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ABSTRACT 

Transmission Control Protocol (TCP) is the transport-layer 

protocol widely used in the internet today. TCP performance is 

strongly influenced by its congestion control algorithms which 

limit the amount of transmitted traffic based on the estimated 

network capacity to avoid sending packets that may be dropped 

later. In other words Congestion Control is Algorithms that 

prevent the sender from overloading the network. This paper 

presents a modified fuzzy controller implementation to estimate 

the network capacity which reflected by congestion window 

size. Fuzzy controller use Round Trip Time “RTT” as network 

traffic indication as well as current window size and slow start 

threshold “ssthresh” as currently occupied bandwidth indicator. 

NS2 used as a simulation tool to compare proposed fuzzy 

approach with most widespread congestion control protocols 

including; TCP-Tahoe, Reno, New Reno, and Sack. Simulation 

results show that the proposed mechanism improves the 

performance against throughput, packet drop, packet delay, and 

connection fairness. 

General Terms: Computer Networks, Network Protocols. 

Keywords: Network Protocols, TCP, Congestion control, 

NS2, Fuzzy logic 

1. INTRODUCTION 
Congestion is a serious problem for today’s wide-area networks, 

i.e., the Internet. It occurs when many sources sends data packets 

to a router whose output capacity is less than the sum of the 

inputs [1]. The result of congestion is that, some packets may be 

dropped. Congestion control is thus required to avoid congestion 

collapse and enhance network performance. Without congestion 

control, a source node could be busy transmitting packets that 

may be dropped later because of congestion collapse. Over 

years, continuous efforts are carried out to avoid the problem of 

congestion collapse. The most widespread mechanism is that 

provided by the Transmission Control Protocol (TCP). TCP is a 

window based, connection-oriented, reliable data transfer 

protocol. It provides byte stream service on the top of the 

Internet Protocol (IP). TCP has been refined several times 

during the last years to ensure the internet stability and improve 

the internet performance. In 1988, a congestion control protocol, 

called TCP Tahoe, was initiated [2]. It initiates by slow start 

mechanism, then enters into congestion avoidance when the 

window size reaches a threshold value, and finally enters into 

fast retransmit mechanism when detects congestion. In 1990, the 

TCP Tahoe is modified by adding a fast recovery mechanism. 

The modified protocol is called TCP-Reno [3].  In Reno, when 

duplicate acknowledgements arrive at the TCP sender, it enters 

into fast recovery instead of switching to slow-start as Tahoe. 

Additional modifications to TCP Reno are done and several 

protocols are developed. These include; NewReno [4] and 

SACK (TCP with Selective Acknowledgement) [5]. In TCP-

NewReno, a slight modification is added to the TCP-Reno 

implementation to improve the performance during the fast 

recovery phase [4]. TCP-SACK only modifies the fast recovery 

algorithm of TCP-Reno keeping the other algorithms unchanged 

[5]. Although many congestion control protocols were 

developed, they use packet dropping as an indication of network 

congestion. Also, most of the developed protocols use the 

Additive Increase Multiplicative Decrease (AIMD) strategy to 

change the packet sending rate at the TCP sender [6, 7]. But, 

this strategy inefficiently utilizes the available capacity of the 

internet. With no congestion, the AIMD strategy linearly 

increases the congestion window (cwnd) size, while it halves the 

cnwd as well as congestion is detected without regarding the 

current state of the network. In this paper, a new approach based 

on fuzzy logic is developed to enhance the end to end 

congestion control protocols. The basic idea is to adapt the 

congestion window size, at the TCP sender, dynamically based 

on the estimated capacity of the network, instead of using the 

AIMD strategy as all the previous protocols. The proposed 

strategy is embedded in the TCP Tahoe, Reno, New Reno and 

Sack, and then evaluated by using the network simulator NS2. 

The obtained results are compared with that obtained by the 

most widespread congestion control protocols; TCP Tahoe, 

Reno, New Reno and Sack. The simulation results indicate that 

the proposed approach improves the network performance 

against throughput, packet drop, packet delay and fairness. The 

rest of this paper is organized as follows. Section 2 introduces 

the basics of the most widespread congestion control protocols; 

Tahoe, Reno, NewReno and Sack. Section 3 describes the 

congestion problem. Section 4 presents the proposed fuzzy 

approach. The effect of proposed fuzzy approach on congestion 

avoidance is studied in Section 5 by using NS2. Finally, the 

conclusions are listed in Section 6.  

2. CONGESTION CONTROL 

PROTOCOLS 
This section presents the most widespread congestion control 

protocols including; TCP-Tahoe, TCP-Reno, TCP-NewReno 

and TCP-Sack.  

2.1 TCP Tahoe 
Tahoe introduce in 1988, as the first congestion control 

protocol, to overcome the problem of congestion collapse. It has 

three main algorithms called; slow start, congestion avoidance, 

and fast retransmit. 

2.1.1 Slow Start 
Slow start is a way to initiate data flow across a connection by 

gradually increases the amount of data in transient [6]. At the 

beginning of the connection establishment phase, the congestion 

window (cwnd) is initialized to one segment. The congestion 

window then increases by one segment for each 
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acknowledgement returned, i.e., the cwnd is effectively doubled 

per RTT (exponential increase). The incremental of the cwnd 

continues until it arrives to the slow start threshold (ssthresh), or 

detects a packet loss [8].  

    /* slow start */ 
Initially: cwnd = 1; 

 
 For each newly acknowledged segment: 

     If (cwnd < ssthresh) 

         cwnd = cwnd + 1;   /*exponential increase*/ 

                     Until (congestion occur, or, cwnd >= ssthresh) 

2.1.2 Congestion Avoidance 
Congestion avoidance begins after slaw start, when the cwnd 

reaches the ssthresh.  In this phase, the cwnd increases linearly 

by one segment every Round Trip Time (RTT) to avoid possible 

congestion. The increasing rate of the cwnd continues until 

congestion event is detected [8]. At this point, the transmission 

rate should be slowed down, as follows: (i) If the congestion is 

detected by 3 duplicate ACKs, the TCP sender invokes the fast 

retransmit phase because it believes that a segment has been lost. 

(ii) If the congestion is detected by the timeout expired, the TCP 

sender got the slow start phase. 

/* Congestion Avoidance */ 

For each newly acknowledged segment: 

/*cwnd increases by 1 per RTT */ 

cwnd += 1/cwnd;            */Additive increase*/ 

Until (timeout or 3 Duplicate ACKs) 

If 3 Duplicate ACKs:       

cwnd = cwnd/2;                      /* Multiplicative decrease */ 

ssthresh = cwnd; 

Invoke fast retransmit phase 

If Timeout: 

ssthresh = cwnd/2;                  /* Multiplicative decrease */ 

cwnd = 1; 

Go to slow start phase 

2.1.3 Fast Retransmit 
In fast retransmit, the sender retransmits what seems to be 

missing segment, without waiting for timeout expiration, and 

enters into slow start phase after setting the cwnd  to 1 [9]. 

Figure 1 shows the behaviour of the cwnd during different 

phases. At beginning, the cwnd is set to 1 and increases in 

exponential manner until reaches the ssthresh. Then the 

congestion avoidance phase starts and the cwnd increases in 

linear manner until occurrence of congestion event due to packet 

loss. The new ssthresh is set to half of cwnd and the cwnd is set 

to 1, and then the protocol enters into the slow start phase. 

 

 
Fig 1: The cwnd behaviour 

2.2 TCP Reno 
Reno is the improvement of TCP Tahoe. It includes a fast 

recovery algorithm to TCP Tahoe. 

2.2.1 Fast Recovery Algorithm: 
In TCP Reno, the sender switches to the fast recovery phase 

after fast retransmit, when it receives 3 duplicate 

acknowledgements, instead of switching to slow-start as Tahoe. 

The reason for going to fast recovery instead of slow start is to 

allow the sender to work in congestion avoidance phase. This 

behaviour improves the network throughput as more packets will 

be transmitted [9, 10]. 

/* Fast Recovery */ 

/* after retransmission of missed packets, don’t enter slow start 

but enter fast recovery */ 

 
ssthresh = cwnd/2 

cwnd= 3 + ssthresh 

Return to congestion avoidance phase 

 
Briefly, when the TCP sender detects congestion, it must slow 

down its transmission rate. Generally, the sender may detect 

congestion as a result of the reception of 3 duplicate 

acknowledgements or the expiration of retransmission timer. If 

the congestion is detected by a timeout, the congestion window 

is reset to one segment and the sender enters into Slow Start 

mode. But, if the congestion is detected by 3 duplicate 

acknowledgements, fast retransmit and then fast recovery 

algorithms are invoked. At that time, the congestion window at 

the TCP sender is set to one half of the current window size, 

with a minimum value of at least two segments. During fast 

retransmit, after setting the value of cwnd and ssthresh, the 

sender retransmits what seams to be lost, then, enters the fast 

recovery mode. When the sender receives a fresh 

acknowledgement, it exits that phase and starts congestion 

avoidance phase.  

2.3 TCP NewReno 
NewReno provides a slight modification to the TCP-Reno to 

overcome the problem arises with Reno whenever multiple 

packets are lost from the same transmission window [4]. In other 

words, NewReno enhances the sender’s behaviour during the 

fast recovery mechanism to eliminate the Reno’s wait for a 

retransmit time-out whenever multiple packets are lost from the 

same transmission window [10]. The new medications make the 

sender to continue in fast recovery until all the packets which 

were outstanding during the start of the fast recovery have been 

acknowledged. This behaviour overcomes the problem of 

multiple losses without entering into fast recovery multiple times 

or causing timeout. In this case, two types of acknowledgements 

are used; partial ACK and full ACK. The partial ACK is 

considered as an indication that the packet following the 

acknowledged one has been dropped from the same transmission 

window, and therefore, TCP NewReno immediately retransmits 

the other lost packet indicated by the partial acknowledgement 

and remains in fast recovery. The full ACK is considered as an 

indication that the entire data packet in the window is 

acknowledged and the exit fast recovery. 

After ACK 

If (partial ACK)  

then stay in fast recovery and transmit one packet every RTT 

If (full ACK)  

then exit fast recovery 

0 

Slow 

Start 

Congestion 
Avoidance Congestion occurs 

Threshold 

Congestion 

Window 
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2.4 TCP Sack 
TCP SACK (TCP with Selective Acknowledgement) is an 

extension to the TCP Reno. It only modifies the fast recovery 

algorithm of Reno keeping the other algorithms unchanged [5]. 

Similar to NewReno, TCP SACK handles multiple packet losses 

from the same window but it has a better estimation capability 

for the number of outstanding packets. In TCP-Reno, a 

Duplicate ACK means that the receiver received data out of 

order. In TCP-Sack, a duplicate ACK carries the same 

information and also carries information on what other data 

segments that have been received out-of-order. The sender starts 

the data recovery mechanism after receiving 3 duplicate ACKs. 

TCP-Sack adds to the packet an option field that contains a pair 

of sequence numbers which describe the block of data that was 

received out-of-order. A TCP sender uses Sack options to build 

a table of all the correctly received data segments, thus it knows 

exactly which parts are missing to retransmit them together 

during a recovery phase. The main drawbacks of this protocol is 

that the receiver side needs some modification and difficult to 

implement. 

3.   PROBLEM STATEMENT 
From the above discussion, several congestion control protocols 

have been developed to prevent congestion collapse. However, it 

is clear that, all the previous protocols are developed based on 4 

mechanisms; slow start, congestion avoidance, fast retransmit 

and fast recovery. Indeed, the developed protocols use packet 

drop as the indication of network congestion. Also, they use the 

AIMD (Additive Increase, Multiplicative Decrease) strategy to 

change the packet sending rate at the sender. The slow start 

approach blindly changes the sending rate in static manner 

without regarding the current state of the network. Briefly, at 

beginning, the slow start begins by setting the cwnd to one 

segment and then duplicate the cwnd every RTT. This behaviour 

inefficiently utilizes the available bandwidth at the beginning of 

this phase. Indeed, it needs many RTT to reach the optimal 

operating point that allows using the available bandwidth. Also, 

the exponential growth of the cwnd may cause severe buffer 

overflow and so many packets may be dropped at the moment of 

congestion event. Also, the Additive Increase Multiplicative 

Decrease (AIMD) strategy that used during the congestion 

avoidance phase inefficiently utilizes the available capacity of 

the network. In the case of no congestion, the AIMD linearly 

increases the congestion window (cwnd) size at the TCP sender. 

This in turn does not utilize the network capacity efficiently 

because the number of packets to be transmitted is less than the 

available capacity. On the other hand, when congestion is 

detected, the AIMD halves the congestion window size without 

regarding the current state of the network which in turn 

decreases the packet sending rate and so decreases the network 

utilization. 

To overcome this problem, the sending rate should be adapted 

as a function of the available capacity of the network. In other 

words, a new approach is required at the TCP sender, instead of 

the AIMD strategy, to adopt the sender sending rate based on 

the available network capacity at any time. 

4. PROPOSED ALGORITHM 
This section presents a new approach, called fuzzy controller, to 

adapt congestion window size at the TCP sender dynamically 

based on the available capacity of the network. This approach 

may be embedded in all the previous protocols, instead of the 

AIMD strategy, to improve their performance. In other words, 

the fuzzy controller could be applied instead of both the slow 

start and the congestion avoidance phases. The basic idea of the 

proposed fuzzy controller is that, the congestion window size at 

the TCP sender is determined dynamically at any time based on 

the traffic load in the network. The proposed fuzzy controller 

changes the behaviour of the cwnd from static exponential 

increase during slow start and static linear increase during 

congestion avoidance to dynamic non-analytical approaches and 

more intelligence behaviour that based on the network traffic 

load and current cwnd to ssthresh gap. The following sections 

first present the basic concepts of fuzzy logic and then describe 

the proposed fuzzy controller. 

4.1 Fuzzy logic 
Fuzzy logic is one of the Computational Intelligence (CI) tools 

that may be used in situations where traditional control theoretic 

approaches cannot be used because of the difficulties in 

obtaining a formal analytical model. Fuzzy Logic Control (FLC) 

may be viewed as a way of designing feedback controller in 

which analytical models are not easily obtainable or the model 

itself, if available, is too complex and possibly highly nonlinear 

[11,12]. The FLC has been applied successfully for controlling 

systems. It basically consists of four parts including; a fuzzifier, 

a defuzzifier, an inference engine and a fuzzy rule base, as 

shown in Figure 2 [11]. As in many fuzzy control applications, 

the input data are usually crisp, so a fuzzification is necessary to 

convert the input crisp data into a suitable set of linguistic value 

that is needed in inference engine. In the rule base, a set of fuzzy 

control rules, which characterize the dynamic behaviour of 

system, are defined. The inference engine is used to form 

inferences and draw conclusions from the fuzzy control rules. 

 

Fig 2: Basic configuration of fuzzy system 

4.2 Proposed Fuzzy Controller 
The proposed fuzzy controller adapts the size of congestion 

window using fuzzy system. The system is based on the current 

cwnd, the ssthersh, the average RTT and the network traffic load 

that indicated by Last RTT. The proposed fuzzy controller has 

two input parameters sc and dr, and a fuzzy controller output 

parameter dcwnd. Where, sc = (ssthresh-cwnd) / ssthresh and dr 

= (average RTT- RTT) / (0.5(average RTT + RTT)) [13]. The sc 

parameter is the first FLC Member Ship Function (MSF). It 

indicates the gap between the ssthresh and the cwnd and ranges 

from 0 to 1, as shown in Figure 3. The value 0 means ssthresh = 

cwnd (denoted by L), the value 1 means cwnd = 0 (denoted by 

H) and the value 0.5 means ssthresh = 2 cwnd (denoted by M). 

 

Fig 3: The sc Member Ship Function 
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The dr parameter is the second FLC MSF. It indicates the 

network traffic and ranges from 0 to 2, as shown in Figure 4, 

where, 0 reflects low traffic and 2 reflects high traffic. 

 

Fig 4: The dr Member Ship Function 

In proposed fuzzy approach, the dr parameter reflects the 

following; from 0.5 to 1 means network traffic decrease “D”, 

from 1 to 1.5 network traffic increase “I”, and from 0.9 to 1.1 

the network traffic stable “Z”. The proposed fuzzy controller 

uses singleton fuzzifier, product interference engine, centre 

average defuzzifier [13] and the proposed fuzzy rules is shown 

in Table 1. 

In the proposed approach, fuzzy sets centres range from 1 to 8, 

as shown in Table 1. The final output is multiplied by weight 

function (wf), as shown in Figure 5. The wf is added as a block 

in the FLC as shown in Figure 6 with the final output. 

wf = 2 - (cwnd / ssthresh) during slow start 

wf = (ssthresh / cwnd ) during congestion avoidance 

Table 1: Fuzzy Rules 

L M H D Z I

1 0 0 1 0 0 S- 1

1 0 0 0 1 0 S 1.5

1 0 0 0 0 1 S+ 2

0 1 0 1 0 0 M- 3

0 1 0 0 1 0 M 4

0 1 0 0 0 1 M+ 5

0 0 1 1 0 0 L- 6

0 0 1 0 1 0 L 7

0 0 1 0 0 1 L+ 8

sc dr
dcwnd

 
 

At the beginning of slow start wf duplicate the FLC output and 

at the end of slow start wf = 1 but during congestion avoidance 

wf is Inverse relationship = ssthresh / cwnd. 

 
Fig 5: weight function (wf) 

 

 

Fig 6: proposed fuzzy system 

5. PERFORMANCE EVALUATION 
To study the effect of the suggested fuzzy controller on the 

behaviour of TCP, the old cwnd of the TCP agent is replaced 

with the new strategy. Then, its behavior is tested using the 

network simulation tool NS2 [14] and compared with the 

original TCP protocols considering different topologies; simple 

and real AT&T topology. In each topology, the comparison is 

focused on throughput, losses, packets delay and fairness.  

5.1 Simple topology 
The simple topology constructed from 6 nodes; two sources (N1 

and N2), two destinations (N3 and N4), and two routers (R1 and 

R2), as shown in Figure 7. The link between the routers has 

bandwidth of 1.7 Mbps and delay of 20ms and acts as the 

bottleneck link of this topology. A TCP connection is 

established between the source N1 and the sink N3 to transfer 

File Transfer Protocol (FTP) application. A UDP connection is 

established between the source N2 and the sink N4 to transfer 

Constant Bit Rate (CBR) application. The source nodes N1 and 

N2 are connected with R1 by a link has 2 Mbps bandwidth and 

10 ms delay. The destination nodes N3 and N4 are connected 

with R2 by a link has 2 Mbps bandwidth and 10 ms delay. Total 

simulation time is 20 seconds. The FTP application on the TCP 

connection starts at first second and ends at 20s. The CBR 

application for UDP connection starts at second 8 and stop at 

second 12. This scenario is used to study the behavior of the 

congestion control mechanisms in case of suddenly traffic is 

added and suddenly removed and also during sharing same link 

with UDP connection. 

 

Fig 7: Simple Network Topology 

Figure 8 shows the instantaneous throughput of the original 

congestion control protocols; Taheo, Reno, NewReno and Sack. 

The figure shows that the highest utilization of network capacity 

is achieved by the TCP NewReno.  
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Fig 8: Throughput of original protocols  

Figure 9 shows the instantaneous packet losses of the original 

congestion control protocols; Taheo, Reno, NewReno and Sack. 

The figure shows that the lowest packet loss is achieved by the 

TCP Sack.  

Table 2 shows the average values of throughput, packet losses 

and delay of the original congestion control protocols and 

original protocols under different modification steps of the 

proposed algorithm. In Table 2; 

ORG: original protocols without modifications. 

M1:  proposed algorithm in [13]. 

M2: same M1 with proposed fuzzy rules in Table 1 and wf 

Figure 6. 

M3:  same M2 with proposed MSF Figure 4. 

M4: same M3 with average RTT calculated from the 3 previous 

RTT with more weight for last RTT, average RTT = 

(3*previous1 RTT + 2*previous2 RTT + previous3 RTT)/6 

M5: same M3 with average RTT = (previous1 RTT + previous2 

RTT +previous3 RTT)/3 

M6: same M3 with average RTT = smoothed RTT which is the 

average of RTT from time of connection established. 

From Table 2; the simulation results show that the proposed 

modification M4 provides the best network utilization overall 

other modifications. 

Table 2: Simulation results under different modifications 

ORG M1 M2 M3 M4 M5 M6

NewReno 4026.29 4138.52 4262.41 4284.18 4300.24 4180.8 4294.42

Reno 3552.05 3589.41 4102.01 4170.14 4115.52 3997.86 4144.92

Tahoe 3730.95 3819.63 3986.11 3997.36 3978.29 3936.91 4110.44

Sack 3517.44 3617.83 3793.49 3815.89 3773.41 3806.14 3848.78

NewReno 14.75 16.15 13.43 12.32 10.73 25.67 14.19

Reno 13.78 8.63 9.75 10.8 9.13 17.34 8.91

Tahoe 15.39 13.1 8.63 9.76 8.99 11.49 6.84

Sack 10.92 7.89 7.26 8.65 8.49 9.01 13.84

NewReno 0.0542 0.0548 0.0551 0.0552 0.0551 0.0546 0.0559

Reno 0.0537 0.054 0.0548 0.0549 0.0547 0.0541 0.0551

Tahoe 0.0546 0.0541 0.0549 0.055 0.055 0.0551 0.0556

Sack 0.0542 0.0537 0.0546 0.0549 0.0547 0.0549 0.0553
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Fig 9: Packet losses of original protocols  

Figure 10, 11, and12 show the instantaneous throughput, packet 

dropping and delay of the original TCP NewReno and the TCP 

NewReno including M4 modification. From the figures, 

embedding the proposed modification M4 into the TCP 

NewReno improves its performance against throughput, packet 

dropping and packet delay. 

 

Fig 10: Throughput of NewReno and NewReno with M4 

 

 

Fig 11: Packet losses of NewReno and NewReno with M4  

 



International Journal of Computer Applications (0975 – 8887)  

Volume 87 – No.1, February 2014 

6 

 

Fig 12: Packet delay of NewReno and NewReno with M4 

Figure 13, 14, and 15 show instantaneous throughput, packet 

dropping and delay of the TCP NewReno including M1 

modification and the TCP NewReno including M4 modification. 

 

Fig 13: Throughput of NewReno with M1 and NewReno 

with M4  

 

Fig 14: Packet losses of NewReno considering M1 and M4   

 

Fig 15: Packet delay of NewReno with M1 and M4 

Figure 16 shows the behavior of cwnd of the original TCP 

NewReno and the TCP NewReno including M4 modification. 

Figure 17 shows the behavior of cwnd of the TCP NewReno 

with M1 and the TCP NewReno including M4 modification. 

From the figures, embedding the proposed modification M4 into 

the TCP NewReno improves its performance. 

 

Fig 16: cwnd of NewReno and NewReno with M4 

 

 

Fig 17: cwnd of NewReno with M1 and NewReno with M4 

Table 3 shows average throughputs for TCP and UDB flows, 

Fuzzy M4 approach enhance TCP as shown and UDB is the 

same because of CBR application which generate constant 

traffic. 

Table 3 Total, TCP and UDB average throughput 

Newreno Reno Tahoe Sack

Total 4026.29 3552.05 3730.95 3517.44

TCP 3724.74 3250.86 3430.19 3214.62

UDB 301.55 301.19 300.76 302.82

Total 4300.24 4115.52 3978.29 3773.41

TCP 3995.78 3808.2 3674.27 3466.9

UDB 304.46 307.32 304.02 306.51
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5.2 Fairness Study 
Although the proposed modification improves the protocols in 

terms of link utilization and packet delay, the protocol must also 

be fair against different flows. To measure fairness, the 

following Fair Index [15] is used. 
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Where, xi is the throughput of the ith flow and n is the total 

number of flows. The fairness index of a system ranges from 0 to 

1, with 0 being totally unfair and 1 being totally fair [15].Figure 

18 shows the network topology that used to study the fairness 

between 2 TCP flows. Each flow transfers FTP application. The 

two FTP start and end at the same time, and share the same 

bottleneck connection between R1 and R2. 

 

Fig 18: Network Topology with 2 TCP flows 

Tables 4, 5 and 6 show the average throughput, the average 

packet losses, and Fairness index respectively, for the original 

protocols with and without the proposed fuzzy controller. From 

the tables, embedding the fuzzy approach into the protocols 

enhance total network utilization, decrease packet losses and 

achieve fairness between the different network flows. 

Table 4: average throughput with and without fuzzy 

controller 

Newreno Reno Tahoe Sack

Total 4604.03 4411.57 4458.97 4345.05

TCP1 2292.57 2746.92 2560.17 2810.34

TCP2 2311.46 1664.65 1898.8 1534.71

Total 4713.87 4681.63 4584.06 4578.22

TCP1 2359.47 2478.48 2029.34 2856.51

TCP2 2354.4 2203.15 2554.72 1721.71
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Table 5: Average losses with and without fuzzy controller 

Newreno Reno Tahoe Sack

Total 24.56 27.78 28.93 25.37

TCP1 13.34 14.76 15.93 14.56

TCP2 11.22 13.02 13 10.81

Total 16.77 16.11 17.84 15.75

TCP1 8.6 8.31 10.88 8.32

TCP2 8.17 7.8 6.96 7.43
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p
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5.3 Real topology 
In this section, a realistic topology is used to test the 

performance of the proposed strategy. The topology generator 

GT-ITM is used to produce the AT&T real network shown in 

Figure 19. The topology contains 166 nodes and 189 links with 

65 TCP connections in addition to 5 UDP connections [16]. The 

simulation time is 45 seconds. 

 

Table 6 Fairness Index with and without fuzzy controller 

Newreno Reno Tahoe Sack

Throughput 0.999983166 0.943232022 0.978473717 0.920648735

Losses 0.992604099 0.996092189 0.989846721 0.978618652

Throughput 0.999998843 0.996553221 0.987034808 0.942117107

Losses 0.99934297 0.998998815 0.953942068 0.996817017
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Fig 19: AT&T network topology 

Figure 20, 21, and 22 presents the average throughput, the 

average packet losses, and average packet delay respectively, for 

the original protocols with and without the proposed fuzzy 

controller. From the figures, the proposed fuzzy approach 

enhances throughput, reduces both the average packet dropping 

rates and average packet delay. 

 

Fig 20: Average throughput with and without modification 

 

 

Fig 21: Average packet lost with and without modification 
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Fig 22: Average packet delay with and without modification 

6. CONCLUSIONS 
In this paper, a fuzzy logic controller is proposed to adapt the 

congestion window size dynamically based on the available 

network capacity at any time of operation. This approach is 

developed to be used instead of the AIMD strategy that blindly 

adapts the congestion window size. The proposed strategy is 

embedded into the most widespread congestion control 

protocols including, Tahoe, Reno, NewReno, and Sack. The 

performance behaviour of the proposed protocol is tested and 

compared with the original protocols considering simple and 

real network topologies by using the network simulator NS2. 

The simulation results show that, the proposed fuzzy approach 

improves the original end-to-end congestion control protocols 

against throughput, packet dropping rates and packet delay. 
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