
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

8

Mobile OS Security and Threats: A Critical Review

Ahmad Talha Siddiqui

Research Scholar
IFTM University

Moradabad

Mudasir M Kirmani
Assistant Professor

SKUSAT-K

Abdul Wahid, Ph.D
Associate Professor

Maulana Azad National Urdu
Univesity

ABSTRACT

The adoption of Smartphone’s in daily lives is transforming

from simple communication to smart and the use of these

multipurpose devices is rapidly increasing. The main reason

for the increase in the Smartphone usage is their small size,

their enhanced functionality and their ability to host many

useful and attractive applications. However, this vast use of

mobile platform makes these smart devices a soft target for

security attacks and breach of privacy. The cases about the

attacks on personal mobiles phones are on the rise which is a

motivation for developing Smartphone application with better

effective and efficient security measures to mitigate the

impact of possible threats. This paper examines the feasibility

of malware development in Smartphone platforms by average

programmers that have access to the official tools and

programming libraries provided by Smartphone platforms. In

this paper comparison of Smartphones like Android,

Blackberry, Apple iOS, Symbian, Window Mobile is given

based on the specific evaluation criterions used for assessing

the security level.

Keywords

Smartphone, Security, Malware, Attack, Evaluation Criteria,

Operating System

1. INTRODUCTION
Smartphone is the devices that enhance vision of universal

computing: their small size, connectivity capabilities, storage

capacity, mobility and their multi-purpose use are some of the

reasons for their vast pervasiveness[10] the malware has also

appeared in the Smartphone platform[12]. Apart from the

increasing Smartphone sale, the annual downloads of

Smartphone application are also on rise. Furthermore the use

of Smartphone perimeter of an organization has increased

besides increasing the sale of Smartphone and annual

download of application from official as well as free source.

Smartphone contains a vast amount of the user data, thus

giving a serious privacy threat to the sector. In additional

Smartphone consist of popular web applications like e-mail,

YouTube, social media, social networks facebook and twitter

etc[11][19] are being accessed through native applications

instead of their useful web browser interface. In this context

Smartphone often manage a vast amount of user data, causing

a serious threat to privacy of data.

This data is extremely useful for attackers’. Hence attacker

tries to destroy or damage Smartphone with malware

applications, harvesting Smartphone data without the user’s

knowledge and consent. It is worth mentioning that the

everyday use of Smartphone by non technical and non

security savvy people has increased and the likelihood of

using Smartphone as a security and privacy threat has

increased as well. This paper examines the feasibility and

easiness of malware development on Smartphone by average

programmer that have access to the official tools and

programming libraries provided by Smartphone[5][6][21].

It is important to mention that due to the lack of awareness

about security concerns among user community of these

multipurpose devices it has become a hot cake for cyber

attacks[16][27] and people trying to explore weakness of

Smartphone softwares.

2. SMARTPHONE SECURITY MODELS
In this section we discuss the security models and

development environments of the Smartphone platform

a) Android

b) Blackberry

c) Symbian

d) iOS

e) Window Mobile.

2.1 Android
The Android is a Linux based open source OS developed and

maintained by Google[33][34][35]. Android provides a free

and publicly available software development kit that consists

of tools, documentation and emulator necessary for the

development of new application in Java. A core element of

the android security model[23] is the manifest file. The

manifest[33][34][35] provides the necessary information to

android for the execution of an application, the manifest file is

crucial for the system, since a developer defines within the

application permission. Everyday android applications have to

be digitally signed by its developer. Android’s security model

then maps the signature of the developer with a unique ID of

the application package and enforces signature level

permission authorization[23]. In the Android security model

the applications are usually digitally signed with self signed

certificates, providing only for source origin and integrity

protection.

2.2 Blackberry
The Blackberry is an operating system maintained by

Research In Motion Inc (RIM). The current version of the OS

is 6. Documentation about the OS details is not provided by

RIM. However[36][37], RIM provides, through the

Blackberry software development kit, the related

documentation, tools, APIs and emulator that are necessary

for application development. The platform of security

model[25] forced restrictions to 3rd party applications trying to

access which is protected APIs of the OS by demanding the

application which is signed with a cryptographic key provided

by RIM[14]. In order to acquire a valid RIM signing key pair

a developer needs to pay a small amount. However this

process provides only poor source of origin and code integrity

and does not offer any assurance about the validity and the

security level of the 3rd party application.

2.3 Symbian
Symbian is an operating system whose current version is

Symbian-3 which is maintained by Nokia[38]. In the

Smartphone Symbian is executed and provides multiple free

and publicly available SDKs. The tools documentation and

emulators that are necessary for the development of new

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

9

applications written in C++ which are included by SDK. The

cornerstone in Symbian’s security model[38] is the use of

capabilities for defining restrictions to sensitive platform

APIs. These capabilities are grouped in the following

categories: a) basic, b) extended, c) manufacturer. The first

category includes basic functionality during installation where

the users are prompted for its authorization.

The use of sensitive API that is only granted through the

Symbian signed process[38] which is controlled by the second

capability category. The last capabilities category controls

application access to the most sensitive API in the platform

and there all capabilities are only granted by a device

manufacture. Nokia which is indicated the basic capability

category contained sufficient functionality for application

development for the installation of the each application,

signing the applications package file with .sys extension is

required by the Symbian security model.

Signing confirms that the application is not using API apart

from the one corresponding to the applications signing level.

The developer can self sign it if the application uses only

basic capabilities self signing has the advantages to be

performed in the developer’s computer and it is not necessary

to map the application installation package file with a device

IMEI in the result there is no restriction during the installation

of the multiple device, but the Smartphone users will be

prompted with security warnings at installation time since the

signing key is not trusted. The developer submits the

application to Symbian signed along with the list of device

IMEIs to get rid of the warnings and access sensitive

capabilities.

2.4 Apple iOS
iOS is a proprietary operating system is only executed in

Apple Smartphone and tablets. After registration on

Apple[39][40] provides to the company center, documentation

tools and the necessary API for application development[13].

It should be noted that the tool set provided by Apple is only

compatible with MAC operating system. The security

model[39][40] of the iOS only permits the installation of

applications that have been signed by Apple. An application is

tested for its functionality consistency and for malicious

behaviour before it’s signed. However the testing process and

criteria are not openly available which is applied by Apple.

Applications are installed on the device with: (a) the use of an

application installed on the device that connects to Apple’s

App Store, or (b) the use of cross-platform synchronization

desktop software provided by Apple. Once the application is

installed to the device the user neither controls nor is

prompted when an application accesses some OS sensitive

resources.

2.5 Window Mobile
Window mobile is an OS Smartphone which is developed and

maintained by Microsoft. The security model of windows

mobile[31] depends on the operational policy of the device for

controlling that which application one allowed to be executed

on the device[41] what functionality of the OS is reading

availability to the application, how the user or application use

specific device selfing and how desktop applications interact

with the Smartphone for their operational responsible. The

operational policy on a window mobile Smartphone is either

one-tier access or two-tier access [31].

A device with one tier access policy operational only controls,

if one application runs on the device or not without examining

officially if the application is using sensitive API. This

decision depends on whether the applications installation

package file is correctly signed with a certificate that exist in

the device’s certificate store if the application is signed with a

known certificate then the application runs in advantage mode

with the ability to call any API, access and modify anything in

the device file system and registry but if the application is

unsigned or signed with a unknown certificate later on policy

checks take place for the decision of application execution. In

this case, security policies setting define whether the user is

ready to give her permission for the application to run. It must

be clarified that if the user permits the execution, then the

application run in advantage. This indicate that an unknown

and unsigned application maintains full access to the device.

According to the lack of security configuration of windows

mobile, provides[26][31] weak security protection as: (a) it

allows the execution of unsigned applications or suffer harm

with an unknown certificate, and (b) in this case the user is

permits to authorize the execution of the application. Hence

the lack of the security configurations in both access tiers.

Unsigned and unknown code is executed with the user’s

approval either in normal mode or advantageous mode.

Moreover although one-tier access does not provide strong

safety. It is the default access tier[20] in some devices it

should be solved that the safety model permits mobile

operators to make post.

3. COMPARATIVE EVALUATION OF

SMARTPHONE
A comparative evaluation of the Smartphone platforms in

terms of malware distribution and development. Our analysis

examines the feasibility of attack implemented by average

application developers. More peculiarly the presented

evaluation is based on: (a) the definition of qualitative

evaluation criteria, and (b) a proof of concept malware

implementation study in which the development of location

tracking application is examined.

3.1 Evaluation Criteria
A comparative evaluation of Smartphone platform is

performed by using a set of evaluation criteria that are

elaborated in the table-1. The proposed criteria concern the

development platform and the developer. The platform based

criteria are objective, relying solely on the platform

characteristics. Contrarily the developer related criteria are

subjective, giving details about the development effort and as

a result depends on the developer’s skills and background.

Table 1. Proposed Evaluation Criteria

Evaluation Criteria Type

Development Tools

availability
String (Yes, Partial, No

Development Friendliness Boolean

Installation Vector
String (Multiple, Restricted)

Application Portability
Boolean

Application Testing
Boolean

Aplication Removal
Boolean

Unofficial Repositories
Boolean

Distribution Cost Boolean

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

10

API Restrictions Boolean

Application Signing Boolean

4. IMPLEMENTATION OF MALWARE

ATTACK
Our study examines the implementation feasibility of a simple

attack scenario. As a proof of concept to study the

implementation of a malware attack is presented. To evaluate

the robustness and the security properties of the smartphones

platform under examination of criteria defined in the previous

section are applied.

The application collects the Smartphone’s user GPS

coordinator and sends them to the attackers. It is assumed that

the malicious functionality is included in a free GPS

navigation application. The malware described in most cases,

that it is executed without creating any suspicion to a naïve

Smartphone user. The reason for this is that the applications

regrets are compatible with the application’s expected

functionality.

The analysis of the results regarding the development and use

of this malicious application to the Smartphone platform. The

platform that we have examined are: Android OS, Blackberry

OS, Symbian OS, Apple iOS and Window Mobile OS. The

results of the case study are presented.

4.1 Case Study: Android
On the Android platform our attack implementation was

successfully developed in one day for the implementation

purposes. The reasons that why our attack implementation

was efficient are: (a) the platform adopts the widely used

programming language, (b) the effective documentation of its

API. In addition the same source code successfully

accumulates and executed in version 2.1 and 2.2 of the

Android platform; hence within the Android platform the

application is considered portable. There are many options for

the attackers regarding application distribution the reason for

this is that the Android platform does not force any restriction

neither on the source of application nor on the installation

vector. For the placement of applications in the official

repository a small registration fee is required but it is

considered inadequate to impede an attacker moreover, even

application testing for malicious behavior is not taking place,

if the official repository is selected for the distribution. Hence,

it is likely that malware such as one described in this case

study is currently presented and downloaded by navie users

from the repository.

As we have already described the security model of the

Android platform imposes some application restriction

concerning the application signing and API control. We argue

that there restrictions provide only partial security protection.

API control restrictions are authorized by the navie user for

the former only during the application installation. After the

installation no further checks about application permissions

task place. Hence, especially in our case, it is likely that the

malicious application would be granted the requested

permission where it is fully match the expected applications

functionality.

Table 2. Android Analysis and Result

Evaluation Criteria Android

Development Tools

availability

Yes

Development Friendliness Yes

Installation Vector Multiple

Application Portability
Yes

Application Testing
No

Aplication Removal
Yes

Unofficial Repositories
Yes

Distribution Cost No

API Restrictions Yes

Application Signing Yes

(Source: http://developer.android.com/guide/topics/security/ security.html)

4.2 Case Study: Blackberry
The result was again successful regarding our attack analysis

on Blackberry platform. The attack was conducted by the

RIM’s official development toolkit was used for attack

implementation. The duration of the attack implementation

was not demanding. The adoption by the platform of a widely

used programming language and the effective documentation

its API are the reason for the effectiveness of the attack

implementation. Moreover, the same source code successfully

compiled and executed in version 5/6 of the Blackberry

platform, therefore the application is considered portable.

Regarding the origin of the application the security model of

the Blackberry does not impose any restrictions. Nonetheless

to access restricted and sensitive platform APIs the

application package file must be signed. Before accepting the

submission of an application the security model of the RIM’s

platform does not empty any application moreover, there is no

application removal system automatically removing

applications with malicious behaviour. Hence, if the malware

application is submitted in the official repository then it is

very likely to be downloaded and installed in Blackberry

devices.

Table 3. Blackberry Analysis and Result

Evaluation Criteria Blackberry

Development Tools

availability

Yes

Development Friendliness Yes

Installation Vector Multiple

Application Portability
Yes

Application Testing
No

Aplication Removal
No

Unofficial Repositories
Yes

Distribution Cost Yes

API Restrictions Yes

Application Signing yes

(Source:://docs.blackberry.com/en/developers/deliverables/21091/Security_

overview_1304155_11.jsp)

4.3 Case Study: Symbian
Symbian OS provides basic functionality sufficient for

application development providing the developer the option to

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

11

self sign her application nonetheless, since the location

capability, some compatibility issues exit, which controls

access to API determining the location of the device does not

reside in the basic capability category in some Symbian OS

version.

Only the basic capability category was used for the

development of the malware attack scenario. The user has to

accept the self signed applications create a security warning at

installation time. Even so the user would likely accept the

installation of the application by passing and ignoring the

security warnings. Apart for signing the application, the

security model of the platform doesn’t restrict the

application’s distribution and as a result the attacker has many

distribution options in the Symbian platform the attacker

implementation was not successfully compiled even though

with the officially recommended development toolkits

implementation was performed, the case study developers

were unable to compile their code. Even the sample

applications provided by Symbian could not be compiled the

installation of the development toolkit was fully automated

and the developers did not participate in its configuration.

Table 4. Symbian Analysis and Result

Evaluation Criteria Symbian

Development Tools availability Yes

Development Friendliness No

Installation Vector Multiple

Application Portability
No

Application Testing
No

Aplication Removal
Yes

Unofficial Repositories
Yes

Distribution Cost No

API Restrictions Yes

Application Signing Yes

(Source: https://www.symbiansigned.com/app/page)

4.4 Case Study: Apple iOS
The implementation of our simple location tracking attack

was successfully completed on Apple’s iOS. The

implementation was tested on emulators iOS. The installation

of applications to devices running the iOS system is only

possible via Apple’s App store. Hence, for running the

devices of the official version of iOS unofficial application

repositories are not available.

In our case study, the user would only be prompted to permit

access to location data. But, the user is expected to confirm

access to location data as the application is providing location

based services. Afterward, the data would be transfermed to

the attacker’s remote server without the user noticing it from

Apple devices and their removal from the application

repository it has developed security mechanism allowing the

remote detection of malcious application. This is a

consequential post installation security mechanism in case

Apple the user become suspicious of the malware software.

Table 5. Apple iOS Analysis and Result

Evaluation Criteria Apple iOS

Development Tools availability Partial

Development Friendliness No

Installation Vector Restricted

Application Portability
Yes

Application Testing
Yes

Aplication Removal
Yes

Unofficial Repositories
No

Distribution Cost Yes

API Restrictions No

Application Signing Yes

(Source: http://developer.apple.com/devcenter/ios/)

4.5 Case Study: Windows Mobile
On the installation vector of applications the security model of

windows mobile does not impose restrictions furthermore,

even if they are downloaded from a source outside microsoft’s

official reposotory application are able to be installed on the

devices. Hence, the attackers does not have application

distribution costs. Moreover, for malicious behaviour the

application is not being tested, since it is not distributed by

Microsoft distribution services. Nevertheless, the application

removal mechanism applied by Microsoft may be used for the

automated removal of the implemented malware application.

To sum up, in windows mobile the feasibility of our malware

attack depends on the device configurations regarding the

security model, the user authorization at installation time and

the automated application removal security mechanism.

Table 6 Windows Mobile Analysis and Result

Evaluation Criteria Window Mobile

Development Tools

availability

Yes

Development Friendliness Yes

Installation Vector Multiple

Application Portability
Yes

Application Testing
No

Aplication Removal
Yes

Unofficial Repositories
Yes

Distribution Cost No

API Restrictions No

Application Signing No

(Source: http://msdn.microsoft.com/en-us/windowsmobile/dd569132.aspx)

4.6 Overview of the Case Study
The security model of a Smartphone operating system has two

contradicting goals. On the one hand concerning the execution

of 3rd party applications on their devices it must provide users

with security assurance. On the other hand, it must provide the

developers with a security system where on the other hand,

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

12

consumers are willing to install new application and on the

other, to implement new application it is easy and efficient

under certain circumstances the proof of concept exercise

demonstrated that, the security model of all available

Smartphone platform would not counter a location tracking

attack. Moreover, the attack on all Smartphone platforms it

showed that it is possible to easily implement, except from

Symbian and iOS.

The reasons of the implementation failure on Symbian were

not security related. They were related with the developer’s

programming skills and Symbia’s structured API

documentation. In all other platform the implementation was

efficiently and effectively completed by average programmers

and tested on the officially provided emulators.

For malicious behaviour application testing cannot be avoided

only on Apple’s iOS. Moreover, having strict installation

requirements iOS was the only platform. Only Windows

Mobile allowed, among the examined platform under some

security model configurations, the execution of unsigned

applications. Yet to the Smartphone holder on the examined

platforms the digital signature process gives different security

assurance. On the other hand, the user was not found having

any control on the API running in the device, on some

platforms.

Based on the comparison of different mobile operating

systems Android, Blackberry & Windows outperformed.

Development friendliness Apple iOS has application

capability and don’t unofficial repositories to make it a

potential option for secure operating system. The symbian’s

restricted vector makes a good contender. However android’s

free distributed makes a good option for selection.

Table 7 Overview of Malware Implementation

Evaluation

Criteria

Android Blackbe

rry

Symbia

n

Apple

iOS

Window

Mobile

Developme

nt Tools

availability

Yes Yes Yes
Partia

l
Yes

Developme

nt

Friendlines

s

Yes Yes No No Yes

Installation

Vector
Multiple Multiple Multiple

Restri

cted
Multiple

Applicatio

n

Portability

Yes Yes No Yes Yes

Applicatio

n Testing

No No No Yes No

Aplication

Removal

Yes No Yes Yes Yes

Unofficial

Repositorie

s

Yes Yes Yes No Yes

Distributio

n Cost
No Yes No Yes No

API

Restriction

s

Yes Yes Yes No No

Applicatio

n Signing
Yes yes Yes Yes No

5. CONCLUSION
Smartphone devices are multi-purpose portable devices

enclosing a vast amount of third party applications that

augment the device’s functionality. The existing Smartphone

security models facilitate mechanisms and processes

controlling the installation and execution of third party

applications. Even so, the sufficiency of the adopted security

mechanisms seems to be controversial. Their ability to protect

the devices from being a privacy attack vector from

developers, such as undergraduate and postgraduate computer

science students, is proven to be unclear. Our paper (a)

proposes evaluation criteria assessing the development of

Smartphone malware, and (b) provides a comparative case

study analysis where the implementation and distribution of

proof of concept location tracking malware is attempted in the

current Smartphone platforms. This critical review study has

given an insight that all Smartphone platforms would not stop

average developers from using them as privacy attack vectors,

harvesting data from the device without the user’s knowledge

and consent. It also showed the easiness of malware

application development by average programmers that have

access to the official tools and programming libraries

provided by Smartphone platforms. A silver bullet solution

against similar attack scenarios is not available. Some of the

possible steps that can reduce the possibility of being attacked

is “prevention is better than cure”. However, the following

steps can be a possible way-out to reduce/avoid a potential

malware outbreak in smartphones:

a) User awareness, i.e. informing user about security and

privacy risks in Smartphone platforms; and

b) Providing secure application distribution in

Smartphone platforms.

The scope for future research in this domain is in its infancy

stage. This critical review is just a ‘tip of an iceberg’.

However, the case study can be repeated with more developer

attributes taken into consideration and for analyzing more

security attributes as well.

6. REFERENCES
[1] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,S. Dolev,

and C. Glezer. Google Android: A Comprehensive

Security Assessment. IEEE Security & Privacy, 8(2):35 –

44, Mar. 2010.

[2] G. Lawton, “Is It Finally Time to Worry about Mobile

Malware?” IEEE Computer, vol. 41, no. 5, 2008.

[3] J. Anderson, J. Bonneau, and F. Stajano. Inglorious

Installers: Security in the Application Marketplace. In

Proceedings of the 9th Workshop on the Economics of

Information Security, 2010.

[4] J. Bickford et al., “Rootkits on Smart Phones: Attacks,

Implications and Opportunities,” in Workshop on Mobile

Computing Sys. and Appl. (HotMobile’10). ACM, 2010.

[5] Egele, M., Kruegel, C., Kirda, E., Vigna, G.: Pios:

Detecting privacy leaks in iOS application. In: Network

and distributed System Security Symposium (2011).

[6] Enck, W., Gilbert, P., Chun, G., Cox, P., Jung, J.,

McDaniel, p., Sheth, N.:Taintdroid: an information-flow

tracking system for real time privacy monitoring on

smartphone. In: 9th USENIX Symposium on Operating

System Design and Implementation (OSDI), pp. 1-6.

USENIX Association (2010).

[7] J. Oberheide and F. Jahanian, “When Mobile is Harder

Than Fixed (and Vice Versa): Demystifying Security

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

13

Challenges in Mobile Environments,” in Workshop on

Mobile Computing Systems and Applications

(HotMobile), February 2010.

[8] M. Egele et al., “PiOS: Detecting Privacy Leaks in iOS

Applications,” in Network and Distributed System

Security Symposium (NDSS), Feb. 2011.

[9] N. Leavitt, “Mobile Phones: The Next Frontier for

Hackers?” IEEE Computer, vol. 38, no. 4, 2005.

[10] Gartner: Market Share: Mobile Communication Devices

by Region and Country, 3Q11. Technical Report(2011).

[11] Hogben, G., Dekkar, M .: Smartphone : Information

Security Risks, Opportunities and Recommendation for

users. Technical Report. ENISA (December 2010).

[12] Hypponen, M.: Malware goes Mobile. Scientific

American 295(5),70-77(2006).

[13] iOS dev center, http://developer.apple.com/devcenter/ios/

[14] java code signing keys,

http://us.blackberry.com/developers/javaappdev/codekey

s.jsp

[15] P. Zheng and L. M. Ni, “The Rise of the Smart Phone,”

IEEE Distributed Systems Online, vol. 7, no. 3, 2006.

[16] Lineberry, A., Richardson, D., Wyatt, T.: These aren’t

the Permissions you are looking for. Technical Report,

DEFCON(2010).

[17] W. Enck, M. Ongtang, and P. McDaniel. Understanding

Android Security. IEEE Security & Privacy,7(1):50–57,

2009.

[18] Stephen Smalley, Robert Craig, “Security Enhanced (SE)

Android: Bringing Flexible MAC to Android, april 23,

2013.

[19] Mobile Privacy, http://www.gsmworld.com/our-

work/public-policy/mobile_privacy.htm.

[20] Mylonas, A., Dritsas, S., Gritzalis, D.: A Secure

Smartphone Security Evaluation: The Malware Attack

Case. In: Samarati, P ., lopez, j (eds) International

Conference of Security and Cryptography

(SECRYPT’11), pp.25-36. Scitechpress(2011).

[21] Mylonas, A., Tsoumas, B., Dritsas, S., Gritzalis, D.: A

Secure Smartphone Application Roll-out Scheme. In:

furnell,s., lambrinoudakis,C., pernul, g (eds) Trust,

Privacy and Security in Digital Business (TrustBus).

LNCS vol. 6863. Pp. 49-61. Springer

berlin/Heidelberg(2011).

[22] Fu Cai, Huang Qingfeng, Han LanSheng, Shen Li and

Liu Xiao-Yang, “Virus propagation power of the

dynamic network, springer EURASIP, 2013.

[23] Security And Permission,

http://developer.android.com/guide/topics/security/securi

ty.htm.

[24] Andre Egners, Bjorn Marscholleck and Ulrike Meyer,

“Messing with Android’s Permission Model, IEEE 11th

International Conference on Trust, Security and Privacy

in Computing and Communication page no : 505-514,

april 2012.

[25] security overview,

http://docs.blackberry.com/en/developers/deliverables/21

091/security_overview_1304155_11.jsp.

[26] Security Policy Settings, http://msdn.microsoft.com/en-

us/library/bb416355.aspx.

[27] Seriot, N .: iphone Privacy. Technical Report, Black Hat

DC(2010).

[28] Xuetao Wei, Lorenzo Gomez, Ililian Neamtiu, Michalis

Faloutsos, “Permission Evolution in the Android

Ecosystem, ACM ACSAC, Dec: 3-7, 2012.

[29] David Bareera, Jeremy Clark, Daniel McCarney,

“Understanding and Improving App Installation Security

Mechanisms through Empirical Analysis of Android,

ACM SPSM oct 19, 2012.

[30] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, David

Wagner, “AdDroid: Privilege Separation for

Applications and Advertisers in Android, ACM CCS,

2012.

[31] Windows Mobile Device Security Model,

http://msdn.microsoft.com/en-us/library/bb416353.aspx

[32] Pern Hui Chia, Yusuke Yamamoto, N. Asokan, “Is this

App Safe? A Large Scale Study on Application

Permissions and Risk Signals”, ACM, IW3C2 april 16-

20, 2012.

[33] http://android.developers.blogspot.com/2010/06/exercisi

ng-our-remote-application.html

[34] http://developer.android.com/resources/dashboard/platfor

m-versions.html

[35] http://developer.android.com/guide/topic/security/securit

y.html

[36] http://us.blackberry.com/developers/javaappdev/

codekeys.jsp.

[37] http://docs.blackberry.com/en/developers/deliverables/21

091/ Security_overview_1304155_11.jsp

[38] https://www.symbiansigned.com/app/page

[39] http://developer.apple.com/devcenter/ios/

[40] http://developer.apple.com/programs/ios/

[41] http://msdn.microsoft.com/en-

us/windowsmobile/dd569132.aspx

IJCATM : www.ijcaonline.org

