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ABSTRACT
The theory and design of signal adapted filter banks in the cod-
ing gain objective as well as the multiresolution objective are of
great interest in many signal processing applications. The role of
the generalized triangular decomposition (GTD) filter banks in op-
timizing perfect reconstruction filter banks has been proposed re-
cently by Ching-Chih Weng et al. They have proposed the GTD
filter bank as a subband coder for optimizing the theoretical cod-
ing gain. In this paper, we show that the design of the GTD fil-
ter bank via the singular value decomposition (SVD) will be re-
duced to the principal component filter bank (PCFB) and it gives
optimal performance in the multiresolution objective. The FIR ap-
proximation of the optimal GTD filter banks is also discussed in
this paper. This is done by using the iterative greedy algorithm.
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1. INTRODUCTION
In recent years, there has been a growing interest in desiging sig-
nal adaptive filter banks [1]. These filter banks, employed for sub-
band coding and multiresolution objectives find applications in data
compression, progressive transmission [2], [3], echo cancellation,
etc. [4]. Based on generalized triangular decomposition (GTD) the-
ory, a general family of perfect reconstruction filter banks adapted
to their input statistics known as GTD filter banks was recently de-
veloped by Weng and Vaidyanathan [1].

The GTD filter banks are known to exist only in the two extremal
cases. In the first case, the filters have zero memory. Here they re-
duce to GTD transform coders [5]. In the second case, the filter
orders are unconstrained and they are as such unrealizable[1]. But
these unrealizable GTD filter banks provide the upper bound on
the achievable performance and also show a direction to proceed
with the design of realizable signal adaptive filter banks with an
improved performance.

These GTD filter banks are used as subband coders for optimizing
the theoretical coding gain as shown in Fig. 1. In the subband cod-
ing objective, the optimal solutions can be obtained, if the suband
signal satisfies both total decorrelation and spectrum equalization
properties. These properties are satisfied, if the GTD filter bank
is designed via the frequency dependent Geometric Mean Decom-
positin (GMD). Then the GTD filter bank is optimal in the coding
gain sense and the optimal GTD subband coder [1] have superior
performace than the optimal traditional subband coders in [6] and
[7]. In this paper, we show that the GTD filter bank designed via
the singular value decomposition (SVD) will reduce to principal
component filter bank (PCFB) and gives optimal performance in
the multiresolution objective. The finite impulse response (FIR) ap-
proximation problem of the optimal GTD filter banks is also done
in this paper. The iterative greedy algorithm proposed in [8] is used
for the FIR approximation of the desired paraunitary transfer func-
tion of unconstrained order.

This paper is organized as follows. In section II we briefly review
the GTD theory and GTD filter banks. In section III we show the
multiresolution optimality of GTD filter bank. In section IV we
present the design of FIR GTD filter banks and section V provides
numerical simulations. Section VI concludes the paper.

2. REVIEW OF GTD THEORY AND GTD FILTER
BANKS

In this section, the theory of GTD [9] is brifely given and then we
discuss the design of a GTD filter bank from a given input power
spectral density (psd) matrix [1].

Definition: Generalized triangular decomposition (GTD): Let H ∈
Cm×n be a rank-K matrix with singular values σh,1, σh,2, ...σh,k,
in descending order. Let r = [r1, r2, ..., rk] be any vector which
satisfies the multiplicative majorization property, i.e. the vector h
multiplicatively majorizes a denoted as

a ≺× h,

where a = [|r1| , |r2| , ..., |rK |] and h = [σh,1, σh,1, ..., σh,k].
Then there exist matrices R, Q, and P such that H can be decom-
posed as

H = QRP†

where R is a K ×K upper triangular matrix with diagonal terms
equal to rk, Q ∈ Cm×k and P ∈ Cn×k both having orthonormal
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Fig. 1. The biorthogonal GTD subband coders for M = 4 [1].

columns. Many existing orthogonal matrix decompositions, such
as Singular Value Decomposition (SVD), QR decomposition, Geo-
metric Mean Decomposition (GMD) are special cases of GTD.

By representing the estimation filters Pik(ejω) from kth stream to
ith stream of Fig. 1 by block L(ejω) and replacing quantizers Qi
by subband processors Si, we can equivalently represent the GTD
subband coder structure by the biorthogonal GTD filter bank as
shown in Fig. 2. Here the vector process x(n) is assumed to be

Fig. 2. The generalized triangular decomposition filter bank.

wide sense stationary (WSS) with psd matix Sxx(ejω) and E(ejω),
R(ejω) are the analysis and synthesis paraunitary polyphase matri-
ces respectively, and L(ejω) is the unit diagonal lower triangular
matrix used to represent the frequency dependent prediction-based
lower triangular transform (PLT) stage discussed in [10] and [11].
These blocks are obtained from the input psd matrix by perform-
ing the frequency dependent GTD [1] on the cholesky factor of the
input psd Sxx(ejω) as

S†/2xx (e
jω) = Q(ejω)R(ejω)P†(ejω) (1)

then we can express

Sxx(e
jω) = P(ejω)R†(ejω)Q†(ejω)Q(ejω)R(ejω)P†(ejω)

Since Q(ejω) is paraunitary, Q†(ejω)Q(ejω) = I for every ω.
Consider a unit-diagonal lower triangular matrix L1(e

jω) such that
R†(ejω) = L1(e

jω)diag([R11(e
jω), ....RMM(ejω)]) and hence

we can express Sxx(e
jω) as (For simplicity, we drop the argument

“ejω”)

Sxx = PL1diag([R
2
11,R

2
22, ....R

2
MM])L†1P

†. (2)

So we can choose E(ejω) = P†(ejω) , R(ejω) = E†(ejω) =
P(ejω) and L(ejω) = L−11 (ejω) and obtain the desired design
blocks of GTD filter bank from the input psd. S0 to SM−1 are the
subband processors, where M is the number of channels. ↓M de-
notes the decimators and ↑M denotes the interpolators with factor
M.

3. MULTIRESOLUTION OPTIMALITY OF GTD
FILTER BANKS

For a filter bank to be optimal in a multiresolution sense, it has to
successively compact as much of the signal energy as possible into
each subband starting with the first [12]. So far in the literature,
the principal component filer bank (PCFB) is known to be optimal
in the multiresolution optimality criteria, since the subband signal
of PCFB satisfies the spectrum majorization and spectrum decorre-
lation properties, and compacts as much signal energy as possible
into the first few subbands. If the GTD filter bank is designed via
singular value decomposition then the GTD also satisfies the spec-
trum majorization and spectrum decorrelation properties. In this
case, the block L(ejω) in Fig. 2 is an identity matrix and includes
PCFB as a special case of GTD filter bank.

In order to assess the performance of the GTD filter bank for mul-
tiresolution objectives, one suitable measure is the proportion of the
partial subband variances to the total [8]. By preserving only L out
of M subbands, this proportion is given by

P (L) ,

(∑L−1
k=0 σ

2
w

k

)
(∑M−1

k=0 σ
2
w

k

) , 1 ≤ L ≤M. (3)

where σ2
wk

is the subband variance of the kth channel. Since the
GTD filter bank (designed via the frequency dependent SVD) satis-
fies subband majorization property, the GTD filter bank maximizes
P(L) for all L.

Hence in addition to being optimal for coding gain, the GTD filter
bank also provides optimal performance with respect to multires-
olution optimality criteria, if we design the GTD filter bank via
SVD.
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4. FIR APPROXIMATION OF GTD FILTER BANKS
In this section, the FIR approximation of GTD filter bank is dis-
cussed. Here the objective is to minimize the weighted mean-
squared Frobenius norm error between the desired paraunitary sys-
tem D(ejω) and FIR paraunitary system F(ejω) responses given
by [8].

ξ ,
1

2π

∫ 2π

0

W(ω)
∥∥D(ejω)−F(ejω)

∥∥2
F
dω. (4)

where, W(ω) is a weight function. The FIR paraunitary system
F(ejω) is to be parameterized in terms of Householder-like degree-
one building blocks with McMillan degree (N-1) of the form [13]

F(z) = V(z)U (5)

where U is a some p × r unitary matrix and V(z) is a p × p pa-
raunitary matrix consisting of (N-1) degree-one Householder-like
building blocks of the form

V(z) =

1∏
i=N−1

Vi(z) (6)

Vi(z) = Ip − viv
†
i + z−1viv

†
i, 1 6 i 6 N − 1 (7)

Here vi are the unit norm vectors and Ip is p×p identity matrix.
Since there is no direct closed form solutions available for the pa-
rameters {vk,opt} and Uopt of optimal FIR approximant Fopt(z),
we have to go for the optimization algorithms to find the optimal
FIR approximant Fopt(z), which gradually decreases the mean
squared error ξ as a function of iterations. In [8] it is shown that
using the iterative greedy algorithm the optimal FIR approximant
is obtained by optimizing one set of parameters in closed form, as-
suming that all the other parameters are fixed. In this paper, we are
using the iterative greedy algorithm to find the FIR approximant,
since in iterative greedy algorithm, the observed mean squared er-
ror is guaranteed to not increase at each iteration.

The design procedure for FIR GTD filter banks is given below.

Design of FIR GTD Filter Banks:

(1) Obtain the cholesky factor of input psd Sxx(ejω).
(2) Perform the frequency dependent GTD on cholesky factor

S
†/2
xx (ejω) of input psd matrix Sxx(ejω), i.e. S

†/2
xx (ejω) =

Q(ejω)R(ejω)P†(ejω).
(3) Find the optimal FIR approximant Fopt(ejω) which approxi-

mates the desired response D(ejω) = P(ejω), by using the
iterative greedy algorithm [14], so that E(ejω) = F†(ejω),
and R(ejω) = F(ejω).

(4) Compute the LDU decompostion (where ‘LDU’ stands for
‘Lower Diagonal Upper’ triangular matrices):
E(ejω)Sxx(ejω)E†(ejω) = L1(e

jω)D(ejω)L†1(e
jω), and take

the estimation fiters as L(ejω) = L−11 (ejω).

Construct the FIR GTD filter bank as in Fig.1, using the desired
design blocks obtained from the design steps presented above.

5. SIMULATION RESULTS
In this section we present the simulation results of FIR GTD filter
bank in the multiresloution and coding gain objectives.

5.1 Multiresolution Optimality Results
The FIR approximation results of the GTD filter banks, by using the
iterative greedy algorithm to aproximate the synthesis polyphase
matrices R(ejω) are shown in Fig. 3. Here the GTD FB is designed
via the frequency dependent SVD for the input of AR(4) process,
with M = 4 and N=10. Iterative greedy algorithm is run for 1000
iterations, and the mean squared error obtained is ξ = 0.7190. Fig.
3 shows a good magnitude fit to the desired response by using itera-
tive greedy algorithm. In Fig. 4 the performances of GTD transform
coder (GTD TC), unconstrained order GTD filter bank (GTD FB),
and FIR GTD filter bank (FIR GTD FB) are compared. The realiz-
able FIR GTD filter bank gives the performance between those of
GTD transform coder and unconstrained order GTD filter bank.

Fig. 3. The synthesis filter magnitude squared response of unconstrained
order and FIR GTD filter bank: (a) to (d) are the synthesis filter magnitude
squared responses of channel 0 to 3.

Fig. 4. Proportion of the total variance P(L) as a function of the number
of subbands kept L, for an M = 4 channel system with N = 10.
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5.2 Coding Gain Results
In the subband coding objective, the optimal solutions can be ob-
tained, if the subband signal satisfies both total decorrelation and
spectrum equalization properties [1]. These properties are satisfied,
if the GTD FB is designed via the frequency dependent GMD. Then
the FB is optimal in the coding gain sense. The coding gain is given
by

GC =

∫ 2π

0
1
M
Tr(Sxx(e

jω)))dω

(
∏M−1
i=0

∫ 2π

0
Svi(e

jω)dω)
1
M

(8)

The performance of the FIR GTD filter Bank is compared with that
of the unconstrained order filter bank, and also with the GTD trans-
form coder. Here AR(2) process is used to model the input psd for
GTD filter Bank with poles at z± = ρe±jθ . The simulation results
are shown in Fig. 5. The coding gain is shown by varying ρ from
0.95 to 0.99 with θ = π

5
, and M=4, and it is observed that for N=10,

FIR GTD filter bank shows a performance very close to that of the
unconstrained order GTD filter bank.

Fig. 5. Coding gain of GTD filter bank as a function of ρ from 0.95 to
0.99, with M=4 and θ = π

5 for AR(2) process.

6. CONCLUSION
The GTD filter bank is reported to be used as a subband coder for
optimizing the coding gain. In this paper we have shown that the
GTD filter bank designed via SVD will be reduced to the PCFB and
gives optimal performance in the multiresolution objective. The
FIR approximation of the paraunitary blocks of GTD filter bank
is also done by using iterative greedy algorithm.
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