
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

6

Design and Implementation of a Simple Cache Simulator

in Java to Investigate MESI and MOESI Coherency

Protocols

Somdip Dey
School of Computer Science
The University of Manchester
Manchester, United Kingdom

Mamatha S. Nair
School of Computer Science
The University of Manchester
Manchester, United Kingdom

ABSTRACT

To improve the efficiency of a processor to work with data,

cache memories are used to compensate the latency delay to

access data from the main memory. But because of the

installation of different caches in different processors in a

shared memory architecture, makes it very difficult to

maintain consistency between the cache memories of different

processors. For that reason, having a cache coherency

protocol is really essential in those kinds of system. There are

different coherency protocols for caches to maintain

consistency between different caches in a shared memory

system. Few of the famous cache coherency protocols are

MSI, MESI, MOSI, MOESI, MERSI, etc. In this paper, the

primary focus were to study the working protocols of MESI

(Modified-Exclusive-Shared-Invalid) and MOESI (Modified-

Owned-Exclusive-Shared-Invalid) cache coherency protocols

by designing a simple cache simulator in java, and publish the

results and research findings. The main purpose of this paper

is to provide new researchers and computer science students

the idea regarding how to build and implement a simulator in

order to understand the novel cache coherency protocols.

General Terms

Computer Simulation, Algorithms, Hardware, Applied

Computing

Keywords

Computer Architecture, Cache Simulator, MESI, MOESI,

Cache Coherency Protocol, java

1. INTRODUCTION
In modern processor architecture, because of the speed

difference between the main memory and processor, it might

take too many cycles for a processor to access the main

memory. As a result this may cause hindrance in performance.

So to deal with this problem, faster memories can be installed

in the system in order to store the data from the main memory

for frequent use by the processors. These fast memories,

which are either on chip or off-chip to improve latency and

performance, are called cache memories [1,2,5,7].

Because of high degree of locality in most programs i.e. if a

processor reads or write a memory address (memory

location), then there is a high probability that the processor

might read or write the same location again very soon.

Another feature is that if a processor read or write a memory

location then there is a probability to read or write nearby

locations also. To exploit the second behavior, caches may

operate by holding a group of neighbouring data known as

cache lines (also called cache blocks) [1,2,5].

Now, if a system has many processors and those different

processors have different cache memories, and the data from

the main memory is shared with different caches of different

processors then it might give rise to high inconsistency if

there is any change in the shared data even in one of the

caches. But if the processors only read from the same memory

address then there is no problem of inconsistency. For

example if one processor tries to update the shared cache line

then the copy of that cache line in other processors have to be

invalidated in order to make sure that other processors do not

read an out-of-date value of the modified cache line. This

problem is called cache coherency.

To address the cache coherency problem, there are many

protocols to deal with this. In this paper, the authors study the

two mostly used cache coherency protocols [4, 5] i.e. MESI

and MOESI protocols.

It should be always kept in mind that this research paper is

actually meant for new researchers and computer science

students, who have started to explore different features of

computer architecture and designs, and those who lack the

practicality of the implementation level of cache simulation in

real practice. This paper is just a guiding stone to the real

treasure, i.e. this paper only gives you the basic idea of how to

design and implement a simple cache simulator to implement

MESI/ MOESI or both protocols.

In the next section, we will be reviewing the basic working of

MESI and MOESI protocols. After that we compare the MESI

and MOESI protocols (in section 3) and review few of the

recent researches in the field of cache coherency (section 4).

In section 5 we will see different coherency mechanisms, by

which coherency protocols are achieved, and then compare

the two mostly used coherency mechanism i.e. snooping

based coherency and directory based coherency. In section 7

we are going to review the results and outcomes of the cache

simulation, and then discuss the limitations and conclude the

project.

2. THE TWO MOSTLY USED CACHE

COHERENCY PROTOCOLS: MESI AND

MOESI
In this section, the basic working of the two most commonly

used cache coherency protocols: MESI (Modified-Exclusive-

Shared-Invalid) and MOESI (Modified-Exclusive-Shared-

Invalid) are reviewed.

2.1 MESI Coherency Protocol
MESI [3] is one of the mostly used cache coherency protocol,

which supports both write-back1 and write-through2 cache.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

7

It is named after the possible cache line states. To deal with

cache coherency problem, the cache lines are given a state

based on certain characteristics and the four possible states in

MESI are the following:

Modified: The cache line, which is present in the current

cache, is dirty and the value has been modified from the value

in the main memory.

Exclusive: The current cache line is only present in the

current cache and no other copies of it are available in other

caches, and the value is clean, i.e. the value is same as the

value in the main memory.

Shared: The cache line is stored in other caches also and the

value is clean, i.e. the value matches the value in the main

memory.

Invalid: Indicates that the value of the cache line is not valid

and back-dated, so it should not be used.

The state diagram for MESI is shown in figure 2 [2,3].

Operations in MESI Protocol:
The different states in the MESI protocol can be understood

from the following example. Let us consider three processors

P1, P2 and P3. P1 reads from address x from the main

memory and then stores it in its cache in exclusive state

(figure 1(a)). After that when P2 reads from the same address

x and processor P1 detects the address conflict, and P1

respond to P2 with associated data. So the data from x is

cached in both the processors P1 and P2 in shared state

(figure 1(b)). Now, if processor P2 writes to the shared

address x then the value of the cache changes to modified and

it broadcasts a message to P1 to change the cache line state of

P1 to invalid (figure 1(c)). So to get the updated value of x, P1

sends a request to P2, which has the updated value, and P2

shares the modified value with P1, where caches of both the

processors (P1 & P2) again return to shared state (figure

1(d)).

If we consider that there are two pairs of caches then the

permitted MESI states are shown in Table 1.

Table 1: MESI Allowed States

 M E S I

M

E

S

I

Figure1: (a) Exclusive State, (b) Shared State, (c) Modified and Invalid States, (d) Shared State after modification of the value

[1]

1write-back: write operation is performed on the cache but the write operation in the main memory is postponed until the data on

the cache line is about to be modified/replaced
2write-through: write operation is performed synchronously both to the cache and to the main memory

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

8

Figure 2: State Diagram for MESI Protocol [2,3]

2.2 MOESI Coherency Protocol
The MOESI coherency protocol has the same states as of

MESI protocol except the fact that MOESI has one more state

which is ‘Owned’ state.

Owned: In this state, the cache line is available/shared in all

other caches but the current cache only has exclusive right to

make changes to it. So if any modification is done to the

cache line then the state of the cache, where it is modified will

be set to owned before sharing the modified cache line with

other caches. Another benefit of this is that dirty values can be

shared with other sharing caches without even updating the

value in the main memory.

But the exception for MOESI protocol is that direct cache to

cache transfer should be possible in the system.

The state diagram for MOESI is shown in figure 4 (source

from North Carolina State University Wiki page).

Operations in MOESI Protocol:
Let us consider the same example of MESI protocol. All the

states are same except in the part when the cache line is

modified. So if processor P2 writes to the value shared with

P1, then first the state of its own cache line will change to

modified and then it will broadcast P1 to invalidate its cache

line (figure 3(c)). After that P2 will share its dirty cache line

value directly with P1 instead of writing it first to the main

memory. While sharing the dirty value with P1, P2 will

change its state to owned and then the state of the cache line

of P1 will change to shared (figure 3(d)).

If we consider that there are two pairs of caches then the

permitted MOESI states are shown in Table 2.

Table 2: MOESI Allowed States

 M O E S I

M

O

E

S

I

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

9

Figure3: (a) Exlcusive State, (b) Shared State, (c) Modified and Invalid States, (d) Owned and Shared State after modification

and sharing of the value [1]

Figure 4: State Diagram for MOESI Protocol

Source: http://wiki.expertiza.ncsu.edu

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

10

3. COMPARISON BETWEEN MESI

AND MOESI PROTOCOLS
The main comparison between MESI and MOESI is the fifth

state in MOESI, which is the Owned state. Because of the

owned state, now cache lines can be shared with other caches

after any modification being performed on them without even

updating the value in the address in the main memory at that

moment. For some programs such as for example a program

in multiprocessor to find the sum array of numbers, if MOESI

protocol is used then the cache will perform better because

every time after updation of the transition value in each cell of

the array, the cache do not need to access the main memory.

4. RECENT RESEARCH AND

ADVANCEMENT IN CACHE

COHERENCY PROTOCOLS
In this section we are going to review different cache

coherency protocols, that are used apart from MESI and

MOESI protocols, and the recent development or research in

the field of cache coherency.

Although, MESI and MOESI are widely used cache

coherency protocols but there are also other coherency

protocols that are used in different computer architecture to

achieve different level of performance.

In the year, 2002, Nicoletta et al. (the concept was proposed in

1999) [6] published a modified version of MESI protocol

along with a new RISC architecture, and named it MERSI

cache coherency protocol, which was mostly used in

PowerPC G4 computers by Apple Inc. In this protocol, the

state ‘R’ was introduced, which stands for Read only or

Recent state, other than that all the other states are similar to

MESI protocol. The main key point of R state in the system is

that it is similar to the E state i.e. Exclusive state, but the only

constraint is that this copy of data is the only clean and valid

in the computer system. And the processor, which wants to

modify the cache line, first has to claim ownership of the

cache line in R state, and then it can change the state of that

cache line to M state.

Again, in the year 2007, David Kanter [8] published about the

cache coherency protocol that Intel has built for its ccNUMA

(cache coherent non uniform memory architecture). This

coherency protocol was named as MESIF protocol. All the

states such as M, E, S, I are same as MESI protocol but the F

state i.e. the Forward state, is a specialized form of Shared or

S state, and this enables the cache with F state to respond to

any request for the given cache line. Since, MESI protocol,

which is used in ccNUMA, would send a lot of redundant

messages among different nodes, often with high latency, and

that results in wasting a bit of bandwidth. For example when a

processor request for a cache line, which is stored in multiple

locations, then every location might respond with the data,

and that may lead to waste of bandwidth. To solve this issue,

Intel modified the MESI protocol with a new F state, which

actually defines that the cache with that state can forward the

cache line when it is requested for, instead of other locations

to respond back with the same cache line when the request

comes in.

Again, as technology advances, the processors are becoming

powerful yet smaller in size, and with the usher of the mobile

technology, we can see the production of powerful processors

for mobile systems such as mobile phones. In the mobile

smartphone market, the most prevalent architecture is the

Shared-memory Multi-core System-on-chip (MC SoC)

because they provide low communication latency, simplified

programming model and decentralized topology, which is

well suited for heterogeneous processing cores. In MCSoC,

the most common cache coherency protocol used is the MESI

protocol. But since the MESI protocol is most commonly used

in MCSoC system, that may give rise to bandwidth loss over

snoopy bus, and for that reason, Bournoutian [9] of the

University of California, San Diego, proposed in 2011, a

powerful optimized mixture of write-back and write-through

MESI protocol with an extra hardware modification in order

to increase performance and power efficiency of the mobile

processors. In the proposal, write-back is used when there are

numerous updates on the cache line and that gives more

performance, whereas write-through is used in order to

achieve power optimization. Another addition to this proposal

is that it introduced small number of bits annotated to each

cache line in order to keep track of recent state change,

specially by introducing small shift register on each cache

line. Whenever there is a change in the state the shift register

stores bit by performing shift operators.

5. CACHE COHERENCY

MECHANISMS
Cache coherency mechanism [5] is the way in which cache

coherency protocols are implemented in the multiprocessor

system and the consistency of memory is managed. There are

3 different ways of implementing cache coherency protocols

and they are the following:

Directory Based Coherency: In this method, the data being

shared are kept in a common directory, which maintains the

coherency between caches by filtering different request for

data from different processors. If any changes are made to an

entry then the directory either updates it or invalidate it in all

other caches with that entry.

Snooping Based Coherency: In this method, each cache

monitors the address lines so that to gain access to main

memory which they have cached. Any activity on cache line

will trigger message, which will be broadcasted to all the

caches to update the cache line with the activity.

Snarfing: In this method, caches monitor both the address

and the data in order to update its cache line from the main

memory when another cache tries to update that cache line.

The two most commonly used coherency mechanisms are

directory based and snooping based coherency. both have

their own pros and cons and it depends on the system itself.

For our project the author used snooping based coherency

mechanism.

6. COMPARISON BETWEEN

SNOOPING BASED COHERENCY AND

DIRECTORY BASED COHERENCY
The basic difference can be said that in snooping each cache

broadcast about its activity on the cache line to all other

caches of other processors. Whereas, in directory based

coherency, directories are maintained in order to monitor the

activities on the cache lines. In a system where there is high

bandwidth, snooping performs better because it requires to

broadcast the activities. But snooping will perform worse than

directory based in big systems because bus size will increase.

That also means that snooping is non scalable whereas

directory performs faster in big systems due to its scalable

characteristic.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

11

7. RESULTS OF THE CACHE

SIMULATION

7.1 Implementation Details
A simulator for a write-back cache, which implements both

MESI and MOESI protocols is written in java. The cache has

a two level cache hierarchy-a private L1 cache for which the

cache size is configurable and a shared main memory cache

for which the cache size is assumed to be infinite for

simplicity. The cache line in both the L1 cache is assumed to

be 64 bytes in size. The application simulates only data caches

and does not take into account instruction caches, set-

associativity or latencies.

An LRU replacement strategy is used to flush a cache line.

The cache supports cache-to-cache sharing of data. In MESI

protocol, when a processor P1 requests for a cache line shared

by cache of another processor P2, if P1 is in modified state, it

writes back the modified value to the main memory and also

send to the processor P2 and in MOESI protocol, in a similar

situation, P1 updates it state from MODIFIED to OWNED

and sends the cache line to P2 without updating the main

memory. The main memory is updated only when the cache

line is flushed from the cache of P1.

The cache simulator application simulates a chip

multiprocessor environment and takes the number of cores as

an input from command line. When the application is started,

the program creates a number of threads which act as cores

and each core starts sending out random read and write

requests for memory addresses in the range 1000-10000 to its

cache. A snoopy bus is also implemented which handles the

coherency and consistency of the data in the caches. All

communication between the caches is synchronized so as to

maintain validity of the data being shared.

The data used in the implementation is of data type long

which means each cache line can hold 8 values (64 bytes/8

bytes per long value). The core sends out write request to

write random long values to the cache and also when a core

reads for the first time from an address, a random value is

generated, which is updated in the main memory and then

loaded to the private cache of the core.

The whole program is provided in the appendix section in

order to completely understand the basic implementation level

of the simulator.

7.2 Performance Analysis
The application, was tested for 15 minutes for 8 cores, which

sends random read or write requests every 10 milliseconds for

both MESI and MOESI protocols for cache size of 64

kilobytes (1000 cache lines) and the following results were

obtained, which is shown in Table 3.

Table 3: Performance of the Simulator

 Total

Requests

Read

Hits

Write

Hits

Read

Miss

Write

Miss

Main

Memory

Access

MESI 720050 555939 61175 55650 47286 74849

MOESI 720040 534634 13475 77395 94536 124315

Contrary to what is expected, the number of memory accesses

is greater in MOESI protocol as compared to that in MESI

protocol. This can be attributed to the fact that there is a

chance that many more cache lines can move to invalid state

when a number of cores are accessing the same data. Even if a

cache line is in Owned state, it may move to invalid state due

to a write in another shared cache. Theoretically the number

of memory accesses is higher in the case of MESI protocol as

compared to MOESI protocol when spatial and temporal

locality is considered. But when multiple processors are

updating same data, there is more read misses in MOESI

protocol as the modified bits are not stored into the lower

level cache or main memory when another processor requests

the data.

Both the protocols were tested in 2 processors, 4 processors

and 8 processors for the same configuration as the first

experiment for 2 minutes and the following results were

obtained, which is shown in Table 4.

Table 4: Test Results

 Total

Requests

Read

Hits

Write

Hits

Read

Miss

Write

Miss

Main

Memory

Access

2

cores

MESI 240127 194904 29136 9172 6915 11499

MOESI 240138 188237 22549 15779 13573 26130

4

cores

MESI 480330 377119 45020 31379 26812 46497

MOESI 480823 358727 18244 49659 54193 84429

8

core

MESI 960460 742840 80468 73050 64102 102158

MOESI 960214 715670 17888 100693 125963 165984

From these results it can be noticed that the MOESI protocol

is slower than MESI protocol as it handles lesser number of

requests in the same time as compared to MESI protocol,

which is caused by the fact that MOESI takes more cycles to

complete a read or write transaction. Also, in MOESI

protocol, it can be observed that the ratio of write hits

decreases and more and more write misses occur as the

number of cores increase which is due to more invalidations

as explained before.

The invalidation of cache lines in both the protocols form a

major part of the bus traffic and may increase very much as

the number of cores increase thus slowing down the system.

More advanced protocols can be implemented with

invalidation queues to avoid the entire system getting stalled

due to the invalidate signals.

8. LIMITATIONS
In this paper, the authors only focused on the working of

MESI and MOESI cache coherency protocols over a snoopy

bus, and the correctness of the states and transitions related to

those protocols. The authors did not focus on the latencies or

set associativity or replacements. Hence, all the results and

discussions are focused on novel cache coherency protocols

only. Another limitation is that the authors only studied the

cache coherency protocols on private caches of each core, so

there is only level 1 cache for each core. One more thing that

should be kept in mind that this paper does not deal with a full

featured cache simulator and the main motivation of this

paper is to provide new researchers and students of computer

science, the basic idea to design and implement cache

simulator in real systems.

9. CONCLUSION
Hence, in this paper we review both the advantages and

disadvantages of MESI and MOESI protocols, and how they

are used in different architectures in order to achieve cache

coherency. The cache coherence protocol is one of the major

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

12

factors influencing the performance of multi-core computer

systems. The coherence protocol must be selected based on

the chip architecture and the performance that the system

wants to achieve. MOESI protocol is an extension for MESI

protocol, which minimizes access to lower level cache or

main memory by introducing an ownership state. The results

provided in this paper, prove that MOESI will have significant

advantage over MESI when remote memory accesses are

much costlier than L1 memory access. However, it takes more

cycles to complete transactions and is not advantageous when

considering sharing of clean cache lines. The program code to

build the simulator is provided in the appendix section. For

further tinkering with the simulator, it can be referred from

the appendix section.

10. ACKNOWLEDGMENTS
SD and MSN would like to thank the teaching and research

staffs, especially Professor Norman Paton and Professor Uli

Sattler of the School of Computer Science, The University of

Manchester for their enthusiastic support. This mini research

project was supported by the funds available at the School of

Computer Science of The University of Manchester.

11. REFERENCES
[1] Herlihy, M., Shavit, N., “The Art of Multiprocessor

Programming”, Elsevier.

[2] Hwang, K., Xu, Z., “Scalable Parallel Computing:

Technology, Architecture, Programming”. McGraw-Hill,

New York, NY, 1998. ISBN 0-07-031798-4.

[3] Papamarcos, M. S., Patel, J. H., “A low-overhead

coherence solution for multiprocessors with private

cache memories”. Proceedings of the 11th annual

international symposium on Computer architecture -

ISCA '84 (1984). p. 348.

[4] Neupane, M., “Cache Coherence”, California State

University San Bernardino, 2004, Online. [Available at

http://cse.csusb.edu/schubert/tutorials/csci610/w04/MN_

Cache_Coherence.pdf] [Accessed on 07/12/2013]

[5] Patterson, D., Hennessy, J., “Computer Organization and

Design (4th ed.)”. Morgan Kaufmann, 2009.

[6] Nicoletta, C., Alvarez, J., Barkin, E., Chai-Chin Chao,

Johnson, B. R., Lassandro, F. M., Patel, P., Reid, D.,

Sanchez, H., Seigel, J., Snyder, M., Sullivan, S., Taylor,

S. A., Minh Vo., (November 1999). “A 450-MHz RISC

microprocessor with enhanced instruction set and copper

interconnect”. IEEE Journal of Solid-State Circuits 34

(11): pp. 1478–1491.

[7] Hennessey J. L., Patterson, D. A., “Computer

Architecture: A Quantitative Approach”.

[8] Kanter D., “The Common System Interface: Intel’s

Future Interconnect”. Real World Tech: 5, Online.

[Accessed on 07/12/2013]

[9] Bournoutian, G., Orailoglu, A., “Dynamic, multi-core

cache coherence architecture for power-sensitive mobile

processors”, Proceedings of the 9th International

Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 2011, pp. 89-97.

[10] Dey, S., Nath, J., Nath, A., "An Integrated Symmetric

Key Cryptographic Method – Amalgamation of TTJSA

Algorithm, Advanced Caesar Cipher Algorithm, Bit

Rotation and Reversal Method: SJA Algorithm",

IJMECS, vol.4, no.5, pp.1-9, 2012.

[11] Dey, S., “SD-REE: A Cryptographic Method To Exclude

Repetition From a Message”, Proceedings of The

International Conference on Informatics & Applications

(ICIA 2012), Malaysia, pp. 182 – 189.

[12] Dey, S., “SD-AREE: A New Modified Caesar Cipher

Cryptographic Method Along with Bit- Manipulation to

Exclude Repetition from a Message to be Encrypted”,

Journal: Computing Research Repository - CoRR, vol.

abs/1205.4279, 2012.

[13] Dey, S., “An Image Encryption Method: SD-Advanced

Image Encryption Standard: SD-AIES”, International

Journal of Cyber-Security and Digital Forensics

(IJCSDF) 1(2), pp. 82-88.

[14] Dey, S., Nath, J., Nath, A., “An Advanced Combined

Symmetric Key Cryptographic Method using Bit

Manipulation, Bit Reversal, Modified Caesar Cipher

(SD-REE), DJSA method, TTJSA method: SJA-I

Algorithm”. International Journal of Computer

Applications46(20): 46-53, May 2012. Published by

Foundation of Computer Science, New York, USA.

[15] Dey, S., ”SD-EQR: A New Technique To Use QR

CodesTM in Cryptography”, Proceedings of “1st

International Conference on Emerging Trends in

Computer and Information Technology (ICETCIT

2012)”, Coimbatore, India, pp. 11-21.

[16] Dey, S., “SD-EI: A Cryptographic Technique To Encrypt

Images”, Proceedings of “The International Conference

on Cyber Security, CyberWarfare and Digital Forensic

(CyberSec 2012)”, held at Kuala Lumpur, Malaysia,

2012, pp. 28-32.

[17] Dey, S., “SD-AEI: An advanced encryption technique for

images”, 2012 IEEE Second International Conference on

Digital Information Processing and Communications

(ICDIPC), pp. 69-74.

[18] Dey, S., “Amalgamation of Cyclic Bit Operation in SD-

EI Image Encryption Method: An Advanced Version of

SD-EI Method: SD-EI Ver-2”, International Journal of

Cyber-Security and Digital Forensics (IJCSDF) 1(3), pp.

238-242.

[19] Dey, S., Mondal, K., Nath, J., Nath, A., "Advanced

Steganography Algorithm Using Randomized

Intermediate QR Host Embedded With Any Encrypted

Secret Message: ASA_QR Algorithm", IJMECS, vol.4,

no.6, pp. 59-67, 2012.

[20] Dey, S., Nath, A., “Modern Encryption Standard (MES)

Version-I: An Advanced Cryptographic Method”,

Proceedings of IEEE 2nd World Congress on Information

and Communication Technologies (WICT- 2012), pp.

242-247.

[21] Magnusson, P. S., Christensson, M., Eskilson, J.,

Forsgren, D., Hallberg. G., “Simics: A full system

simulation platform”. IEEE Computer, 35(2):50-58, Feb.

2002.

[22] Nurvitadhi, E., Chalainanont, N., Lu, S. L.,

“Characterization of L3 Cache Behavior of

SPECjAppServer2002 and TPC-C.” In Proceedings of

the 19th International Conference on Supercomputing

(ICS), Boston, Massachusetts, 2005.

http://www.csl.cornell.edu/courses/ece5720/papamarcos.isca84.pdf
http://www.csl.cornell.edu/courses/ece5720/papamarcos.isca84.pdf
http://www.csl.cornell.edu/courses/ece5720/papamarcos.isca84.pdf
http://cse.csusb.edu/schubert/tutorials/csci610/w04/MN_Cache_Coherence.pdf
http://en.wikipedia.org/wiki/David_Patterson_(scientist)
http://en.wikipedia.org/wiki/John_L._Hennessy
http://en.wikipedia.org/wiki/Morgan_Kaufmann
http://www.realworldtech.com/common-system-interface/5/
http://www.realworldtech.com/common-system-interface/5/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bournoutian,%20G..QT.&searchWithin=p_Author_Ids:38015022800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Orailoglu,%20A..QT.&searchWithin=p_Author_Ids:37278223400&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6045374
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6045374
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6045374
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6045374

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.11, February 2014

13

[23] Uhlig. R. A., Mudge, T. N., “Trace-driven Memory

Simulation: A Survey”, In ACM Computing Surveys,

Vol. 29, 1997.

[24] Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A.,

Lowney, G., Wallace, S., Reddi, V. J., Hazelwood, K.,

“Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation.” In Proceedings of

Programming Language Design and Implementation

(PLDI), Chicago, Illinois, 2005.

APPENDIX

Code for the Program of Cache Simulator in Java is available

from the following link:

https://www.escholar.manchester.ac.uk

Manchester eScholar ID: uk-ac-man-scw:218836

IJCATM : www.ijcaonline.org

