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ABSTRACT 

Secure group communication is an active area of research and 

its popularity is fuelled by the growing importance of group 

oriented internet applications such as voice & video 

conferences, pay per view, etc. Several groupware 

applications like video conferences, distributed computations, 

etc requires secure transmission while communicating over 

the Internet. For secure communication, the integrity of the 

messages, member authentication, and confidentiality are 

must be provided among group members. To provide message 

integrity all group members must be agreed up on a common 

group key to encrypt and decrypt the messages. This paper 

proposes an efficient and contributory group key agreement 

protocol and also support dynamic operations like join, leave, 

merge, etc. by using ECC based Diffie Hellman key 

exchange. This protocol employs ternary tree like structure 

instead of binary tree in the process of group key generation. 

The performance of the proposed scheme is compared with 

that of several others existing schemes in literature and it is 

found that the proposed one is performs well in terms of 

communication and computation cost. In addition, the formal 

security validation is done using AVISPA tool that 

demonstrated that the proposed protocol is safe against 

passive and active attacks.  

Keywords 

ECC, group key agreement, ternary tree, ECC based Diffie-

Hellman, AVISPA.  

 

1. INTRODUCTION 
For several groupware applications like voice & video 

conferences, distributed computation etc. over the insecure 

network like Internet, it is require to develop an efficient 

group key agreement protocol for secure communication. 

Consider a group of N members in a network would like to 

discuss on secrete common concern. These N members must 

able to communicate among themselves over a public channel 

in a secure manner such that any user other than the group 

must not be able to listen in to the conversation between 

legitimate members. The general aim of secure group 

communication is to construct a common secrete key among 

the group members for confidential communication. Although 

several tree based group key establishment technique like 

CCEGK [27], EGK [1], TGDH [11], STR [10], etc. are 

available in literature, all of which employ a binary tree for 

computing group key and uses two parties Diffie Hellman key 

exchange as the basic operation. However [24] introduces 

ternary tree in their protocol and uses GDH.2 [23] as the basic 

operation for the group of restricted size 3k where k is any 

integer. In order to improve the efficiency of the 

cryptographic technique the ECC based cryptosystem can 

play an important role since it offers similar level of security 

which can be achieve with shorter keys size than existing 

methods which are based on difficulties of solving discrete 

logarithms over integers or integer factorization. The use of 

elliptic curve in public key cryptography was independently 

proposed by Koblitz and Miller in 1985 [12] and since then, 

an enormous amount of work has been done on elliptic curve 

cryptography. This paper proposes ECC based contributory 

key computation for secure group communication in dynamic 

environment. The proposed technique organises the key 

generation process in ternary tree like structure in which every 

node can have at most three children as in [24], but there is no 

restriction of the no of group members (not necessary 3k as in 

[24]). The advantages of using ternary tree instead of binary 

tree are already justified in [24]. The protocol uses three 

parties ECC based Diffie Hellman key exchange which is 

discussed in section 3.3 as its basic operation. Along with the 

ternary tree, since the proposed technique uses ECC approach 

which has low computation cost and smaller key size, the 

overheads are reduces and the performance of the protocol 

improves significantly. 

The rest of the paper is organized as follows. Section 2 

summarises the related works. Section 3 describes the 

Preliminaries of the entire paper. Section 4 discusses the 

proposed protocol followed by a pictorial representation of 

step by step group key generation process between the 

members. Section 5 discussed the suggested authentication 

scheme for proposed protocol. In section 6 security analysis of 

proposed protocol are discussed followed by its verification 

result using AVISPA tool in Section 7. Section 8 provides 

analytical performance comparison with other existing 

protocols and finally section 9 concludes this paper.  

2. RELATED WORK  
Several approaches have been proposed for group key 

generation in current literature. These approaches can be 

classified into three categories: Centralized, Decentralized and 

distributed approaches [5, 6, 19, 21]. 

In Centralized approaches [8, 14, 21] an entity usually called 

key server, is responsible for generation and distribution of 

group key to all members of the group a trusted third party 

(TTP) can make this possible. However the main problem 

with this approach is the TTP must be constantly available 

and in every possible subset of group there must be a TTP 

available in order to support continued operation in the event 

of network partitions.  

In decentralized approaches [13, 17, 18] the whole group is 

split into small subgroups. Each subgroup is managed by 

Subgroup Controller (SC) which minimizes the problem of 

concentrating the work on a single point. The failure of one 

SC will not escort to the failure of the whole group. But also 
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in most of the decentralized technique, the SC may become a 

bottleneck because the SC must decrypt the group messages 

and then re encrypt it using the sub key [13].  

In distributed approaches, the group key is generated in a 

contributory fashion, where all members contribute their own 

share in computing the group key. Steiner et al. [23] extended 

the Diffie Hellman protocol, which is the first pioneering two 

party key agreement protocols, to multi-party scenario. The 

Group Diffie Hellman key agreement protocol (GDH) require 

N rounds to agree up on a common session key for a group of 

N members. In particular, the number of rounds may be 

crucial in a large number of group members environment, 

because members can’t communicate until the other members 

finish the foregoing round protocol. 

Kim, Perrig, Tsudik [11] proposed a tree based group key 

agreement protocol called TGDH. TGDH computes a group 

key derived from contribution of all group members using a 

binary tree. Compared to GDH, TGDH just needs constant 

rounds to agree up on a common group key and has some 

computational advantages. Now a days a number of tree based 

group key agreement protocols have been proposed based on 

TGDH, including those in [10, 20, 24, and 27]. [24] 

Introduces first time a ternary tree approach and uses GDH.2 

[23] as the basic operation to establish a contributory group 

key among the group members. This results significant 

reduction in height of the tree and reduces the computation 

and communication overhead. But the main drawback of this 

approach is that it support only for the no. of group members 

in the form of 3k where k is any integer. Moreover this 

protocol did not specify how to manage the resultant members 

after a single join or leave operation when the no. of group 

members essentially becomes other than 3k.  

  

3. PRELIMINARIES  
Since the proposed paper based on ternary tree approach with 

ECC based GDH as its basic operation, the ECC and ECDH 

techniques are described in this section. The use of ternary 

tree instead of conventional binary tree has been already 

justified in [24]. 

3.1 Elliptic Curve Cryptography 
Elliptic Curve Cryptography (ECC) was discovered in 1985 

by Victor Miller(IBM) and Neil Koblitz (University of 

Washington) as an alternative mechanism for implementing 

public-key cryptography. The primary benefit promised by 

ECC is a smaller key size, reducing storage and transmission 

requirements i.e., an elliptic curve system could provide the 

same level of security afforded by an RSA-based system with 

a large modulus and correspondingly larger key e.g., a 256-bit 

ECC public key should provide comparable security to a 

3072-bit RSA public key. 
In ECC non-singular type of Elliptic curves over the real 

number are used. The elliptic curve over real numbers takes 

the general form as: 

            
 

In cryptography, variables and coefficients of elliptic curve 

equation are restricted to elements in a finite field. Thus for 

above equation x, y are co-ordinates of GF(p), and      are 

integer modulo  , satisfying                    

(for non singular elliptic curve).Where   is a modular prime 

integer which make the EC of finite field. An elliptic curve E 

over GF(p) consist of points (   ) defined by above two 

equations, along with an additional point called O (point at 

infinity or zero point) in EC. The 'O' point plays the role of 

identity element for EC group. 

Usually an elliptic curve is defined over two types of finite 

fields: the prime field    containing   elements (prime curve) 

and the characteristic 2 finite field containing 2m elements 

(binary curve).This paper focuses on the prime finite field as 

the prime curve are best suit for  software applications [22]. 

 

Elliptic Curve Arithmetic  

Cryptographic schemes based on ECC rely on scalar 

multiplication of elliptic curve points. Given an integer k and 

a point P    (  ), scalar multiplication is the process of 

adding P to itself k times. The result of this scalar 

multiplication is denoted k   P or kP. 

Points addition and point doubling form the basis to calculate 

EC scalar multiplication efficiently using the addition rule 

together with the double-and-add algorithm or one of its 

variants. The detail description of ECC (including its point 

addition rule) can be found in various papers including [12, 

20, 26]. 

The security of ECC based protocols are based on 

intractability of Elliptic Curve Discrete Logarithm 

Problem(ECDLP). ECDLP state that: Given P, Q   E , find an 

integer k   Z*  such that Q = kP. It is relatively easy to 

calculate Q given k and P, but it is relatively hard to 

determine k given Q and P. 

3.2 Two Parties Elliptic Curve Diffie-

Hellman Protocol 
Similar to DLP-based Diffie-Hellman key exchange 

agreement, a key exchange between users A and B using 

Elliptic Curve Diffie-Hellman (ECDH) can be accomplished 

also discussed in [26] as follows: 

 

1) A selects an integer a1   Z* , this is A's private key. A then 

generates a public key X = a1P; the public 

key is a point in Ep(a, b). 

 

2) B similarly selects a private key a2   Z*  , and computes a 

public key Y = a2P. 

 

3) A generates the secret key K = a1 Y . 

 

4) B generates the secret key K = a2 X . 

 

3.3  Three Parties Elliptic Curve Diffie-   

Hellman Protocol 
Three parties Elliptic Curve Diffie-Hellman 

Protocol based on GDH.2 discussed in [24] implemented with 

elliptic curve for the group of three parties (A, B & C) as 

follows: 

1) A, B and C chooses their own private keys a1, a2, a3   Z*   

respectively and keep it secret. 

 
2) A calculate X = a1 P and send to B. 

 

3) B calculates Y1 = a2 P ; Y2 = a2X and construct the set {X 

(as received from A), Y1, Y2  } which is then transmitted to C. 

 

4) C calculates K = a3Y2;  Z1 = a3Y1  and  Z2 = a3X.  It keeps 

secret ‘K’ as the contributory group key and broad cast 

remaining {Z1,Z2} to the user A and B. 

 

5) On receiving from C each member can calculates same 

group key as 
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 A:  K = a1Z1 ; and 

B:   K = a2Z2. 

 

On completing all three members have a common point in the 

elliptic curve i.e. K = a3Y2 = a1Z1 = a2Z2 = a1a2a3P . If this 

secret key is to be used as a session key, a single integer must 

be derived. There are two categories of derivation: reversible 

and irreversible [26]. If the session key is also required to be 

decoded as a point in elliptic curve, it is reversible. Otherwise, 

it is irreversible. The reversible derivation will result in a 

session key which doubles the length of the private key. In the 

irreversible derivation, we can simply use the X-coordinate or 

simple hash function of the X-coordinate as the session key 

[26]. 

 

4.  PROPOSED PROTOCOL 
The proposed protocol chooses a k-bit prime p and determine 

following public parameters: 

{Fp, E/Fp,  G,  P}. 

where E/Fp:  Elliptic curve over Fp. 

G: Cyclic additive points group formed by points on 

E/Fp. 

P: Generator of G. 

The protocol describes operation to generate common 

Session  key among  n  members (it is not important whether 

n is equal to 3k
 or not) called Initialization operation along 

with others group operations like Join, Leave, Merge, etc. for 

dynamic group. 

4.1 Initialization 
Let us suppose all members identified by M1,M2,..., Mn 

are arranged as the leaf nodes of a ternary tree. Now each 

member Mi randomly chooses a secrete ai   Zp
* (for i =1to n) 

and keep it safe. The sequence of operations in each round are 

follows. 

1) In first round all members are arranged in        
subgroups having set of three members in each. (If n 

is not the multiple of 3 then remaining one or two 

members supposed to forward in next round and 

they does nothing in current round. The same 

condition is in every round)  Member in every set 

form their own common EC points by using ECC 

based Three Parties Diffie Hellman key exchange as 

discussed in section 3.3. 

At the end of first round every subgroup has its own 

secret key (a point in EC group) in the form of 

(axi.ayi.azi.P) for i=1...        Where axi, ayi & azi are 

private keys of first ,second and third member of 

i’th  subgroup.  

One member from every subgroup comes forward as the 

group controller (GC) for the next round. In this 

way we treat every subgroup as a new node 

controlled by their GC. 

2) In second round There are total  
 

 
  nodes (along 

with the remaining node coming from previous 

round) form the subgroups having set of three 

participants of each and calculates their secrete 

subgroup key as in previous. This time GCs uses x- 

co-ordinate of their own subgroup keys as the 

private key. GC1 calculate (x1.P) and  unicast  to  

GC2. GC2 calculates (x2.P) and (x2. x1.P) and 

broadcast {(x1.P) ,( x2.P),( x2.x1.P)} to the all 

members of third subgroup. The members of third 

subgroup now can calculate common key as (x3. 

x2.x1.P) and keep it secret .GC3 additionally 

calculates {(x3.x1.P), (x3.x2.P)} and broadcast to the 

all members of its sibling groups. All sibling 

subgroup members calculates common key by 

multiplying their own private value. 

  Note that GC1, GC2 and GC3 are group controllers 

and x1, x2 and x3  are their x co-ordinates of common 

points of first, second and third subgroups 

respectively. 

3) Repeats the above process in subsequent rounds .In 

every round no. of nodes becomes (1/3) of the 

previous round. After      
   rounds we have a 

single group which includes all the members, each 

sharing the group secret key. 

4) If in last round the no of participants remains only 

two then instead of three parties it employs two 

parties ECC based Diffie Hellman for calculating 

final group key. 

An example to initialize 12 (12 ≠ 3k) members by above 

protocols is illustrated in Figure 1. Members of the group are 

represented by leaf node M1,..,M12. In First round four groups 

are formed with their own group key shown as the parent 

nodes G1…G4 of corresponding members. Only one group G5 

is possible in second round with participants G1, G2 and G3 

they form a common key which is shared by all the members 

of G1, G2 and G3. Group G4 doing nothing in this round 
forwarded to the next round. In third round remain only two 

participants G4 and G5 .They employ two parties ECC based 

Diffie Hellman as suggested in our protocol to compute final 

group key which is shared by all the members M1,..,M12. 

The worst case cost of initialization operation are summarised 

in following table: 

Table1. The Worst case cost of Initialization Operation 

Communication: Computation: 

Rounds 

Messages 

(Unicast + 

Broadcast) 

Point Multiplications: 

h =      
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Figure 1:  Initialization of 12 Members 

 

4.2 Join Operation:  
Efficient Join and Leave algorithms are very important to the 

dynamic group key agreement protocols, since any member 

can leave and join the group at any time. The proposed 

protocol handles the join operation in two ways: single join 

when only one new member wants to join the group and mass 

join when multiple   new members want to join the existing 

group. When a join request is come to the GC it wait till the 

predefined thresholds (a small time slot) if more join requests 

are come within the threshold then these requests are handled 

by mass join operation. On the other hand in case of single 

request it is handled by single join operation. 

4.2.1 Single join 

For single join the GC of initial group   do the two parties 

Diffie Hellman Key exchange with the new member. So there 

are only two messages are required for single join. Initially 

joining member choose a secrete value anew   Zp* and 

calculate blind key as (anew.P) and broadcast to the members 

of current group. All members of current group (including 

GC) can calculates new group key Knew = (x.anew.P) and 

keep it secret .Now GC of current group send (x.P) to the new 

member and then the new member can calculates Knew = 

(anew.x.P). Note that ‘x’ is the group secret of existing group. 

The total no. of point multiplications require in single join is: 

(n+2). 

4.2.2 Mass Join 
Suppose there are ‘m’ new members want to join the current 

group with ‘N’ members having common group key K then: 

a) First initialize ‘m’ members to form their own 

independent group by initialization operation 

discussed in section 4.1 and form their own group 

key say Knew  . 

b) Merge the new group to the old existing group.  

c) To merge these two groups, sponsor(GC) of each 

group broadcasts their blind key to the all members 

of other group and form a new group key (x1.x2.P ) 

just like as two parties key exchange. Where x1 , x2  

are  group secrets of old and new group 

respectively. 

 

M2 

 

M3 M4 M5 M6 M7 
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Figure 1 Mass Join

The total no of messages involved in mass join operation are: Messages required to initialization of ‘m’ members + 2  

=    
   

 
   + 2. 

Total no. of point multiplication can be calculated as: 

      

 
     + 

      

 
      +   +   + 2 

=     
  

 
        

 

 
    

Where   and     are heights of initial and new group tree 

respectively. Note that the discussion of point multiplication 

cost for all operations of in this paper is worst case cost in 

practical scenario it is much less than the worst case.  

Note that although we are using merge operation of CCEGK 

for mass join in current paper but we can use any method like 

mass join-iterative [1], mass join-simultaneous, etc. as 

discussed in [27]. 

4.3 Leave Operation 
If no. of leaving member is  one or very few then it can be 

handle few times calling of single leave operation which 

require just one broadcast message. But if the no. of leaving 

members are very large then Mass Leave operation is perform 

which is suggest that it is better to reinitialize the tree with 

other than leaving members. 

4.3.1 Single Leave: 

In case of single leave, key path from the leaving member to 

the root of the tree must be updated. If the leaving member is 

group controller (GC) then choose some other member as the 

group controller but no need to change other subgroup 

controller.Leave operation in proposed protocol is very 

similar to that in TGDH [11] .Suppose that we have n 

members in the group and assume that member Md leaves the 

group. First, each member updates its key tree by deleting the 

leaf node corresponding to Md. If Md  have only one sibling, 

the former sibling of Md is promoted to replace Md’s parent 

node. Leave operation in proposed protocol is very similar to 

that in TGDH [11] the sponsor generates a new key share, 

computes all {key & blind key contribution with others 

siblings} on the key-path up to the root, and broadcasts the 

new set of blind key contributions. This allows all members to 

compute the new group key. So there is only one round and 

only one message is require in leave operation. The no. of 

point multiplication is depends on the location of the leaving 

member and tree structure. In worst case it is     + 3      

when the leaving node locates in deepest level. Note that the 

sponsor in this case is the rightmost leaf node of the sub tree 

rooted at the leaving member’s sibling node. 

4.3.2 Mass Leave: 
If the no. of leaving members are very large then it is better to 

reinitialize the tree with other than the leaving members. So if 

  be the total no. of members in initial group and    is the no. 

of leaving members from current group then 

The message cost of the mass leave operation is:    
       

 
   

Total no. of point multiplication is:   
        

 
          

Note that after numerous group operations like join, leave, 

mass join etc. the resultant key tree becomes quit unbalanced. 

So as suggested in [27] when the key tree reaches a certain 

imbalance point, we should rebalance the tree and treat the 

rebalance operation as the group operation required. The 

imbalance point can vary depending on network and 

efficiency requirement. The proposed paper does not provide 

any new rebalancing scheme however protocol can use any 

scheme discussed in [27]. Also sometimes it is more suitable 

to reinitialize the tree instead of rebalancing. 

5. AUTHENTICATION 
Although the proposed protocol is based on elliptic curve 

Diffie Hellman which is secure and not easy to break, the 

entire system is vulnerable if the keys are not securely 

distributed. Therefore, we should implement an authentication 

algorithm in the protocol. There are several ways to 

authenticate a group key exchange, such as centralized 

authentication, implicit authentication, and pairwise 

authentication [3, 4, 9, 11, 16]. In all operations of the 

protocol any of the above authentication schemes can be used. 

The advantages and limitations of different authentication 

schemes are discussed in CCEGK [27]. 

Gold Gnew 

Old group tree with ‘n’ 

members 

New group 

initialized with 

‘m’members 

 

   G 
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6. SECURITY ANALYSIS 
The Security of ECC is due to the discrete logarithm problem 

over the points on the elliptic curve. Cryptanalysis involves 

determining x given Q and P where P is a point on the EC and 

Q = x P that is P added to itself x times. The best known 

algorithm to break the elliptic curve points is the pollard – rho 

algorithm which is a fully exponential algorithm and difficult 

to solve. Forward and Backward secrecy are maintained as 

each session. Also the proposed protocol is analyzed by 

AVISPA tool and it is found to be safe against the various 

attacks. The detail output of AVISPA tool and role 

specification in HLPSL are shown in next section.  In this 

section we address the possible types of attacks. Security 

tolerance of the proposed scheme in response to the various 

attacks is discussed in the following subsections. 

Exterior Collecting Attack 
The first potential attack is from an outsider. If an attacker is 

outsider, it means no idea about what EC or base point is 

being used is known and hence more difficult to attack. 

Therefore, the proposed scheme restricts intrusion from 

outsiders. 

Interior Collecting Attacks 

If a group member has many ancestors and if it negotiates 

with one parent also by knowing the key as there is no relation 

parameter among any of the ancestor nodes it is not possible 

to obtain the key. 

Known Session Key Security In each session, each member 

Mi randomly chooses an private key ai ϵ Zp* and the 

generated group session key depends on each member’s 

private key ai . The adversary that compromises one session 

key should not compromise other session keys, so this 

protocol can provide known session key security. 

No Key Control The group session key in the protocol is 

determined by all members’ private keys ai , for i=1,2,3,……n 

so that neither party alone can control the outcome of the 
session key. So it is fully contributory technique. 

Forward and Backward Secrecy The new coming member 

does not know what was the group key earlier because they 

receives only a point in EC which is generating point 

multiplied with the group secrete. New member cannot get the 

secret due to ECDLP. Also the leaving member cannot 

compute the new group key because all blind key contribution 

from leaving member to the root are updated by leave 

controller and  its share is no longer part of the new group 

key. 

7. FORMAL SECURITY 

VERIFICATION USING AVISPA 

TOOL 
Recently, AVISPA tool [25] is widely used by many 

researchers [15] for the automated validation of Internet 

security protocols and applications. The AVISPA is a 

pushbutton tool designed by University of Geneva, Italy using 

the concept of Dolev and Yao intruder model [7], where the 

network is controlled by an intruder (Active and passive); 

however he is not allowed to crack the underlying 

cryptography. The AVISPA tool supports High Level 

Protocol Specification Language (HLPSL) based on which the 

cryptographic protocols are to be implemented and analyzed. 

It has four model checkers/back-ends, called OFMC (On-the-

fly Model-Checker), CL-AtSe (Constraint-Logic-based Attack 

Searcher), SATMC (SAT-based Model-Checker) and TA4SP 

(Tree Automata-based Protocol Analyzer). The details 

description about AVISPA and HLPSL can be found in [2]. 

The role specification of each party involved in key 

generation just for three parties and the results of OFMC & 

CL-AtSe are shown below: 

 

Role Specification: 

role party1 ( P1,P2,P3:agent,G: text, SND, RCV : 

channel(dy),K1,K2,K3: public_key) 

played_by P1 

def= local  

State : nat,  

A1 : text, 

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key, 

K : symmetric_key 

% knowledge(P1) = {inv(K1)} 

init State :=0 

transition 

             1.State=0/\RCV(start)=|> 

   State' := 1/\ A1':= new() 

/\ X':=exp(G,A1') 

/\SND({{P1.X'}_inv(K1)}_K2) 

/\ witness(P1,P2,party2_party1_x,X') 

2.State=1 /\ RCV({{Xa3'.Ya3'}_inv(K3)}_K1)=|>  

State':= 2 

/\request(P1,P3,party1_party3_ya3,Ya3') 

/\ K':= exp(Ya3',A1) 

/\secret(K',k,{P1,P2,P3}) 

end role 

 

role party2(P2,P3,P1: agent, G : text,SND,RCV: 

channel (dy),K1,K2,K3 : public_key) 

played_by P2  def=  

local 

State :nat, 

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key, 

K : symmetric_key, 

A2 :text 

init State :=0 

% knowledge(P2) = {inv(K2)} 

Transition 

1.State =0 /\RCV({{P1.X'}_inv(K1)}_K2)=|> 

State':=1/\request(P2,p1, party2_party1_x,X') 

/\ A2':= new() 

/\ Y':= exp(G,A2') 

/\ Xa2' := exp(X',A2') 

/\ SND({{P1.P2.X'.Y'.Xa2'}_inv(K2)}_K3) 

/\ witness(P2,P3,party3_party2_x,X') 

/\ witness(P2,P3,party3_party2_y,Y') 

/\ witness(P2,P3,party3_party2_xa2,Xa2') 

2.State =1 /\ RCV({{Xa3'.Ya3'}_inv(k3)}_K2)=|> 

State':=2 

/\ request(P2,P3,party2_party3_xa3,Xa3') 

/\ K' := exp(Xa3',A2) 

/\ secret(K',k,{P1,P2,P3}) 

end role 
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role party3(P3,P1,P2: agent,G:text,SND,RCV: 

channel(dy),K1,K2,K3 : public_key) 

played_by P3 def= 

local 

State :nat, 

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key, 

K :symmetric_key, 

A3 : text 

init State := 0 

transition 

% knowledge(P3) = {inv(K3)} 

1.State = 0 /\ 

RCV({{P1.P2.X'.Y'.Xa2'}_inv(K2)}_K3)=|> 

State':= 1/\ request(P3,P2,party3_party2_x,X') 

/\ request(P3,P2,party3_party2_y,Y') 

/\ request(P3,P2,party3_party2_xa2,Xa2') 

/\ A3' := new() 

/\ Z':=exp(G,A3') 

/\ K' := exp(Xa2',A3') 

/\ secret(K',k,{P1,P2,P3}) 

/\ Xa3' := exp(X',A3') 

/\ Ya3' := exp(Y',A3') 

/\ SND({{Xa3'.Ya3'}_inv(K3)}_K1)  

/\ SND({{Xa3'.Ya3'}_inv(K3)}_K2) 

 %.{P1.P2.P3.X'.Y'.Z'}_K 

/\ witness(P3,P1,party1_party3_ya3,Ya3') 

/\ witness(P3,p2,party2_party3_xa3,Xa3') 

 

end role 

Simulation result of our scheme on OFMC model checker: 

% OFMC 

% Version of 2006/02/13 

SUMMARY 

 SAFE 

DETAILS 

  BOUNDED_NUMBER_OF_SESSIONS 

PROTOCOL 

  /home/avispa/web-interface-

computation/./tempdir/workfileufnO9q.if 

GOAL 

  as_specified 

BACKEND 

OFMC 

COMMENTS 

STATISTICS 

parseTime: 0.00s 

searchTime: 0.14s 

visitedNodes: 16 nodes 

depth: 4 plies 

Simulation result of our scheme on CL-AtSe model 

checker: 

SUMMARY  

SAFE 

DETAILS 

 BOUNDED_NUMBER_OF_SESSIONS 

  TYPED_MODEL 

PROTOCOL 

 /home/avispa/web-interface-

computation/./tempdir/workfileufnO9q.if 

GOAL 

As Specified 

BACKEND 

 CL-AtSe 

STATISTICS 

 Analysed   : 9 states 

 Reachable  : 0 states 

 Translation: 0.04 seconds 

Computation: 0.00 seconds 

8. COMPARISON WITH OTHER 

EXISTING PROTOCOLS 
This section compares the costs of major group key 

management operations of proposed technique with other 

existing binary tree based group key technique .The 

comparison chart shown in Table 2 uses the following 

notation for comparison. 

 : Number of members in a group. 

 : Number of new member send requests to join/leave the 

original group. 

h =      
  , which is the height of original key tree in 

proposed technique. 

        
  , which is the height of new key tree created by   

new members in proposed technique. 

         
     

  Which is the height of new key tree 

with    ) members in proposed technique after mass leave 

event. 

          
     

  Which is the height of new key tree 

with    ) members in other existing binary tree based 

technique. 

It is noted that Maria et al. [20] and TGECDH in 

[26] do not provides the cost of initialization operation in their 

papers. So we first calculate no. of messages and point 

multiplications of these protocols based on the concepts 

discussed in their papers and compare with proposed 

protocols. Same for other operations in Maria et al. 
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Table2. Comparison Table 

 

9. CONCLUSON 
This paper proposed an efficient contributory group key 

agreement protocol for dynamic group. Here group is 

organized in a logical ternary key tree instead of binary tree. 

For key computation it uses ECC based three parties Diffie-

Hellman based on GDH.2. The paper describes the 

implementation of major group key management operations. 

The security verification of the protocol is done by using 

AVISPA tool and found to be safe under various attacks. 

Finally The cost of the various group operations are compared 

with others existing techniques which shows its efficient 

performance than the existing protocols. 
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