal of R there are distinct 

(x,a),(y,b) Z(R(+)M)* such that (x,a)+(y,b)  

Reg(R(+)M).  

      Then (-x,-a) Z(R(+)M) and (x,a)+(y,b)  Reg(R(+)M) 

are adjacent in T( (R(+)M)). 

      Since (-x,-a) + (x,a)+(y,b)=(y,b)  Z(R(+)M)*. 

      The subgraphs Z( (R(+)M)) and Reg( (R(+)M)) of 

T( (R(+)M)) are not disjoint. 

(iii)  Suppose that Reg( (R(+)M)) connected. 

Since Z( (R(+)M)) is also connected by part (i) above it is 

sufficient to show that there is a path form (x,a) to (y,b) 

in T( (R(+)M)). 

   For any (x,a)  Z(R(+)M) and (y,b)  Reg(R(+)M)  

    By part (ii) above there are adjacent vertices (z,c) and (w,d) 

in Z( (R(+)M)) and Reg( (R(+)M)) respectively. 

   Since Z( (R(+)M)) is  connected there is a path from (x,a) 

to (z,c) in Z( (R(+)M))  and 

   Since RegZ( (R(+)M)) is  connected there is a path from 

(w,d) to (y,b) in Reg( (R(+)M)) 

  As (z,c) and (w,d)  are adjacent in T( (R(+)M)). 

       There is a path from (x,a) to (y,b) in T( (R(+)M)). 

  Thus T( (R(+)M))is connected.                                                                           

Theorem : Let M be an R-module such that Z(M)  Z(R) 

then the following condition are            equivalent 

(i) Z(R(+)M) is an ideal of R(+)M  

(ii) Z(R) is an ideal of R , in addition to that 

Z(R(+)M)=Z(R)+M. 

Proof :  Let us first suppose that Z(R) is an ideal of R  

 Since Z(M)  Z(R)  then Z(R)  Z(M) = Z(R) and therefore 

Z(R(+)M)=Z(R)+M. 

The set on the right hand side is an ideal according to [5] 

theorem 3.1 

suppose that Z(R(+)M) is an ideal of R(+)M and let z1 ,z2 

Z(R). 

then (z1,0),( z2,0) Z(R)+M so (z1 +z2 ,0) Z(R)+M. 

from this  conclude that z1 +z2  Z(R)   Z(M) = Z(R) 

likewise if  rR and z Z(R) then (r,0) R(+)M and (z,0) 

Z(R(+)M) 

consequently (r,0).(z,0) = (rz,0) Z(R(+)M and  have rz 

Z(R)   Z(M) = Z(R).            

Theorem : Let R be a commutative ring such that Z(R)is not 

an ideal of  R, Let M be an R-module such that  

Z(R(+)M)=Z(R)+M and Reg(R(+)M)=Reg(R)+M 

(i)  Z( (R(+)M)) is connected if and only if Z( (R)) is 

connected 

(ii) Reg( (R(+)M)) is connected if and only if Reg( (R)) is 

connected. 

Proof : (i) suppose that Z( (R(+)M)) connected  

 Let x,y Z(R) be distinct then (x,0),(y,0)Z(R)+M . 

So there is a path (x,0)-(s1,t1)-(s2,t2)-…………….(sn,tn)-(y,0) 

from (x,0) to (y,0) in Z( (R(+)M)). 

Since Z(R(+)M)=Z(R)+M  conclude that   x-s1-s2-………..-sn-

y  is  a path from  x to y in Z( (R))  

Thus Z( (R)) is connected.  

Conversely Z( (R)) is connected  
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(x,a),(y,b) R(+)M be distinct. Then there is a path  x-s1-s2-

………..-sn-y  is  a path from  x to y in Z( (R))   

Since Z(R)+M   Z(R(+)M)   have  

(x,a)-(s1,0)-(s2,0)-…………….(sn,0)-(y,b) from (x,a) to (y,b) 

in Z( (R(+)M)).  

If x = y then use path (x,a)-(-x,0)- ……..-(y,b) 

Thus Z( (R(+)M)) connected. 

(ii)  The proof of (ii) is follows directly from (i) by using  

Reg(R(+)M)=Reg(R)+M.               

Example :  Let R = M = Z2 Z2  then Z(R) is not an ideal of R 

, T( (R)) and T( (R(+)M))  are both connected and 

Z(R(+)M)=Z(R)+M. 

   Next  assume that Z(R) is an ideal of R. 

Theorem : Let R be a commutative ring and Let M be a non 

zero R-module  

(i) gr(Reg( (R(+)M))) = 3 ,4 or    in particular 

gr(Reg( (R(+)M))) ≤ 4 if  Reg( (R(+)M)) contains a 

cycle. 

(ii) diam(Reg( (R(+)M))) = 0,1,2 or   in particular 

diam(Reg( (R(+)M))) ≤ 2 if Reg( (R(+)M)) is 

connected. 

Proof : (i) Suppose that Reg( (R(+)M)) contains a cycle  

  Since Reg( (R(+)M)) is disjoint union of either complete or 

complete bipartite graphs theorem 2.2 [ ] 

It must contain either a 3-cycle or a 4- cycle  

Thus gr(Reg( (R(+)M))) ≤ 4. 

(ii) Suppose that Reg( (R(+)M)) connected  

Then Reg( (R(+)M)) is a singleton, complete graph or a 

complete bipartite graph theorem 2.2 [ ] 

Thus diam(Reg( (R(+)M))) ≤ 2 . 

Hence proof .                                                                                            

Example: (a) Let R =   2  3. Then it is easy to check that 

gr(Z( (R(+)M))) = gr(T( (R(+)M)))=  3 and 

gr(Reg( (R(+)M))) =   

  (b) Let R =   3  4. Then it is easy to check that 

gr(Z( (R(+)M))) = gr(T( (R(+)M))) = 

gr(Reg( (R(+)M))) = 3. 

Theorem : Let R be a commutative ring  

(i)  Nil( (R(+)M)) is complete (induced) subgraph  of 

Z( (R(+)M)) 

(ii) each vertex of  Nil( (R(+)M))  is adjacent to each distinct 

vertex of Z( (R(+)M)) 

(iii)  Nil( (R(+)M)) is disjoint form Reg( (R(+)M)) 

(iv) if  0  Nil(R(+)M)  Z(R(+)M) then gr(Z( (R(+)M))) = 

3. 

Proof : part (i) follows  since Nil(R(+)M)  Z(R(+)M) is an 

ideal of R. 

  Part (ii) and (iii)  follows from Nil(R(+)M) + Z(R(+)M)  

Z(R(+)M) and  

Nil(R(+)M) + Reg(R(+)M)  Reg(R(+)M) for a commutative 

ring respectively. 

(iv)  Let (x,a)  Nil(R(+)M)* and (y,b) Z(R(+)M)  

Nil(R(+)M) 

 Then (0,0)-(x,a)-(y,b)-(0,0) is a path 3-cycle in Z(R(+)M) by 

part (ii) above  

So gr(Z( (R(+)M))) = 3.                                                              

Example 3.20. (a) Let R = M = Z2× Z2. Then Z(R) is not an 

ideal of R, T (Γ (R)) and 

T (Γ (R(+)M)) are both connected, and Z(R(+)M) = 

Z(R)(+)M. However, gr(T (Γ (R))) ≠ 

gr(T (Γ (R(+)M)))since gr(T (Γ (R(+)M)))=3 by Theorem 

3.19(2) and gr(T (Γ (R)))=4. 

(b) It is clear that gr(Z(Γ (R(+)M))) ≤ gr(Z(Γ (R))) and 

gr(Reg(Γ (R(+)M))) ≤ 

gr(Reg(Γ (R))). However, both inequalities may be strict, even 

ifZ(R(+)M)=Z(R)(+)M. For 

example, let R =M =Z3; then gr(Z(Γ (R)))=gr(Reg(Γ (R)))= 

∞, gr(Z(Γ (R(+)M)))=3, 

and gr(Reg(Γ (R(+)M)))=4. 

(c) If |M|   3, then gr(Reg(Γ (R(+)M))) = 3 or 4 by Theorem 

3.19(2). Both values are possible. For example,   

gr(Reg(Γ (Z3(+)Z3)))=4 and gr(Reg(Γ (Z2(+) 4)))=3. 

(d) If 2= |M|<|R|, then gr(Reg(Γ (T (+)M)))=3 or ∞ by 

Theorem 3.19(4). Both values are possible. For example,  

gr(Reg(Γ ((Z2× Z2)(+)Z2))) = ∞ and gr(Reg(Γ 

(Z4(+)Z2)))=3. 

Lemma: Let R(+)M be an idealization of an R-module M 

such that Z(R(+)M) is not an ideal of R(+)M  then char( 

R(+)M) = 2 if and only if  2 Z(R(+)M)= {0} 

Proof: if char( R(+)M) = 2 then clearly 2 Z(R(+)M)= {0} 

Conversely  suppose that 2 Z(R(+)M)= {0}  

i.e.  2(z,a)=0 for all (z,a) Z(R(+)M) 

since Z(R(+)M) is not an ideal of R, there exists (x,b),(y,c) 

Z(R(+)M) such that  

(z,a) = (x,b)+(y,c) Reg(R(+)M) 

Then   2(z,a) = 2(x,b)+2(y,c) 

                     = 0+0    [ since (x,b),(y,c) Z(R(+)M) ] 



International Journal of Computer Applications (0975 – 8887) 

Volume 87 – No.15, February 2014 

34 

                     = 0 

Therefore  2(z,a)=0  for all  (z,a) Reg(R(+)M) 

i.e. char( R(+)M) = 2  .                                                             

Theorem: Let R be a commutative ring such that Z(R(+)M)  

is not an ideal of R . then either gr (Z((R(+)M)) = 3or gr 

(Z((R(+)M)) = . Moreover ,if gr (Z((R(+)M)) = then 

R(+)M   Z2(+)M  Z2(+)M ,so Z((R(+)M) is a K1,2 star 

graph with centre (0,0) . 

Proof: if (x,a)+(y,b)  Z(R(+)M)*for distinct (x,a),(y,b) 

 Z(R(+)M)* then (0,0)-(x,a)-(y,b)-(0,0) is a 3- cycle in  

Z((R(+)M) so gr (Z((R(+)M)) = 3. 

Otherwise (x,a)+(y,b)  Reg(R(+)M)for all distinct (x,a),(y,b) 

 Z(R(+)M)* 

So in this case (x,a)  Z(R(+)M)*is adjacent to (0,0). And no 

distinct (x,a),(y,b)  Z(R(+)M)* are adjacent. 

Thus Z((R(+)M) is a star graph with centre (0,0). 

So gr (Z((R(+)M)) = . 

Let Z(R(+)M) =         where each P  is a prime ideal of  

R(+)M Then    since Z(R(+)M) is not an ideal of  R(+)M. 

Assume gr (Z((R(+)M)) = . Then (x,a)+(y,b)   

Reg(R(+)M)for all distinct (x,a),(y,b)  Z(R(+)M)* and thus 

P= 2. 

Hence the intersection of any two distinct P
1 s is {0} and 

thus  = 2. 

So let Z(R(+)M) = P1  P2 for prime ideals P1 , P2 of R(+)M 

with P1  P2={0}  

And P1= P2=2. Hence  Z(R(+)M)=3. 

And thus R is also finite. so P1 and P2are only prime(maximal) 

ideals of R. 

By the Chinese remainder theorem  have  

R(+)M R(+)M P1 R(+)M  P2  Z2(+)M  Z2(+)M .         

3. CONCLUSION 
In this paper defined Total graph of idealization of 

commutative ring and have discussed some basic results. Also 

investigated some properties diameter, girth of 

Z(( (R(+)M))). This paper just an opening for making another 

bridge between graph theory and ring theory. The study of 

connectedness for the Total graphs and its sub graphs will be 

an interesting part of research. The development of concept of 

total graphs in any direction, will be an exciting field of 

research. 
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