
International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

Bridging the Performance Gap between Manual and
Automatic Compilers with Intent-based Compilation

Waseem Ahmed
College of Computer Science

King Khalid University, Abha, Saudi Arabia

ABSTRACT
In spite of years of research in automatic parallelization, progress
has been slow in terms of tools that can consistently generate scal-
able, portable and efficient code for multiple architectures. More-
over, a substantial difference in efficiency exists between code gen-
erated automatically and code generated by an expert programmer.
Although the fact that the best sequential algorithm for a problem
can be very different from the best parallel algorithm is well known,
the feature of algorithm substitution is absent from most tools avail-
able today. However, automatically identifying an algorithm used
in code is not trivial considering the nuances in programming style,
algorithmic representations and expressions. This paper presents
a novel Intent Based Compilation approach that uses a rule-based
Expert System Engine to identify the intent of the algorithm used
in the code based on fine- and coarse-grained features extracted
from code. Using this information, the most optimized algorithm
for the target architecture is then substituted. Results obtained
by using Amoeba, a framework that incorporates this methodol-
ogy, on codes obtained from the public domain are presented.

General Terms:
Automatic Parallelization, Parallelization Tools

Keywords:
Intent-based compilation, automation, code-to-code transformers,
parallelization, parallel compilers

1. INTRODUCTION
With the increased pervasiveness of massively parallel GPUs, ac-
celerators and FPGAs on general-purpose commodity computers,
parallel computing is no longer restricted to elitist machines [1].
The popularity of clusters made with off-the-shelf components, the
increasing ratio of number of cores per processor die and the pres-
ence of multiple processors on single machines, will have a large
impact on the parallel programming community. Parallel program-
ming that was once restricted to the HPC community, will soon
involve the mainstream programmers in fields as diverse as Em-
bedded Systems, Browser development, Game Programming and
Operating Systems for smart phones, tablets, netbooks and game
consoles. The next sub sections highlight the effects of these trends
on automatic parallelization.

1.1 Software and Software compiler Requirements
In the past, each generation of hardware brought increased perfor-
mance for existing applications and a code rewrite was not needed
[2]. With the pervasiveness of diverse and specialized computing
architectures in HPC, high-end servers, Multi-processor System-
on-Chips (MPSoCs), Laptops and mobile platforms, code porta-
bility will soon become a major challenge. The responsibility of
ensuring scalable, portable and efficient parallel programming for
these specialized architectures will rest on the application develop-
ers and on the suite of tools available.
The HPC community relies on a large base of legacy sequential
code for its scientific computation. Parallelizing such applications
for even a single architecture is a complex exercise that incorpo-
rates both domain expertise and sophisticated programming skills.
In many cases, these applications are executed on various platforms
during their lifetime. This makes the task of debugging, testing,
porting, maintenance and versioning of code for these applications
challenging.

1.2 Automatic versus manual parallelization
In spite of decades of research in parallel development tools (au-
tomatic compilers, code-to-code transformers, parallel debuggers,
auto tuners and parallel development environments collectively re-
ferred to as parallel tools or parallel development environments in
the rest of this paper) manual parallelization still continues. One
main reason is that the automatically generated code, in the gen-
eral case, can never be as efficiently optimized for execution on a
particular architecture as hand-programmed code [3].
Indeed, the ability of a specialized human programmer to make
complex code transformations judiciously by intuition and experi-
ence clearly defines the path that future parallel tools should take.
This intelligent human-factor is seldom incorporated in automatic
compilers.

1.3 Loops and algorithms
The choice of algorithms used in a program heavily influences
the efficiency of the final application. To illustrate, consider two
sequential algorithms A1 and A2 that consists of O(n3) and
O(n2logn) operations, respectively, available to solve a particu-
lar problem. A sequential implementation will prefer the use of
the second more efficient algorithm. An automatic parallelization
tool will work on the premise that this is the best possible imple-
mentation. The ease and the degree of parallelization is not con-

1



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

sidered, although parallelizing A1 may result in a better parallel
time complexity. In manual hand-parallelization this is invariably
considered.
This paper presents a novel Intent Based Compilation (IBC)
methodology that incorporates human intelligence and expertise
into the parallel development environment. This research advances
the field in the following novel ways

—the use of an Expert System Engine in the parallelization process.
—supports for algorithmic replacements, when needed.

The rest of the paper is organized as follows. The next sections re-
views the literature on which this work is based. Section three de-
scribes the IBC methodology. Section four explains the structure of
the Amoeba framework that is used to implement the IBC method-
ology. Results are presented in the following section. Section seven
concludes the paper.

2. RELATED WORK
The past few decades has seen a lot of research on automatic com-
pilers, auto tuners and code-to-code transformers and the wide per-
formance gap between manual parallelization and that achieved by
an automatic compiler has continued to narrow. However, and con-
sidering the acute need for such tools in many areas today, a lot of
research is further needed. A programming framework is needed to
allow the large developer community to develop code for emerg-
ing heterogeneous architectures and develop parallel code that is at
least as correct as the sequential codes written today [2]. To start
with, a look at the shortcomings in such existing frameworks, tools
and approaches is essential so that these shortcomings can be min-
imized or eliminated.
Traditional automatic compilers have continued to focus primarily
on loops which, in general, happen to be the performance bottle-
necks and the most compute intensive portions of sequential code.
To correctly analyze such loops, the tools discourage the use of
dynamic aliasing (where many pointers point to the same memory
location) and complex and hybrid data types [3]. In addition, iter-
ative versions of algorithms are preferred over recursive functions
for easier analysis. Existing code that use recursive functions may
need to be rewritten to enable efficient parallelization by automatic
tools.
Automatic parallelization tools have continued to place restrictions
on the sequential programmer. [2] and [3] have listed such sugges-
tions, but they constrict the creativity of the sequential program-
mers. Moreover, these restrictions cannot be applied to the exist-
ing legacy sequential applications code base popularly used by the
HPC and the Embedded System community.
Existing programming paradigms and models like CUDA,
PThreads OpenMP, MPI and OpenCL require the programmer to
extensively modify existing code with parallel constructs while si-
multaneously ensuring the correctness of parallel execution. For
example, the unstructured nature of PThreads constructs has made
the development of correct and maintainable programs difficult [1].
These languages do not provide safety guarantees that significantly
reduces opportunities for hard-to-track bugs while improving de-
veloper productivity [2]. These features exist in some serial lan-
guages like Java and C#. Also, no currently available parallel lan-
guage, methodology or programming framework can completely
ensure a deterministic-by-default result [4]. As there is an increas-
ing trend towards heterogeneous computing, application developers
have to contend with multiple, sometimes incompatible program-
ming models (OpenMP, MPI, PThreads, CUDA, OpenCL, etc.) and
development environments [2]. As the degree of heterogeneity in

architectures increases, the development of software for these hy-
brid architectures becomes all the more complex. Furthermore, the
multilevel deep memory hierarchies in massively threaded GPUs
further exacerbate this case.
Autotuners help to an extent in alleviating the problem by gener-
ating a set of alternative implementations for blocks of code [5].
But exploring these various combinations to select the best imple-
mentation takes time, especially in cases when the search space
is not smooth and consists of many local minima or maxima [5].
Also, autotuners and many code-to-code transformers insert tool-
specific compiler directives and profiling statements within code.
For large evolving codes, this poses an additional burden during
program maintenance, evolution and porting.
A solution to this, proposed in [2], suggests using a two-tier soft-
ware framework that uses domain specific languages at one layer
and programmer expertise at the other. This is based on the predic-
tion that programming paradigms in the future will employ domain
specific languages at the abstraction level of MATLAB or SQL.
While this may be applicable while developing new applications,
this is not applicable for the large legacy software set that is avail-
able.
Another suggestion is to use highly parallelized and optimized li-
braries like BLAS, LAPACK, MKL, ATLAS, FFTW and OSKI
[6, 7, 8] but the code description of these libraries is need for au-
tomatic parallelization when porting to a new hybrid architecture.
Moreover, production of these carefully tuned parallel libraries will
involve performance coding and domain experts [2].
Many approaches use task graphs, Polyhedral models and variants
as intermediate representation to extract parallelism and for depen-
dency analysis. Although reverse engineering tools exist, analy-
sis is difficult for code that has not been structured well and that
uses complex data structures. Some automation tools like Cetus [9]
use basic parallel transformation techniques like privatization, re-
duction variable reduction and induction variable substitution. Al-
though these techniques are most relevant, they cannot bring the
performance of a badly written code to a hand-optimized level.
In spite of all these advances, the progress is only minimal [10].
The performance of these tools measured with codes from pop-
ular benchmark suites does not correctly reflect the advancement
in the automation field. Standard benchmarks, like NAS Parallel
Benchmarks, PARSEC [11] and SPEC CPU2006, used to test the
automation tools are well written and well structured having un-
dergone various code reviews, revisions and public inspections.
These benchmarks do not reflect the variations in style and capa-
bility of the mainstream and average programmer for which these
tools are supposedly being developed. Additionally, these tools
may be coded against these benchmarks and optimized specifically
for these. The amount of speedup obtained using existing commer-
cially available parallelization tools as compared to what can be
potentially obtained with manual parallelization reflects this. Also,
to obtain the highest possible performance for an application hu-
man intervention, sometimes rewriting code from scratch, will be
required [3]. One lesson from years of research in parallel pro-
gramming is that the complexity of parallel programming should
be hidden from the programmer as far as possible [12]. Also code
comprehension [13] will need to be made part of automation tools.
Two main reasons may be attributed to this. The first is that the al-
gorithm used in the sequential code is assumed to be well suited for
the target architecture. A replacement with another more paralleliz-
able algorithm is not considered. This is the case with almost all ex-
isting parallelization approaches including [10, 14, 9, 12, 15, 16],
to name a few. The second reason is that majority of the automatic
parallelizers and compilers convert the sequential program into a

2



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

binary executable format. This leaves very little for the parallel de-
veloper to work on in case additional parallelization could be man-
ually extracted. The work presented in this paper closely reflects
that in [17]. The major difference is that IBC does not require the
application developer to learn a new language nor is application
developer intervention required before the autotuning stage.
Intent-based compilation (IBC) presented in this paper addresses
many of the above mentioned shortcomings.

3. INTENT BASED COMPILATION
Intent-based Compilation (IBC) is a novel approach incorporates
human decision making into the compilation process. The human
expertise that is involved in manual parallelization of sequential
code generates, in most cases, parallel code that has a substantial
speedup when compared to parallel code obtained with automatic
parallelization.
The approach adopted by most automatic compilers and source-to-
source translators is a mechanical identification of nested loops and
inserting appropriate pragmas or parallel directives around them.
Some tools employ static or dynamic profiling of code to aid this
process. However, no attempt to identify the algorithm used in the
code is made nor is the replacement of the algorithm with a more
suitable one is considered.
IBC, similar to a programming expert in manual parallelization,
considers both these issues. Statements, blocks of code or entire al-
gorithms are considered for replacement if better alternatives exist
and are available. These replacements of algorithms, in most cases,
result in improvements in the time complexity [18, 19, 17].
To correctly emulate the manual process, the stages that a manual
hand-coded parallelization passes through are identified. The next
subsection explains these steps in the manual parallelization stage.
The next subsection explains the manual analysis and transforma-
tion process.

3.1 Manual Parallelization
The following questions are considered by an expert programmer
before parallelizing the sequential code

(1) Where are the performance bottlenecks?
(2) What problem is this bottleneck trying to solve (or which al-

gorithm is the programmer trying to use)?
(3) About the sequential algorithm itself -

(a) Can this sequential algorithm be easily parallelized? If
not,

(b) Is a better parallel algorithm already available that can
solve this problem? or

(c) Is there another sequential algorithm that can both be eas-
ily parallelized and yield better performance on being par-
allelized?

The first question can be easily answered by using static or dy-
namic profiling. The second and third require expertise in the do-
main. Once definite answers to these are obtained, the programmer
then proceeds to parallelize this bottleneck specifically and not ev-
ery loop block.

3.2 Algorithm Identification in IBC
Algorithms that commonly recur in the fields of HPC and Embed-
ded Systems, referred to as kernels, algorithmic species, dwarfs,
motifs or patterns, have been thoroughly studied and classified in
literature [20, 21, 22], These classifications are uses as a basis by

IBC to identify bottlenecks in code. The identified bottlenecks are
at the loop-block level of granularity. The appropriate slices [14]
are then replaced, if possible, by known versions of more efficient
and parallelizable solutions. This is further explained in section 3.4.
Algorithm can be implemented in different ways which makes this
step challenging. Consider the code snippets in Listing ?? for dense
matrix-matrix multiplication obtained from the public domain on
the Internet. Listings ?? (a) and (b) follow the naive text book de-
scription of the matrix-matrix multiplication algorithm taught in
elementary programming courses and one that is commonly used.
Matrices are defined as two-dimensional arrays of elements. This
implementation is easily parallelized using automatic compilers
and easily transformed into parallel code using code-to-code trans-
lators. The implementation of the algorithm using arrays is simple,
encouraged [3] and makes the code readable, portable and main-
tainable.
Another implementation of the same algorithm is given in Listing
?? (c). This uses a dynamically allocated pointer-to-pointer rep-
resentation with rows stored in contiguous memory space. To ac-
cess any particular element, a calculation involving the number of
columns and rows is used. For an expert sequential programmer,
this may be the preferred way of implementation, although it makes
the code less readable, less portable and less maintainable. Since
this version uses pointers, it makes automatic parallelization diffi-
cult. Most parallel tools discourage the use of pointers and cannot
easily parallelize this version [3].
Even when using the same language for implementation, differ-
ences in implementations will exist for the same algorithm. For
expert and experienced programmers, these patterns in code are
easily evident. For example, given any of the implementations of
the previous example, the dense matrix-matrix multiplication pat-
tern can easily be recognized. He can then easily parallelize this.
This feature of identification of an algorithm based on patterns is
built into IBC.
Using this feature, many of the passes made by source-to-source
translators and automatic parallelizers can be avoided. For exam-
ple, IBC avoids the detailed array section analysis and data de-
pendency analysis used by Cetus [9]. Instead, patterns are used to
match complete algorithm blocks. Hard-wired heuristics used by
traditional compilers [16] are re-framed as flexible Expert System
rules. This methodology gives IBC the added ability to correctly
and easily handle recursive functions, pointers, variations in imple-
mentations, and complex and recursive data structures like linked
lists and trees - features not commonly found in source-to-source
transformers and other automatic parallelization tools.

3.3 Focused Identification
In traditional approaches, profitable loops are prioritized for paral-
lelization. To correctly identify them, static and dynamic profiling
of code is necessary. In IBC, on the other hand, such loops are di-
rectly identified by scanning the code for pattern matches. Features
extracted from the code are matched against a collection of pat-
terns of HPC kernels, represented as rules in a knowledge base in
the Expert System Engine (ESE). These rules encapsulate an expert
programmers skills and a domain expert’s expertise in the ESE. A
rule for an algorithmic pattern is placed on the agenda only if all
the facts that satisfy the rule are found in the code. When a rule is
fired, all actions corresponding to the rule on the agenda are exe-
cuted [23].
This focused approach of IBC safely ignores loop-blocks that do
not contribute to the performance bottleneck. For example, loop
blocks used in the initialization of matrices and loop blocks that

3



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

perform addition operations on vectors and two-dimensional ma-
trices do not significantly affect the performance of the application
and can be safely ignored. This feature of IBC substantially reduces
the profiling time.

3.4 Loop Block Transformation
In manual parallelization, loop transformations may involve com-
plete algorithmic replacements. To further illustrate this, consider
dense two-dimensional matrix-matrix multiplication as an exam-
ple. Various algorithms with different time complexities exist to
achieve this - the naı̈ve three-nested-loop matrix multiplication
with a sequential time complexity of O(n3); Strassen’s algorithm
with a sequential time complexity of O(n2.81); and other improve-
ments to these algorithms with sequential time complexities as low
as O(n2.376) [18]. Although some of these are complex to imple-
ment, the performance improvements obtained for large values of
n makes the effort worthwhile. Similarly, many parallel algorithms
exist along with their sequential counterparts to solve problems,
differing widely in implementation complexity, ease of paralleliza-
tion, and scalability [24, 19, 18, 25, 26]. Additionally, libraries op-
timized to implement algorithms for particular architectures like
BLAS, ATLAS, FFTW and OSKI [6, 7, 8] have also been imple-
mented.
The identification and subsequent ’intelligent’ replacement of algo-
rithms, although common practice in manual parallelization, is sel-
dom considered by automatic parallelization tools while paralleliz-
ing sequential code. This feature is made available in IBC whereby
an entire block of code and the relevant slices if necessary, if nec-
essary, are substituted by a better algorithm.

4. DESCRIPTION OF AMOEBA
The IBC approach has been implemented in Amoeba, an auto-
matic compiler framework. It consists of three main components
as shown in Figure 1.

(1) Feature Extractor (FE)
(2) Pattern Identifier (PI)
(3) Code Instrumentor (CI)

The Pattern Identifier and the Code Instrumentor components to-
gether comprise the Embedded System Engine (ESE). A detailed
explanation of the components is given in the next subsections.

4.1 Feature Extractor
The Feature Extractor is the lexical analyzer component in IBC that
extracts specific features present in input code. These features in
code uniquely and collectively identify a block(s) of code as an al-
gorithmic pattern and are used to distinguish one HPC pattern from
another. Features are extracted at five different levels of granularity
- at the function level, loop-block level, loop level, the statement
level and the variable level. Features at the function level include
the number and type of parameters, whether or not the function is
recursively called, whether the function uses loops, etc. Features
at the loop-block level include the nesting depth (number of loops),
etc. Features at the loop level include details about the loop indices,
the values of loop increments, the initial and termination values,
nature of the statements within each loop, etc. Features for each
statement within the loop include the type of expression, type of
parameters on the LHS and RHS of the operator, the main operator,
sub operators, etc. Features for the variable include the dimension
of variable, its indices, lower and upper bound, etc. The extracted

features in code are stored as facts in a fact list for subsequent anal-
ysis by the ESE.
The Feature Extractor has been implemented using flex and C. The
output of the Feature Extractor is a facts list that follows the CLIPS
[23] format. For every feature extracted, a deftemplate fact is as-
serted (added) to the fact list. As CLIPS is a non-procedural pro-
gramming language, the sequence of facts in the fact list is not im-
portant.

4.2 Pattern Identifier
The Pattern Identifier (PI) is part of the Expert System Engine. This
component captures the expertise of both the expert programmer
and the domain expert as rules in the ESE’s knowledge base. Rules
describe algorithms and their variations based on the presence or
absence of facts in the facts list. They help the ESE to easily lo-
cate and identify matches in the fact list. Separate set of rules are
needed for each kernel classified in [20, 21]. The input to the Pat-
tern Identifier is the fact list generated by the Pattern Extractor.
On execution, a rule for a kernel pattern is fired on the presence or
absence of facts in the fact file.
To further illustrate, consider two-dimensional dense matrix-
matrix multiplication. The 2D-dense-matrix-matrix-multiplication
rule needs about nine facts to be fired. On the presence of all of
these nine facts in the facts list, the rule is activated and a new
fact asserted into the facts list indicating the presence of the 2D-
dense-matrix-matrix-multiplication pattern in code along with its
location specific details in code. Additional rules exist to eliminate
unneeded and irrelevant facts (for example, statements within a sin-
gle nested loop), and to concatenate multiple facts into single facts.
This substantially prunes the facts list.
These new facts in the facts list serve as input to the next component
of Amoeba.

4.3 Code Instrumentor
The Code Instrumentor (CI) is the third main component of
Amoeba. The inputs to the CI are the modified facts list from the
Pattern Identifier, the original input file and the specification of the
target architecture. Based on the facts list, the CI is responsible for
the following

(1) Correctly locate the loop blocks to be instrumented in the orig-
inal input file

(2) Identify the pertinent slices [14] related to the loop blocks for
replacement

(3) Identify the best existing algorithmic variant for replacement
based on the specification of the target architecture (if neces-
sary)

(4) Replace the loop blocks and the slices in the original code with
the relevant algorithmic implementation

(5) Judiciously insert compiler directives (OpenMP, MPI, CUDA,
OpenCL or a mix) based on the target specification.

Step four is an optional step used only when a better algorithmic
implementation is available. If used, the replaced algorithm should
have an improved time complexity compared to the one that ex-
isted in the original code. Step five ensures that the generated code
is suitable for the target architecture. For an architecture that uses
an NVidia GPU, the CI should generate code with CUDA-specific
statements. For a shared memory system, code with OpenMP di-
rectives is to be generated.
The C file generated by the CI can be further optimized using ex-
isting autotuners [5, 27, 28].

4



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

Fig. 1. Components in Amoeba

5. EXPERIMENTS AND RESULTS
A small test input set was used to demonstrate the efficacy of the
IBC methodology. As the approach closely models manual paral-
lelization, the results for all other cases should be similar, or nearly
similar, to those obtained using manual parallelization.

5.1 Test Input Set
The test input set used in this research consisted of code in C
obtained from the public domain. Standard benchmarks were not
used for reasons explained earlier in section 2. Code for dense 2D
matrix-matrix multiplication (MM) and 1-D and 2-D Jacobi itera-
tion (JI) with contrastingly different implementations were used as
the test input set. Only minor cosmetic changes were made to these
representations to preserve their originality.
For the MM test set, the first code used the standard text-book im-
plementation. The three matrices (A = B × C) were represented
using dynamically allocated two-dimensional arrays, where an el-
ement in row x and column y of matrix A was accessed using the
form A[x][y] as represented in Listing ?? (a) and (b) . The program
consisted of seven loop blocks; three loop blocks (nesting depth
= 1) for pointer initialization for rows of each matrix, three sep-
arate loop blocks (nesting depth = 2) to initialize the elements of
each matrix and a loop block (nesting depth = 3) for the matrix-
matrix multiplication. All seven loop blocks were located in the
same function.
The second code used the pointers-of-pointers representation to
store the matrices, where an element in row x and column y of
matrix A was accessed using the form A[x ·N + y], as represented
in Listing ?? (c), where N indicated the number of rows in matrix
A. The code consisted of two loop blocks; one loop block (nesting
depth = 1) to initialize the elements of all three matrices and a loop
block (nesting depth = 3) for the matrix-matrix multiplication. The
matrix multiplication block in this program was defined in a sep-
arate function, with all matrices being passed as reference to the
function.
The data type of the matrix elements was double in both the pro-
gram codes.
The JI test set consisted of both C and C++ implementations also
obtained from the test domain. One code consisted of a 1-D Jacobi

iteration and the remaining were 2-D. Some consisted of a fixed
number of iterations and the others iterated till an error threshold
was satisfied. Similar to the MM test set, the 2-D matrices were
represented in some codes using the form A[x][y] and in some as
A[x ·N + y].
All the codes compiled and executed correctly using the gcc com-
piler in Linux.

5.2 Experiments
To validate the effectiveness of the presented methodology, a com-
parison with Cetus [9] was performed.
First, the sequential programs in the test set were compiled as-is
and executables obtained (Exec-set #1). Next, the programs were
analyzed using the Amoeba framework. The Pattern Extractor was
used to generate facts. These facts, combined with the pre-defined
expert rules, were loaded into the Pattern Identifier, the environ-
ment implemented using CLIPS version 6.24. The Pattern Identifier
correctly identified the two-dimensional matrix-matrix multiplica-
tion pattern which activated the 2D-matrix-multiplication rule and
placed it on the agenda. For the Expertise Injector’s pre-defined
expert rule for two-dimensional matrix-matrix multiplication, an
OpenMP representation obtained from the public domain was used.
Only one loop block was doctored for each of the programs in the
test set and OpenMP directives inserted for only the outer loop of
the matrix multiplication loop block. The other loops blocks were
ignored.
Next, the Cetus GUI was used with the default optimization flags
to transform the programs to their respective OpenMP implementa-
tions. For both the programs in the test set, Cetus inserted OpenMP
directives for each of the loops, twelve for the first and four for the
second.
The programs were compiled using gcc (SUSE Linux) version
4.5.1 with the -O3 optimization flag and executed on an Intel i7
2160 processor with 4 cores (8 threads) and 4GB L2 shared mem-
ory to obtain the other executable sets (Exec-set #2 and Exec-set
#3). The programs were executed using all 8 threads with different
large matrix sizes. The speedups obtained are shown in Figure 2.
For the JI test set, the Pattern Identifier correctly identified all forms
of the Jacobi Iteration present in the test set. No comparisons with

5



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

Fig. 2. Comparison of execution times

existing tools were made in this case for reasons cited in the next
section.

5.3 Observations
It was observed that the programs obtained using the Amoeba
framework performed faster than those obtained using Cetus. As
noted in [16], this result was expected as Amoeba’s generated pro-
grams more closely resembled hand-coded programs than those
obtained with Cetus. The speedups in the former case could have
been more if rules in the Expertise Injector modeled a specialist
programmer’s optimized transformation instead of those obtained
from the public domain.
Also, it was observed that one of the programs transformed using
Cetus had run-time errors (error in computed result). The exact rea-
son for the error has not been looked into. As such, the results for
this code program were was not used in the speedup comparison.
The amount of speedup obtained clearly depends on the code to be
inserted - the better the code, the higher the speedup. This in turn
depends on the quality of rules fed into the CI and the replacement
blocks that have been made available.

6. CONCLUSION
As stated in [2], few domain experts have the time to develop per-
formance programming skills and few computer scientists have the
time to develop domain expertise. This paper attempts to capture
both their expertise in a rule-based Expert System Engine. A novel
Intent Based Compilation approach has been presented to further
advance the field of automatic parallelization. The Amoeba frame-
work, that implements the methodology was used to parallelize
codes obtained from the public domain. As expected, performance
gains obtained were close to those obtained with manual paral-
lelization.
The Amoeba tool framework, at present, is still evolving and re-
lies on code obtained from the Internet to frame expert rules for
different architectures. Specialized rules are needed for optimized
algorithmic replacement to further improve the performance of the
results. As highlighted in [reference blinded], creating rules for the
entire set in [21, 22, 20] and their variations is a dedicated and
time consuming exercise. As future work, we plan to incorporate
more variations of the patterns in the knowledge base targeting the
average mainstream programmers rather than well structured and
efficient benchmarks.

7. ACKNOWLEDGEMENTS
This work was supported by a grant from King Khalid University
(KKU S270 33).

8. REFERENCES
[1] Javier Diaz, Camelia Muñoz-Caro, and Alfonso Niño. A sur-

vey of parallel programming models and tools in the multi
and many-core era. Parallel and Distributed Systems, IEEE
Transactions on, 23(8), 2012.

[2] Bryan Catanzaro, Armando Fox, Kurt Keutzer, David Patter-
son, Bor-Yiing Su, Marc Snir, Kunle Olukotun, Pat Hanra-
han, and Hassan Chafi. Ubiquitous parallel computing from
Berkeley, Illinois, and Stanford. Micro, IEEE, 30(2), 2010.

[3] Mehdi Amini, Ronan Keryell, Beatrice Creusillet, Corinne
Ancourt, and FranÃ§ois Irigoin. Program sequentially, care-
fully, and benefit from compiler advances for parallel het-
erogeneous computing. Technical report, MINES-ParisTech
CRI, 2012.

[4] John Cavazos. Intelligent compilers. In in Proceedings of the
IEEE Int. Conf. on Cluster Computing, 2008.

[5] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall,
and Jeffrey K Hollingsworth. A scalable auto-tuning frame-
work for compiler optimization. In Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on, 2009.

[6] M. Frigo. A fast Fourier transform compiler. In Proceedings
of ACM SIGPLAN Conference on Programming Language
Design and Implementation, May 1999.

[7] R. C. Whaley and Jack Dongarra. Automatically tuned linear
algebra software. In Proceedings of Supercomputing, Nov.
1998.

[8] R. Vuduc, , J. W. Demmel, and K. A. Yelick. Oski: A li-
brary of automatically tuned sparse matrix kernels. Journal
of Physics: Conference Series, 16:521–530, 2005.

[9] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee,
Rudolf Eigenmann, and Smauel Midkiff. Cetus: A source-
to-source compiler infrastructure for multicores. IEEE Com-
puter, December 2009.

[10] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas
Jablin, and David I. August. Revisiting the sequential
progamming model for the multicore era. IEEE Micro, Jan-
uary/February 2008.

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of PACT’08, 2008.

[12] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leu-
pers, G. Ascheid, H Meyr, T. Isshiki, and H. Kunieda. MAPS
: An integrated framework for MPSoC application paralleliza-
tion. In in Proceedings of the Design Automation Conference
(DAC), 2008.

[13] Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and
Arie van Deursen. Collective code bookmarks for program
comprehension. In Proceedings of the IEEE 19th Int. Conf.
on Program Comprehension (ICPC), 2011.

[14] Shih-Wei Liao. Suif Explorer: An Interactive and Interproce-
dural Parallelizer. PhD thesis, Stanford, 2000.

[15] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H. Kelm,
Isaac Gelado, Sam S. Stone, Robert E. Kidd, Sara S. Bagh-
sorkhi, Aqeel A. Mahesri, Stephanie C. Tsao, Nacho Navarro,
Steve S. Lumetta, Matthew I. Frank, and Sanjay J. Patel. Im-
plicitly parallel programming models for thousand-core mi-
croprocessors. In DAC ’07: Proceedings of the 44th annual
conference on Design automation, pages 754–759, New York,
NY, USA, 2007. ACM.

6



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 9, January 2014

[16] Georgios Tournavitis, Zheng Wang, Björn Franke, and
Michael FP O’Boyle. Towards a holistic approach to auto-
parallelization: integrating profile-driven parallelism detec-
tion and machine-learning based mapping. In Proceedings
of PLDI’09, volume 44, pages 177–187, 2009.

[17] Jason Ansel. Petabricks: a language and compiler for algo-
rithmic choice. Master’s thesis, MIT, 2009.

[18] Barry Wilkinson and Michael Allen. Parallel Programming
- Techniques and Applications using Networked Workstations
and Parallel Computers. Pearson Education, 2 edition, 2005.

[19] Michael J. Quinn. Parallel Programming in C with MPI and
OpenMP. Tata McGraw-Hill, 2003.

[20] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec 2006.

[21] Pieter Custers. Algorithmic species: Classifying program
code for parallel computing. Master’s thesis, Eindhoven Uni-
versity of Technology, 2012.

[22] Cedric Nugteren, Pieter Custers, and Henk Corporaal. Algo-
rithmic species: A classification of affine loop nests for par-
allel programming. ACM Transactions on Architecture and
Code Optimization (TACO), 9, 2013.

[23] Joseph C. Giarratano and Gary D. Riley. Expert Systems -
Principles and Programming. Thomson, 2005.

[24] Ian Foster. Designing and Building Parallel Programs: Con-
cepts and tools for parallel software engineering. Reading,
MA: Addison-Wesley, 1995.

[25] S. G. Akl. Parallel Sorting Algorithms. Orlando FL: Aca-
demic Press, 1985.

[26] W. J. Camp, S. J. Plimpton, B. A. Hendrikson, and R. W. Le-
land. Massively parallel methods for engineering and science
problems. Communications of the ACM, 37(4):30–41, 1994.

[27] Chirag Dave and Rudolf Eigenmann. Automatically tuning
parallel and parallelized programs. Languages and Compilers
for Parallel Computing, pages 126–139, 2010.

[28] Dheya Mustafa and Rudolf Eigenmann. Portable section-level
tuning of compiler parallelized applications. In Proceedings
of the 2012 ACM/IEEE Conference on Supercomputing. IEEE
Press, 2012.

7


	Introduction
	Software and Software compiler Requirements
	Automatic versus manual parallelization
	Loops and algorithms

	Related Work
	Intent Based Compilation
	Manual Parallelization
	Algorithm Identification in IBC
	Focused Identification
	Loop Block Transformation

	Description of Amoeba 
	Feature Extractor
	Pattern Identifier
	Code Instrumentor

	Experiments and results
	Test Input Set
	Experiments
	Observations

	Conclusion
	Acknowledgements
	References

