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ABSTRACT 

To improve the efficiency of a processor to work with data, 

cache memories are used to compensate the latency delay to 

access data from the main memory. But because of the 

installation of different caches in different processors in a 

shared memory architecture, makes it very difficult to 

maintain consistency between the cache memories of different 

processors. For that reason, having a cache coherency 

protocol is really essential in those kinds of system. There are 

different coherency protocols for caches to maintain 

consistency between different caches in a shared memory 

system. Few of the famous cache coherency protocols are 

MSI, MESI, MOSI, MOESI, MERSI, etc. In this paper, the 

primary focus were to study the working protocols of MESI 

(Modified-Exclusive-Shared-Invalid) and MOESI (Modified-

Owned-Exclusive-Shared-Invalid) cache coherency protocols 

by designing a simple cache simulator in java, and publish the 

results and research findings. The main purpose of this paper 

is to provide new researchers and computer science students 

the idea regarding how to build and implement a simulator in 

order to understand the novel cache coherency protocols.  
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1. INTRODUCTION 
In modern processor architecture, because of the speed 

difference between the main memory and processor, it might 

take too many cycles for a processor to access the main 

memory. As a result this may cause hindrance in performance. 

So to deal with this problem, faster memories can be installed 

in the system in order to store the data from the main memory 

for frequent use by the processors. These fast memories, 

which are either on chip or off-chip to improve latency and 

performance, are called cache memories [1,2,5,7]. 

Because of high degree of locality in most programs i.e. if a 

processor reads or write a memory address (memory 

location), then there is a high probability that the processor 

might read or write the same location again very soon. 

Another feature is that if a processor read or write a memory 

location then there is a probability to read or write nearby 

locations also. To exploit the second behavior, caches may 

operate by holding a group of neighbouring data known as 

cache lines (also called cache blocks) [1,2,5].   

Now, if a system has many processors and those different 

processors have different cache memories, and the data from 

the main memory is shared with different caches of different 

processors then it might give rise to high inconsistency if 

there is any change in the shared data even in one of the 

caches. But if the processors only read from the same memory 

address then there is no problem of inconsistency.  For 

example if one processor tries to update the shared cache line 

then the copy of that cache line in other processors have to be 

invalidated in order to make sure that other processors do not 

read an out-of-date value of the modified cache line. This 

problem is called cache coherency.  

To address the cache coherency problem, there are many 

protocols to deal with this. In this paper, the authors study the 

two mostly used cache coherency protocols [4, 5] i.e. MESI 

and MOESI protocols. 

It should be always kept in mind that this research paper is 

actually meant for new researchers and computer science 

students, who have started to explore different features of 

computer architecture and designs, and those who lack the 

practicality of the implementation level of cache simulation in 

real practice. This paper is just a guiding stone to the real 

treasure, i.e. this paper only gives you the basic idea of how to 

design and implement a simple cache simulator to implement 

MESI/ MOESI or both protocols. 

In the next section, we will be reviewing the basic working of 

MESI and MOESI protocols. After that we compare the MESI 

and MOESI protocols (in section 3) and review few of the 

recent researches in the field of cache coherency (section 4). 

In section 5 we will see different coherency mechanisms, by 

which coherency protocols are achieved, and then compare 

the two mostly used coherency mechanism i.e. snooping 

based coherency and directory based coherency.  In section 7 

we are going to review the results and outcomes of the cache 

simulation, and then discuss the limitations and conclude the 

project.  

2. THE TWO MOSTLY USED CACHE 

COHERENCY PROTOCOLS: MESI AND 

MOESI 
In this section, the basic working of the two most commonly 

used cache coherency protocols: MESI (Modified-Exclusive-

Shared-Invalid) and MOESI (Modified-Exclusive-Shared-

Invalid) are reviewed. 

2.1 MESI Coherency Protocol 
MESI [3] is one of the mostly used cache coherency protocol, 

which supports both write-back1 and write-through2 cache. 
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It is named after the possible cache line states. To deal with 

cache coherency problem, the cache lines are given a state 

based on certain characteristics and the four possible states in 

MESI are the following: 

Modified: The cache line, which is present in the current 

cache, is dirty and the value has been modified from the value 

in the main memory.  

Exclusive: The current cache line is only present in the 

current cache and no other copies of it are available in other 

caches, and the value is clean, i.e. the value is same as the 

value in the main memory. 

Shared: The cache line is stored in other caches also and the 

value is clean, i.e. the value matches the value in the main 

memory. 

Invalid: Indicates that the value of the cache line is not valid 

and back-dated, so it should not be used. 

The state diagram for MESI is shown in figure 2 [2,3]. 

Operations in MESI Protocol: 
The different states in the MESI protocol can be understood 

from the following example. Let us consider three processors 

P1, P2 and P3. P1 reads from address x from the main 

memory and then stores it in its cache in exclusive state 

(figure 1(a)). After that when P2 reads from the same address 

x and processor P1 detects the address conflict, and P1 

respond to P2 with associated data. So the data from x is 

cached in both the processors P1 and P2 in shared state 

(figure 1(b)).  Now, if processor P2 writes to the shared 

address x then the value of the cache changes to modified and 

it broadcasts a message to P1 to change the cache line state of 

P1 to invalid (figure 1(c)). So to get the updated value of x, P1 

sends a request to P2, which has the updated value, and P2 

shares the modified value with P1, where caches of both the 

processors (P1 & P2) again return to shared state (figure 

1(d)). 

If we consider that there are two pairs of caches then the 

permitted MESI states are shown in Table 1. 

Table 1: MESI Allowed States 

 M E S I 

M     

E     

S     

I     

 

 

Figure1: (a) Exclusive State, (b) Shared State, (c) Modified and Invalid States, (d) Shared State after modification of the value 

[1]  

 

1write-back: write operation is performed on the cache but the write operation in the main memory is postponed until the data on 

the cache line is about to be modified/replaced 
2write-through: write operation is performed synchronously both to the cache and to the main memory 



International Journal of Computer Applications (0975 – 8887) 

Volume 87 – No.11, February 2014 

8 

 

 

Figure 2: State Diagram for MESI Protocol [2,3] 

 

2.2 MOESI Coherency Protocol 
The MOESI coherency protocol has the same states as of 

MESI protocol except the fact that MOESI has one more state 

which is ‘Owned’ state.  

Owned: In this state, the cache line is available/shared in all 

other caches but the current cache only has exclusive right to 

make changes to it. So if any modification is done to the 

cache line then the state of the cache, where it is modified will 

be set to owned before sharing the modified cache line with 

other caches. Another benefit of this is that dirty values can be 

shared with other sharing caches without even updating the 

value in the main memory.  

But the exception for MOESI protocol is that direct cache to 

cache transfer should be possible in the system. 

 

The state diagram for MOESI is shown in figure 4 (source 

from North Carolina State University Wiki page). 

 

Operations in MOESI Protocol: 
Let us consider the same example of MESI protocol. All the 

states are same except in the part when the cache line is 

modified. So if processor P2 writes to the value shared with 

P1, then first the state of its own cache line will change to 

modified and then it will broadcast P1 to invalidate its cache 

line (figure 3(c)). After that P2 will share its dirty cache line 

value directly with P1 instead of writing it first to the main 

memory. While sharing the dirty value with P1, P2 will 

change its state to owned and then the state of the cache line 

of P1 will change to shared (figure 3(d)). 

 

If we consider that there are two pairs of caches then the 

permitted MOESI states are shown in Table 2. 

Table 2: MOESI Allowed States 

 M O E S I 

M 
     

O 
     

E 
     

S 
     

I 
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Figure3: (a) Exlcusive State, (b) Shared State, (c) Modified and Invalid States, (d) Owned and Shared State after modification 

and sharing of the value [1] 

 

 

Figure 4: State Diagram for MOESI Protocol 

Source: http://wiki.expertiza.ncsu.edu  
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3. COMPARISON BETWEEN MESI 

AND MOESI PROTOCOLS 
The main comparison between MESI and MOESI is the fifth 

state in MOESI, which is the Owned state. Because of the 

owned state, now cache lines can be shared with other caches 

after any modification being performed on them without even 

updating the value in the address in the main memory at that 

moment. For some programs such as for example a program 

in multiprocessor to find the sum array of numbers, if MOESI 

protocol is used then the cache will perform better because 

every time after updation of the transition value in each cell of 

the array, the cache do not need to access the main memory. 

4. RECENT RESEARCH AND 

ADVANCEMENT IN CACHE 

COHERENCY PROTOCOLS  
In this section we are going to review different cache 

coherency protocols, that are used apart from MESI and 

MOESI protocols, and the recent development or research in 

the field of cache coherency. 

Although, MESI and MOESI are widely used cache 

coherency protocols but there are also other coherency 

protocols that are used in different computer architecture to 

achieve different level of performance. 

In the year, 2002, Nicoletta et al. (the concept was proposed in 

1999) [6] published a modified version of MESI protocol 

along with a new RISC architecture,  and named it MERSI 

cache coherency protocol, which was mostly used in 

PowerPC G4 computers by Apple Inc. In this protocol, the 

state ‘R’ was introduced, which stands for Read only or 

Recent state, other than that all the other states are similar to 

MESI protocol. The main key point of R state in the system is 

that it is similar to the E state i.e. Exclusive state, but the only 

constraint is that this copy of data is the only clean and valid 

in the computer system. And the processor, which wants to 

modify the cache line, first has to claim ownership of the 

cache line in R state, and then it can change the state of that 

cache line to M state. 

Again, in the year 2007, David Kanter [8] published about the 

cache coherency protocol that Intel has built for its ccNUMA 

(cache coherent non uniform memory architecture). This 

coherency protocol was named as MESIF protocol. All the 

states such as M, E, S, I are same as MESI protocol but the F 

state i.e. the Forward state, is a specialized form of Shared or 

S state, and this enables the cache with F state to respond to 

any request for the given cache line. Since, MESI protocol, 

which is used in ccNUMA, would send a lot of redundant 

messages among different nodes, often with high latency, and 

that results in wasting a bit of bandwidth. For example when a 

processor request for a cache line, which is stored in multiple 

locations, then every location might respond with the data, 

and that may lead to waste of bandwidth. To solve this issue, 

Intel modified the MESI protocol with a new F state, which 

actually defines that the cache with that state can forward the 

cache line when it is requested for, instead of other locations 

to respond back with the same cache line when the request 

comes in. 

Again, as technology advances, the processors are becoming 

powerful yet smaller in size, and with the usher of the mobile 

technology, we can see the production of powerful processors 

for mobile systems such as mobile phones. In the mobile 

smartphone market, the most prevalent architecture is the 

Shared-memory Multi-core System-on-chip (MC SoC) 

because they provide low communication latency, simplified 

programming model and decentralized topology, which is 

well suited for heterogeneous processing cores. In MCSoC, 

the most common cache coherency protocol used is the MESI 

protocol. But since the MESI protocol is most commonly used 

in MCSoC system, that may give rise to bandwidth loss over 

snoopy bus, and for that reason, Bournoutian [9] of the 

University of California, San Diego, proposed in 2011, a 

powerful optimized mixture of write-back and write-through 

MESI protocol with an extra hardware modification in order 

to increase performance and power efficiency of the mobile 

processors. In the proposal, write-back is used when there are 

numerous updates on the cache line and that gives more 

performance, whereas write-through is used in order to 

achieve power optimization. Another addition to this proposal 

is that it introduced small number of bits annotated to each 

cache line in order to keep track of recent state change, 

specially by introducing small shift register on each cache 

line. Whenever there is a change in the state the shift register 

stores bit by performing shift operators. 

5. CACHE COHERENCY 

MECHANISMS 
Cache coherency mechanism [5] is the way in which cache 

coherency protocols are implemented in the multiprocessor 

system and the consistency of memory is managed. There are 

3 different ways of implementing cache coherency protocols 

and they are the following: 

Directory Based Coherency: In this method, the data being 

shared are kept in a common directory, which maintains the 

coherency between caches by filtering different request for 

data from different processors. If any changes are made to an 

entry then the directory either updates it or invalidate it in all 

other caches with that entry. 

Snooping Based Coherency: In this method, each cache 

monitors the address lines so that to gain access to main 

memory which they have cached. Any activity on cache line 

will trigger message, which will be broadcasted to all the 

caches to update the cache line with the activity. 

Snarfing: In this method, caches monitor both the address 

and the data in order to update its cache line from the main 

memory when another cache tries to update that cache line. 

The two most commonly used coherency mechanisms are 

directory based and snooping based coherency. both have 

their own pros and cons and it depends on the system itself. 

For our project the author used snooping based coherency 

mechanism. 

6. COMPARISON BETWEEN 

SNOOPING BASED COHERENCY AND 

DIRECTORY BASED COHERENCY 
The basic difference can be said that in snooping each cache 

broadcast about its activity on the cache line to all other 

caches of other processors. Whereas, in directory based 

coherency, directories are maintained in order to monitor the 

activities on the cache lines. In a system where there is high 

bandwidth, snooping performs better because it requires to 

broadcast the activities. But snooping will perform worse than 

directory based in big systems because bus size will increase. 

That also means that snooping is non scalable whereas 

directory performs faster in big systems due to its scalable 

characteristic. 
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7. RESULTS OF THE CACHE 

SIMULATION 

7.1 Implementation Details  
A simulator for a write-back cache, which implements both 

MESI and MOESI protocols is written in java. The cache has 

a two level cache hierarchy-a private L1 cache for which the 

cache size is configurable and a shared main memory cache 

for which the cache size is assumed to be infinite for 

simplicity. The cache line in both the L1 cache is assumed to 

be 64 bytes in size. The application simulates only data caches 

and does not take into account instruction caches, set-

associativity or latencies.  

An LRU replacement strategy is used to flush a cache line. 

The cache supports cache-to-cache sharing of data. In MESI 

protocol, when a processor P1 requests for a cache line shared 

by cache of another processor P2, if P1 is in modified state, it 

writes back the modified value to the main memory and also 

send to the processor P2 and in MOESI protocol, in a similar 

situation, P1 updates it state from MODIFIED to OWNED 

and sends the cache line to P2 without updating the main 

memory. The main memory is updated only when the cache 

line is flushed from the cache of P1. 

The cache simulator application simulates a chip 

multiprocessor environment and takes the number of cores as 

an input from command line. When the application is started, 

the program creates a number of threads which act as cores 

and each core starts sending out random read and write 

requests for memory addresses in the range 1000-10000 to its 

cache. A snoopy bus is also implemented which handles the 

coherency and consistency of the data in the caches. All 

communication between the caches is synchronized so as to 

maintain validity of the data being shared.   

The data used in the implementation is of data type long 

which means each cache line can hold 8 values (64 bytes/8 

bytes per long value). The core sends out write request to 

write random long values to the cache and also when a core 

reads for the first time from an address, a random value is 

generated, which is updated in the main memory and then 

loaded to the private cache of the core. 

The whole program is provided in the appendix section in 

order to completely understand the basic implementation level 

of the simulator. 

 

7.2 Performance Analysis 
The application, was tested for 15 minutes for 8 cores, which 

sends random read or write requests every 10 milliseconds for 

both MESI and MOESI protocols for cache size of 64 

kilobytes (1000 cache lines) and the following results were 

obtained, which is shown in Table 3. 

 

Table 3: Performance of the Simulator 

 Total 

Requests 

Read 

Hits 

Write 

Hits 

Read 

Miss 

Write 

Miss 

Main 

Memory 

Access 

MESI 720050 555939 61175 55650 47286 74849 

MOESI 720040 534634 13475 77395 94536 124315 

 

Contrary to what is expected, the number of memory accesses 

is greater in MOESI protocol as compared to that in MESI 

protocol. This can be attributed to the fact that there is a 

chance that many more cache lines can move to invalid state 

when a number of cores are accessing the same data. Even if a 

cache line is in Owned state, it may move to invalid state due 

to a write in another shared cache. Theoretically the number 

of memory accesses is higher in the case of MESI protocol as 

compared to MOESI protocol when spatial and temporal 

locality is considered. But when multiple processors are 

updating same data, there is more read misses in MOESI 

protocol as the modified bits are not stored into the lower 

level cache or main memory when another processor requests 

the data.  

Both the protocols were tested in 2 processors, 4 processors 

and 8 processors for the same configuration as the first 

experiment for 2 minutes and the following results were 

obtained, which is shown in Table 4. 

Table 4: Test Results 

 Total 

Requests 

Read 

Hits 

Write 

Hits 

Read 

Miss 

Write 

Miss 

Main 

Memory 

Access 

 

2 

cores 

MESI 240127 194904 29136 9172 6915 11499 

MOESI 240138 188237 22549 15779 13573 26130 

 

4 

cores 

MESI 480330 377119 45020 31379 26812 46497 

MOESI 480823 358727 18244 49659 54193 84429 

 

8 

core 

MESI 960460 742840 80468 73050 64102 102158 

MOESI 960214 715670 17888 100693 125963 165984 

 

From these results it can be noticed that the MOESI protocol 

is slower than MESI protocol as it handles lesser number of 

requests in the same time as compared to MESI protocol, 

which is caused by the fact that MOESI takes more cycles to 

complete a read or write transaction. Also, in MOESI 

protocol, it can be observed that the ratio of write hits 

decreases and more and more write misses occur as the 

number of cores increase which is due to more invalidations 

as explained before.  

The invalidation of cache lines in both the protocols form a 

major part of the bus traffic and may increase very much as 

the number of cores increase thus slowing down the system. 

More advanced protocols can be implemented with 

invalidation queues to avoid the entire system getting stalled 

due to the invalidate signals. 

8. LIMITATIONS 
In this paper, the authors only focused on the working of 

MESI and MOESI cache coherency protocols over a snoopy 

bus, and the correctness of the states and transitions related to 

those protocols. The authors did not focus on the latencies or 

set associativity or replacements. Hence, all the results and 

discussions are focused on novel cache coherency protocols 

only. Another limitation is that the authors only studied the 

cache coherency protocols on private caches of each core, so 

there is only level 1 cache for each core. One more thing that 

should be kept in mind that this paper does not deal with a full 

featured cache simulator and the main motivation of this 

paper is to provide new researchers and students of computer 

science, the basic idea to design and implement cache 

simulator in real systems. 

9. CONCLUSION 
Hence, in this paper we review both the advantages and 

disadvantages of MESI and MOESI protocols, and how they 

are used in different architectures in order to achieve cache 

coherency. The cache coherence protocol is one of the major 
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factors influencing the performance of multi-core computer 

systems. The coherence protocol must be selected based on 

the chip architecture and the performance that the system 

wants to achieve. MOESI protocol is an extension for MESI 

protocol, which minimizes access to lower level cache or 

main memory by introducing an ownership state. The results 

provided in this paper, prove that MOESI will have significant 

advantage over MESI when remote memory accesses are 

much costlier than L1 memory access. However, it takes more 

cycles to complete transactions and is not advantageous when 

considering sharing of clean cache lines. The program code to 

build the simulator is provided in the appendix section. For 

further tinkering with the simulator, it can be referred from 

the appendix section. 
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APPENDIX 

Code for the Program of Cache Simulator in Java is available 

from the following link: 

https://www.escholar.manchester.ac.uk 

Manchester eScholar ID: uk-ac-man-scw:218836 
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