
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

1

Fuzzy based Tuning Congestion Window for Improving

End-to-End Congestion Control Protocols

Tharwat Ibrahim
Department of Computer Systems

Faculty of Computer and
Information,

Benha University

Gamal Attiya
Department of Computer Science

and Engineering
Faculty of Electronic Engineering,

Menoufia University

Ahmed Hamad
Department of Computer Systems

Faculty of Computer and
Information,

Ain-Shams University

ABSTRACT

Transmission Control Protocol (TCP) is the transport-layer

protocol widely used in the internet today. TCP performance is

strongly influenced by its congestion control algorithms which

limit the amount of transmitted traffic based on the estimated

network capacity to avoid sending packets that may be dropped

later. In other words Congestion Control is Algorithms that

prevent the sender from overloading the network. This paper

presents a modified fuzzy controller implementation to estimate

the network capacity which reflected by congestion window

size. Fuzzy controller use Round Trip Time “RTT” as network

traffic indication as well as current window size and slow start

threshold “ssthresh” as currently occupied bandwidth indicator.

NS2 used as a simulation tool to compare proposed fuzzy

approach with most widespread congestion control protocols

including; TCP-Tahoe, Reno, New Reno, and Sack. Simulation

results show that the proposed mechanism improves the

performance against throughput, packet drop, packet delay, and

connection fairness.

General Terms: Computer Networks, Network Protocols.

Keywords: Network Protocols, TCP, Congestion control,

NS2, Fuzzy logic

1. INTRODUCTION
Congestion is a serious problem for today’s wide-area networks,

i.e., the Internet. It occurs when many sources sends data packets

to a router whose output capacity is less than the sum of the

inputs [1]. The result of congestion is that, some packets may be

dropped. Congestion control is thus required to avoid congestion

collapse and enhance network performance. Without congestion

control, a source node could be busy transmitting packets that

may be dropped later because of congestion collapse. Over

years, continuous efforts are carried out to avoid the problem of

congestion collapse. The most widespread mechanism is that

provided by the Transmission Control Protocol (TCP). TCP is a

window based, connection-oriented, reliable data transfer

protocol. It provides byte stream service on the top of the

Internet Protocol (IP). TCP has been refined several times

during the last years to ensure the internet stability and improve

the internet performance. In 1988, a congestion control protocol,

called TCP Tahoe, was initiated [2]. It initiates by slow start

mechanism, then enters into congestion avoidance when the

window size reaches a threshold value, and finally enters into

fast retransmit mechanism when detects congestion. In 1990, the

TCP Tahoe is modified by adding a fast recovery mechanism.

The modified protocol is called TCP-Reno [3]. In Reno, when

duplicate acknowledgements arrive at the TCP sender, it enters

into fast recovery instead of switching to slow-start as Tahoe.

Additional modifications to TCP Reno are done and several

protocols are developed. These include; NewReno [4] and

SACK (TCP with Selective Acknowledgement) [5]. In TCP-

NewReno, a slight modification is added to the TCP-Reno

implementation to improve the performance during the fast

recovery phase [4]. TCP-SACK only modifies the fast recovery

algorithm of TCP-Reno keeping the other algorithms unchanged

[5]. Although many congestion control protocols were

developed, they use packet dropping as an indication of network

congestion. Also, most of the developed protocols use the

Additive Increase Multiplicative Decrease (AIMD) strategy to

change the packet sending rate at the TCP sender [6, 7]. But,

this strategy inefficiently utilizes the available capacity of the

internet. With no congestion, the AIMD strategy linearly

increases the congestion window (cwnd) size, while it halves the

cnwd as well as congestion is detected without regarding the

current state of the network. In this paper, a new approach based

on fuzzy logic is developed to enhance the end to end

congestion control protocols. The basic idea is to adapt the

congestion window size, at the TCP sender, dynamically based

on the estimated capacity of the network, instead of using the

AIMD strategy as all the previous protocols. The proposed

strategy is embedded in the TCP Tahoe, Reno, New Reno and

Sack, and then evaluated by using the network simulator NS2.

The obtained results are compared with that obtained by the

most widespread congestion control protocols; TCP Tahoe,

Reno, New Reno and Sack. The simulation results indicate that

the proposed approach improves the network performance

against throughput, packet drop, packet delay and fairness. The

rest of this paper is organized as follows. Section 2 introduces

the basics of the most widespread congestion control protocols;

Tahoe, Reno, NewReno and Sack. Section 3 describes the

congestion problem. Section 4 presents the proposed fuzzy

approach. The effect of proposed fuzzy approach on congestion

avoidance is studied in Section 5 by using NS2. Finally, the

conclusions are listed in Section 6.

2. CONGESTION CONTROL

PROTOCOLS
This section presents the most widespread congestion control

protocols including; TCP-Tahoe, TCP-Reno, TCP-NewReno

and TCP-Sack.

2.1 TCP Tahoe
Tahoe introduce in 1988, as the first congestion control

protocol, to overcome the problem of congestion collapse. It has

three main algorithms called; slow start, congestion avoidance,

and fast retransmit.

2.1.1 Slow Start
Slow start is a way to initiate data flow across a connection by

gradually increases the amount of data in transient [6]. At the

beginning of the connection establishment phase, the congestion

window (cwnd) is initialized to one segment. The congestion

window then increases by one segment for each

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

2

acknowledgement returned, i.e., the cwnd is effectively doubled

per RTT (exponential increase). The incremental of the cwnd

continues until it arrives to the slow start threshold (ssthresh), or

detects a packet loss [8].

 /* slow start */
Initially: cwnd = 1;

 For each newly acknowledged segment:

 If (cwnd < ssthresh)

 cwnd = cwnd + 1; /*exponential increase*/

 Until (congestion occur, or, cwnd >= ssthresh)

2.1.2 Congestion Avoidance
Congestion avoidance begins after slaw start, when the cwnd

reaches the ssthresh. In this phase, the cwnd increases linearly

by one segment every Round Trip Time (RTT) to avoid possible

congestion. The increasing rate of the cwnd continues until

congestion event is detected [8]. At this point, the transmission

rate should be slowed down, as follows: (i) If the congestion is

detected by 3 duplicate ACKs, the TCP sender invokes the fast

retransmit phase because it believes that a segment has been lost.

(ii) If the congestion is detected by the timeout expired, the TCP

sender got the slow start phase.

/* Congestion Avoidance */

For each newly acknowledged segment:

/*cwnd increases by 1 per RTT */

cwnd += 1/cwnd; */Additive increase*/

Until (timeout or 3 Duplicate ACKs)

If 3 Duplicate ACKs:

cwnd = cwnd/2; /* Multiplicative decrease */

ssthresh = cwnd;

Invoke fast retransmit phase

If Timeout:

ssthresh = cwnd/2; /* Multiplicative decrease */

cwnd = 1;

Go to slow start phase

2.1.3 Fast Retransmit
In fast retransmit, the sender retransmits what seems to be

missing segment, without waiting for timeout expiration, and

enters into slow start phase after setting the cwnd to 1 [9].

Figure 1 shows the behaviour of the cwnd during different

phases. At beginning, the cwnd is set to 1 and increases in

exponential manner until reaches the ssthresh. Then the

congestion avoidance phase starts and the cwnd increases in

linear manner until occurrence of congestion event due to packet

loss. The new ssthresh is set to half of cwnd and the cwnd is set

to 1, and then the protocol enters into the slow start phase.

Fig 1: The cwnd behaviour

2.2 TCP Reno
Reno is the improvement of TCP Tahoe. It includes a fast

recovery algorithm to TCP Tahoe.

2.2.1 Fast Recovery Algorithm:
In TCP Reno, the sender switches to the fast recovery phase

after fast retransmit, when it receives 3 duplicate

acknowledgements, instead of switching to slow-start as Tahoe.

The reason for going to fast recovery instead of slow start is to

allow the sender to work in congestion avoidance phase. This

behaviour improves the network throughput as more packets will

be transmitted [9, 10].

/* Fast Recovery */

/* after retransmission of missed packets, don’t enter slow start

but enter fast recovery */

ssthresh = cwnd/2

cwnd= 3 + ssthresh

Return to congestion avoidance phase

Briefly, when the TCP sender detects congestion, it must slow

down its transmission rate. Generally, the sender may detect

congestion as a result of the reception of 3 duplicate

acknowledgements or the expiration of retransmission timer. If

the congestion is detected by a timeout, the congestion window

is reset to one segment and the sender enters into Slow Start

mode. But, if the congestion is detected by 3 duplicate

acknowledgements, fast retransmit and then fast recovery

algorithms are invoked. At that time, the congestion window at

the TCP sender is set to one half of the current window size,

with a minimum value of at least two segments. During fast

retransmit, after setting the value of cwnd and ssthresh, the

sender retransmits what seams to be lost, then, enters the fast

recovery mode. When the sender receives a fresh

acknowledgement, it exits that phase and starts congestion

avoidance phase.

2.3 TCP NewReno
NewReno provides a slight modification to the TCP-Reno to

overcome the problem arises with Reno whenever multiple

packets are lost from the same transmission window [4]. In other

words, NewReno enhances the sender’s behaviour during the

fast recovery mechanism to eliminate the Reno’s wait for a

retransmit time-out whenever multiple packets are lost from the

same transmission window [10]. The new medications make the

sender to continue in fast recovery until all the packets which

were outstanding during the start of the fast recovery have been

acknowledged. This behaviour overcomes the problem of

multiple losses without entering into fast recovery multiple times

or causing timeout. In this case, two types of acknowledgements

are used; partial ACK and full ACK. The partial ACK is

considered as an indication that the packet following the

acknowledged one has been dropped from the same transmission

window, and therefore, TCP NewReno immediately retransmits

the other lost packet indicated by the partial acknowledgement

and remains in fast recovery. The full ACK is considered as an

indication that the entire data packet in the window is

acknowledged and the exit fast recovery.

After ACK

If (partial ACK)

then stay in fast recovery and transmit one packet every RTT

If (full ACK)

then exit fast recovery

0

Slow

Start

Congestion
Avoidance Congestion occurs

Threshold

Congestion

Window

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

3

2.4 TCP Sack
TCP SACK (TCP with Selective Acknowledgement) is an

extension to the TCP Reno. It only modifies the fast recovery

algorithm of Reno keeping the other algorithms unchanged [5].

Similar to NewReno, TCP SACK handles multiple packet losses

from the same window but it has a better estimation capability

for the number of outstanding packets. In TCP-Reno, a

Duplicate ACK means that the receiver received data out of

order. In TCP-Sack, a duplicate ACK carries the same

information and also carries information on what other data

segments that have been received out-of-order. The sender starts

the data recovery mechanism after receiving 3 duplicate ACKs.

TCP-Sack adds to the packet an option field that contains a pair

of sequence numbers which describe the block of data that was

received out-of-order. A TCP sender uses Sack options to build

a table of all the correctly received data segments, thus it knows

exactly which parts are missing to retransmit them together

during a recovery phase. The main drawbacks of this protocol is

that the receiver side needs some modification and difficult to

implement.

3. PROBLEM STATEMENT
From the above discussion, several congestion control protocols

have been developed to prevent congestion collapse. However, it

is clear that, all the previous protocols are developed based on 4

mechanisms; slow start, congestion avoidance, fast retransmit

and fast recovery. Indeed, the developed protocols use packet

drop as the indication of network congestion. Also, they use the

AIMD (Additive Increase, Multiplicative Decrease) strategy to

change the packet sending rate at the sender. The slow start

approach blindly changes the sending rate in static manner

without regarding the current state of the network. Briefly, at

beginning, the slow start begins by setting the cwnd to one

segment and then duplicate the cwnd every RTT. This behaviour

inefficiently utilizes the available bandwidth at the beginning of

this phase. Indeed, it needs many RTT to reach the optimal

operating point that allows using the available bandwidth. Also,

the exponential growth of the cwnd may cause severe buffer

overflow and so many packets may be dropped at the moment of

congestion event. Also, the Additive Increase Multiplicative

Decrease (AIMD) strategy that used during the congestion

avoidance phase inefficiently utilizes the available capacity of

the network. In the case of no congestion, the AIMD linearly

increases the congestion window (cwnd) size at the TCP sender.

This in turn does not utilize the network capacity efficiently

because the number of packets to be transmitted is less than the

available capacity. On the other hand, when congestion is

detected, the AIMD halves the congestion window size without

regarding the current state of the network which in turn

decreases the packet sending rate and so decreases the network

utilization.

To overcome this problem, the sending rate should be adapted

as a function of the available capacity of the network. In other

words, a new approach is required at the TCP sender, instead of

the AIMD strategy, to adopt the sender sending rate based on

the available network capacity at any time.

4. PROPOSED ALGORITHM
This section presents a new approach, called fuzzy controller, to

adapt congestion window size at the TCP sender dynamically

based on the available capacity of the network. This approach

may be embedded in all the previous protocols, instead of the

AIMD strategy, to improve their performance. In other words,

the fuzzy controller could be applied instead of both the slow

start and the congestion avoidance phases. The basic idea of the

proposed fuzzy controller is that, the congestion window size at

the TCP sender is determined dynamically at any time based on

the traffic load in the network. The proposed fuzzy controller

changes the behaviour of the cwnd from static exponential

increase during slow start and static linear increase during

congestion avoidance to dynamic non-analytical approaches and

more intelligence behaviour that based on the network traffic

load and current cwnd to ssthresh gap. The following sections

first present the basic concepts of fuzzy logic and then describe

the proposed fuzzy controller.

4.1 Fuzzy logic
Fuzzy logic is one of the Computational Intelligence (CI) tools

that may be used in situations where traditional control theoretic

approaches cannot be used because of the difficulties in

obtaining a formal analytical model. Fuzzy Logic Control (FLC)

may be viewed as a way of designing feedback controller in

which analytical models are not easily obtainable or the model

itself, if available, is too complex and possibly highly nonlinear

[11,12]. The FLC has been applied successfully for controlling

systems. It basically consists of four parts including; a fuzzifier,

a defuzzifier, an inference engine and a fuzzy rule base, as

shown in Figure 2 [11]. As in many fuzzy control applications,

the input data are usually crisp, so a fuzzification is necessary to

convert the input crisp data into a suitable set of linguistic value

that is needed in inference engine. In the rule base, a set of fuzzy

control rules, which characterize the dynamic behaviour of

system, are defined. The inference engine is used to form

inferences and draw conclusions from the fuzzy control rules.

Fig 2: Basic configuration of fuzzy system

4.2 Proposed Fuzzy Controller
The proposed fuzzy controller adapts the size of congestion

window using fuzzy system. The system is based on the current

cwnd, the ssthersh, the average RTT and the network traffic load

that indicated by Last RTT. The proposed fuzzy controller has

two input parameters sc and dr, and a fuzzy controller output

parameter dcwnd. Where, sc = (ssthresh-cwnd) / ssthresh and dr

= (average RTT- RTT) / (0.5(average RTT + RTT)) [13]. The sc

parameter is the first FLC Member Ship Function (MSF). It

indicates the gap between the ssthresh and the cwnd and ranges

from 0 to 1, as shown in Figure 3. The value 0 means ssthresh =

cwnd (denoted by L), the value 1 means cwnd = 0 (denoted by

H) and the value 0.5 means ssthresh = 2 cwnd (denoted by M).

Fig 3: The sc Member Ship Function

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

4

The dr parameter is the second FLC MSF. It indicates the

network traffic and ranges from 0 to 2, as shown in Figure 4,

where, 0 reflects low traffic and 2 reflects high traffic.

Fig 4: The dr Member Ship Function

In proposed fuzzy approach, the dr parameter reflects the

following; from 0.5 to 1 means network traffic decrease “D”,

from 1 to 1.5 network traffic increase “I”, and from 0.9 to 1.1

the network traffic stable “Z”. The proposed fuzzy controller

uses singleton fuzzifier, product interference engine, centre

average defuzzifier [13] and the proposed fuzzy rules is shown

in Table 1.

In the proposed approach, fuzzy sets centres range from 1 to 8,

as shown in Table 1. The final output is multiplied by weight

function (wf), as shown in Figure 5. The wf is added as a block

in the FLC as shown in Figure 6 with the final output.

wf = 2 - (cwnd / ssthresh) during slow start

wf = (ssthresh / cwnd) during congestion avoidance

Table 1: Fuzzy Rules

L M H D Z I

1 0 0 1 0 0 S- 1

1 0 0 0 1 0 S 1.5

1 0 0 0 0 1 S+ 2

0 1 0 1 0 0 M- 3

0 1 0 0 1 0 M 4

0 1 0 0 0 1 M+ 5

0 0 1 1 0 0 L- 6

0 0 1 0 1 0 L 7

0 0 1 0 0 1 L+ 8

sc dr
dcwnd

At the beginning of slow start wf duplicate the FLC output and

at the end of slow start wf = 1 but during congestion avoidance

wf is Inverse relationship = ssthresh / cwnd.

Fig 5: weight function (wf)

Fig 6: proposed fuzzy system

5. PERFORMANCE EVALUATION
To study the effect of the suggested fuzzy controller on the

behaviour of TCP, the old cwnd of the TCP agent is replaced

with the new strategy. Then, its behavior is tested using the

network simulation tool NS2 [14] and compared with the

original TCP protocols considering different topologies; simple

and real AT&T topology. In each topology, the comparison is

focused on throughput, losses, packets delay and fairness.

5.1 Simple topology
The simple topology constructed from 6 nodes; two sources (N1

and N2), two destinations (N3 and N4), and two routers (R1 and

R2), as shown in Figure 7. The link between the routers has

bandwidth of 1.7 Mbps and delay of 20ms and acts as the

bottleneck link of this topology. A TCP connection is

established between the source N1 and the sink N3 to transfer

File Transfer Protocol (FTP) application. A UDP connection is

established between the source N2 and the sink N4 to transfer

Constant Bit Rate (CBR) application. The source nodes N1 and

N2 are connected with R1 by a link has 2 Mbps bandwidth and

10 ms delay. The destination nodes N3 and N4 are connected

with R2 by a link has 2 Mbps bandwidth and 10 ms delay. Total

simulation time is 20 seconds. The FTP application on the TCP

connection starts at first second and ends at 20s. The CBR

application for UDP connection starts at second 8 and stop at

second 12. This scenario is used to study the behavior of the

congestion control mechanisms in case of suddenly traffic is

added and suddenly removed and also during sharing same link

with UDP connection.

Fig 7: Simple Network Topology

Figure 8 shows the instantaneous throughput of the original

congestion control protocols; Taheo, Reno, NewReno and Sack.

The figure shows that the highest utilization of network capacity

is achieved by the TCP NewReno.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

5

Fig 8: Throughput of original protocols

Figure 9 shows the instantaneous packet losses of the original

congestion control protocols; Taheo, Reno, NewReno and Sack.

The figure shows that the lowest packet loss is achieved by the

TCP Sack.

Table 2 shows the average values of throughput, packet losses

and delay of the original congestion control protocols and

original protocols under different modification steps of the

proposed algorithm. In Table 2;

ORG: original protocols without modifications.

M1: proposed algorithm in [13].

M2: same M1 with proposed fuzzy rules in Table 1 and wf

Figure 6.

M3: same M2 with proposed MSF Figure 4.

M4: same M3 with average RTT calculated from the 3 previous

RTT with more weight for last RTT, average RTT =

(3*previous1 RTT + 2*previous2 RTT + previous3 RTT)/6

M5: same M3 with average RTT = (previous1 RTT + previous2

RTT +previous3 RTT)/3

M6: same M3 with average RTT = smoothed RTT which is the

average of RTT from time of connection established.

From Table 2; the simulation results show that the proposed

modification M4 provides the best network utilization overall

other modifications.

Table 2: Simulation results under different modifications

ORG M1 M2 M3 M4 M5 M6

NewReno 4026.29 4138.52 4262.41 4284.18 4300.24 4180.8 4294.42

Reno 3552.05 3589.41 4102.01 4170.14 4115.52 3997.86 4144.92

Tahoe 3730.95 3819.63 3986.11 3997.36 3978.29 3936.91 4110.44

Sack 3517.44 3617.83 3793.49 3815.89 3773.41 3806.14 3848.78

NewReno 14.75 16.15 13.43 12.32 10.73 25.67 14.19

Reno 13.78 8.63 9.75 10.8 9.13 17.34 8.91

Tahoe 15.39 13.1 8.63 9.76 8.99 11.49 6.84

Sack 10.92 7.89 7.26 8.65 8.49 9.01 13.84

NewReno 0.0542 0.0548 0.0551 0.0552 0.0551 0.0546 0.0559

Reno 0.0537 0.054 0.0548 0.0549 0.0547 0.0541 0.0551

Tahoe 0.0546 0.0541 0.0549 0.055 0.055 0.0551 0.0556

Sack 0.0542 0.0537 0.0546 0.0549 0.0547 0.0549 0.0553

L
o
s
s
e
s
 [
k
b
p
s
]

D
e
la

y
 [
s
]

T
h
ro

u
g
h
p
u
t
[k

b
p
s
]

Fig 9: Packet losses of original protocols

Figure 10, 11, and12 show the instantaneous throughput, packet

dropping and delay of the original TCP NewReno and the TCP

NewReno including M4 modification. From the figures,

embedding the proposed modification M4 into the TCP

NewReno improves its performance against throughput, packet

dropping and packet delay.

Fig 10: Throughput of NewReno and NewReno with M4

Fig 11: Packet losses of NewReno and NewReno with M4

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

6

Fig 12: Packet delay of NewReno and NewReno with M4

Figure 13, 14, and 15 show instantaneous throughput, packet

dropping and delay of the TCP NewReno including M1

modification and the TCP NewReno including M4 modification.

Fig 13: Throughput of NewReno with M1 and NewReno

with M4

Fig 14: Packet losses of NewReno considering M1 and M4

Fig 15: Packet delay of NewReno with M1 and M4

Figure 16 shows the behavior of cwnd of the original TCP

NewReno and the TCP NewReno including M4 modification.

Figure 17 shows the behavior of cwnd of the TCP NewReno

with M1 and the TCP NewReno including M4 modification.

From the figures, embedding the proposed modification M4 into

the TCP NewReno improves its performance.

Fig 16: cwnd of NewReno and NewReno with M4

Fig 17: cwnd of NewReno with M1 and NewReno with M4

Table 3 shows average throughputs for TCP and UDB flows,

Fuzzy M4 approach enhance TCP as shown and UDB is the

same because of CBR application which generate constant

traffic.

Table 3 Total, TCP and UDB average throughput

Newreno Reno Tahoe Sack

Total 4026.29 3552.05 3730.95 3517.44

TCP 3724.74 3250.86 3430.19 3214.62

UDB 301.55 301.19 300.76 302.82

Total 4300.24 4115.52 3978.29 3773.41

TCP 3995.78 3808.2 3674.27 3466.9

UDB 304.46 307.32 304.02 306.51

O
R

G
F

u
z
z
y

T
h
ro

u
g
h
p
u
t
[k

b
p
s
]

5.2 Fairness Study
Although the proposed modification improves the protocols in

terms of link utilization and packet delay, the protocol must also

be fair against different flows. To measure fairness, the

following Fair Index [15] is used.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

7

 











2

2

 =Index Fairness

i

i

xn

x

Where, xi is the throughput of the ith flow and n is the total

number of flows. The fairness index of a system ranges from 0 to

1, with 0 being totally unfair and 1 being totally fair [15].Figure

18 shows the network topology that used to study the fairness

between 2 TCP flows. Each flow transfers FTP application. The

two FTP start and end at the same time, and share the same

bottleneck connection between R1 and R2.

Fig 18: Network Topology with 2 TCP flows

Tables 4, 5 and 6 show the average throughput, the average

packet losses, and Fairness index respectively, for the original

protocols with and without the proposed fuzzy controller. From

the tables, embedding the fuzzy approach into the protocols

enhance total network utilization, decrease packet losses and

achieve fairness between the different network flows.

Table 4: average throughput with and without fuzzy

controller

Newreno Reno Tahoe Sack

Total 4604.03 4411.57 4458.97 4345.05

TCP1 2292.57 2746.92 2560.17 2810.34

TCP2 2311.46 1664.65 1898.8 1534.71

Total 4713.87 4681.63 4584.06 4578.22

TCP1 2359.47 2478.48 2029.34 2856.51

TCP2 2354.4 2203.15 2554.72 1721.71

O
R

G
F

u
z
z
y

T
h
ro

u
g
h
p
u
t
[k

b
p
s
]

Table 5: Average losses with and without fuzzy controller

Newreno Reno Tahoe Sack

Total 24.56 27.78 28.93 25.37

TCP1 13.34 14.76 15.93 14.56

TCP2 11.22 13.02 13 10.81

Total 16.77 16.11 17.84 15.75

TCP1 8.6 8.31 10.88 8.32

TCP2 8.17 7.8 6.96 7.43

O
R

G
F

u
z
z
yL
o
s
s
e
s
 [
k
b
p
s
]

5.3 Real topology
In this section, a realistic topology is used to test the

performance of the proposed strategy. The topology generator

GT-ITM is used to produce the AT&T real network shown in

Figure 19. The topology contains 166 nodes and 189 links with

65 TCP connections in addition to 5 UDP connections [16]. The

simulation time is 45 seconds.

Table 6 Fairness Index with and without fuzzy controller

Newreno Reno Tahoe Sack

Throughput 0.999983166 0.943232022 0.978473717 0.920648735

Losses 0.992604099 0.996092189 0.989846721 0.978618652

Throughput 0.999998843 0.996553221 0.987034808 0.942117107

Losses 0.99934297 0.998998815 0.953942068 0.996817017

O
R

G
F

u
z
z
yF
a
ir
n
e
s
s
 I
n
d
e
x

Fig 19: AT&T network topology

Figure 20, 21, and 22 presents the average throughput, the

average packet losses, and average packet delay respectively, for

the original protocols with and without the proposed fuzzy

controller. From the figures, the proposed fuzzy approach

enhances throughput, reduces both the average packet dropping

rates and average packet delay.

Fig 20: Average throughput with and without modification

Fig 21: Average packet lost with and without modification

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.1, February 2014

8

Fig 22: Average packet delay with and without modification

6. CONCLUSIONS
In this paper, a fuzzy logic controller is proposed to adapt the

congestion window size dynamically based on the available

network capacity at any time of operation. This approach is

developed to be used instead of the AIMD strategy that blindly

adapts the congestion window size. The proposed strategy is

embedded into the most widespread congestion control

protocols including, Tahoe, Reno, NewReno, and Sack. The

performance behaviour of the proposed protocol is tested and

compared with the original protocols considering simple and

real network topologies by using the network simulator NS2.

The simulation results show that, the proposed fuzzy approach

improves the original end-to-end congestion control protocols

against throughput, packet dropping rates and packet delay.

7. REFERENCES
[1] J. Nagle, “Congestion control in IP/TCP Internetworks,”

Request for Comments (RFC) 896, Internet Engineering

Task Force, January 1984.

[2] V. Jacobson, “Congestion Avoidance and Control,” ACM

SIGCOMM Computer Communication Review, Vol. 18,

No. 4, pp. 314-329, August 1988.

[3] V. Jacobson, "Berkeley TCP Evolution from 4.3-Tahoe to

4.3 Reno," Proceedings of the 18th Internet Engineering

Task Force, University of British Columbia, Vancouver,

BC, Aug. 1990.

[4] S. Floyd, T. Henderson, and A. Gurtov, "The NewReno

Modification to TCP’s Fast Recovery Algorithm”, RFC

3782, April 2004.

[5] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP

Selective Acknowledgment Options,” RFC 2018, Internet

Engineering Task Force, October 1996.

[6] W. Stevens, no, "TCP Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery Algorithms", RFC

2001, January 1997.

[7] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,

"Performance Evaluation of End-to-End Congestion

Control Protocols", Minufiya Journal of Electronic

Engineering Research (MJEER), Vol. 18, No. 2, pp. 99-118,

July 2008.

[8] Kolawole I. Oyeyinka, Ayodeji O. Oluwatope, Adio. T.

Akinwale, Olusegun Folorunso, Ganiyu A. Aderounmu,

and Olatunde O. Abiona, "TCP Window Based Congestion

Control Slow-Start Approach," Communications and

Network, Vol. 3, pp.85-98, , May 2011.

[9] Cheng-Yuan Ho, Yaw-Chung Chen, Yi-Cheng Chan,

Cheng-Yun Ho, "Fast retransmit and fast recovery schemes

of transport protocols: A survey and taxonomy," Computer

Networks, Vol. 52, pp.1308–1327, 2008.

[10] S. Floyd, T. Henderson, A. Gurtov, Y. Nishida "The

NewReno Modification to TCP's Fast Recovery Algorithm"

RFC 6582, April 2012.

[11] Adel Nadjaran Tousi, Mohammad Hossien Yaghmaee, ” A

Fuzzy Based TCP Congestion Controller” international

symposium on telecommunications, PP. 641-646,

September 10-12 2005

[12] Deepa Jose, R.R.Mudholkar "Congestion Control in

TCP/IP Using Fuzzy Logic" IJMIE, Volume 2, Issue 5

ISSN: 2249-0558, PP. 539-544, May 2012.

[13] H. Nejad, M. Yaghamaee, H. Tabatabaee “Modified Fuzzy

TCP: Optimizing TCP congestion control”, IEEE 2006

[14] NS2 Network Simulator, http://www.isi.edu/nsnam/ns/

[15] Deepa Jose, Dr.R.R.Mudholkar, "Congestion Control in

TCP/IP Using Fuzzy Logic", IJMIE Volume 2, Issue 5

ISSN: 2249-0558, PP. 568-576, May 2012.

[16] H. Natiq James, Z. Ahmed Zukarnain, M. Shamamla

Subramaniam, "Fairness of the TCP-Based New AIMD

Congestion Control Algorithm" Journal of Theoretical and

Applied Information Technology, KOM Technical Report

2002, JATIT.

IJCATM : www.ijcaonline.org

http://www.isi.edu/nsnam/ns/

