Software Reliability Growth Model with Efficient Debugging Involving Time Dependent Fault Content Function

Suneet Saxena, Ph.D
Assistant Professor
Deptt. of Mathematics
SRMSCET, Bareilly

Digvijay Choudhary, Ph.D
Assistant Professor
Deptt. of Mathematics
JPIET, Meerut

Ajay Gupta, Ph.D
Assistant Director
BIT, Muzaffarnagar

ABSTRACT
The paper presents NHPP software reliability growth model exhibiting efficient debugging phenomenon. In efficient debugging, cumulative faults corrected more than the faults responsible for software failures. Proposed model incorporates time dependent exponential fault content function and I/D pattern of learning process. Parameters are estimated by LSE and goodness of fit is performed. Determination of MSE and R^2 indicates model is fit better to given dataset. Finally software reliability has been analyzed.

Keywords
Software Reliability, Efficient Debugging, NHPP Model, Exponential Function.

1. INTRODUCTION
Reliability of software depends on fault detection and correction process. Software reliability growth models (SRGM) are mathematical models which measures reliability of software. SRGM provides mathematical relationship between cumulative faults detected and time during testing phase. These models are based on either homogenous poisson process (HPP) or non homogenous poisson process (NHPP). HPP involves constant failure rate whereas in NHPP failure rate is variable. NHPP SRGMs [3-10] are used extensively for reliability estimation of software.

Debugging is the process of fault detection and correction. There are two type of debugging process, perfect and imperfect. In perfect debugging faults corrected with certainty which are responsible for software failures and no new faults are introduced. The phenomenon of imperfect debugging occurs due to introduction of new faults during the correction process and also faults corrected are less than the faults responsible for failures. Using imperfect debugging various SRGMs [3-7] have been developed. Subburaj, Gopal and Kapur[4] proposed efficient debugging phenomenon in which faults corrected are more than the faults responsible for software failures. This phenomenon occurs when learning skills of testing team improves during repair process of existing faults. Based on learning skills, the team repair those faults in advance which yet to be detected. We have developed model which exhibits efficient debugging by considering time dependent fault content function and I/D pattern of learning process. The paper is organized as follows: Section 2 describes notation and assumption. Section 3 presents model development. Section 4 evaluates model by parameter estimation and goodness of fit. Section 5 discussed reliability analysis and conclusion.

2. NOTATIONS AND ASSUMPTIONS
i. Model follows NHPP Process.
ii. $m(t)$ is mean value function of expected number of faults detected in time $(0,t)$.
iii. $f(t)$ is fault content function depends on time. We have considered $f(t) = ae^{at}$, where a is initial faults and a fault introduction rate.
iv. b represents fault detection rate.
v. c is debugging index. For perfect, imperfect and efficient debugging $c =, < a$ and 1 respectively.

3. MODEL DEVELOPMENT
The rate of faults detected at any time is given by

$$\frac{dm}{dt} = b(f(t) - m) .$$ \hspace{1cm} (1)

Introducing exponential fault content function and debugging index c, we get

$$\frac{dm}{dt} = b(ae^{at} - cm)$$ \hspace{1cm} (2)

When $c = 1$ debugging is perfect, whereas $c < 1$ and $c > 1$ represent imperfect and efficient debugging respectively.

Using condition $m(0)=a$ and solving equation, we get solution

$$m(t) = \frac{ba}{a+cb}(e^{at} - e^{-bt}).$$ \hspace{1cm} (3)

In order to introduce learning phenomenon i.e. increasing/decreasing pattern (I/D) of failure intensity function, above solution modified to

$$m(t) = \frac{ba}{a+cb}(e^{at} - e^{-bt})^d.$$ \hspace{1cm} (4)

I/D pattern given by $d > 1$.

4. MODEL EVALUATION
4.1 Parameter Estimation
We have used Musa’s [2] SS3 and SS4 failure dataset. Parameters of model are estimated by Least Square Error (LSE) method. Table 1 represents parameters evaluated by Least Square Error method.

4.2 Goodness of Fit (GoF)
Some of the measures used to determine GoF are given below:

i. Sum of Square Error (SSE)
ii. Mean Square Error (MSE)
iii. Root Mean Square Prediction Error (RMSPE)
iv. Coefficient of Determination (R²)

4.2.1 Coefficient of Determination (R²)

Coefficient of Determination is also known as multiple correlation coefficient. It measures the correlation between the dependent and independent variables. Value of R² vary from 0 to 1. The conditions are given below:

i. R² = 1, perfect fitting.
ii. R² = 0, no fitting.
iii. R² close to 1, good fitting.

We have evaluated MSE and R². Table 2 represents the values of both measures. Model fits better to given dataset if value of MSE is low and R² close to 1.

\[\text{MSE} = \frac{1}{n} \sum_{j=1}^{n} (y_j - E_j)^2 \]

\[R^2 = \frac{\sum_{j=1}^{n} (E_j - \bar{y})^2}{\sum_{j=1}^{n} (y_j - \bar{y})^2} \]

\[\bar{y} = \frac{1}{n} \sum_{j=1}^{n} y_j \]

where

\(n \) : number of data points.
\(y_j \) : observed cumulative faults at time j.
\(E_j \) : estimated cumulative faults at time j.

| Table 1: Estimated Parameters. |
|---|---|---|---|---|
| | α | a | b | c | d |
| SS3 | 0.0046 | 75 | 0.007 | 1.02 | 1.001 |
| SS4 | 0.0069 | 50 | 0.026 | 1.065 | 1.1 |

| Table 2: Goodness of Fit. |
|---|---|---|
| | MSE | R² |
| SS3 | 26.90 | 0.98 |
| SS4 | 22.87 | 0.86 |

Figure 1 and 2 represent cumulative faults detected with respect to time for dataset SS3 and SS4 respectively.

5. ANALYSIS

5.1 Reliability Analysis

Software reliability is defined as the probability that software perform its operation without failure in time interval (t, t + Δt) under specified conditions given by

\[R\left(\frac{\Delta t}{t}\right) = \exp\left[-(m(t + \Delta t) - m(t))\right] \]

Using Δt = 1 day, reliability has been analyzed with respect to testing time (Figure 3). m(t + Δt) and m(t) evaluated using parameters estimated by SS3 and SS4 data set.
5.2 Conclusion

This paper presents software reliability growth model incorporating learning phenomenon, efficient debugging and exponential fault content function. Corresponding to the dataset SS3 and SS4, values of MSE are low for proposed model. Also R^2 close to 1 (table 2). These values of GoF measures indicate proposed model fits better.

6. REFERENCES

