
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

17

Ternary Tree based Group Key Agreement Protocol Over

Elliptic Curve for Dynamic Group

Abhimanyu Kumar
Department of Computer
Science and Engineering
Indian School of Mines,

Dhanbad-826004, Jharkhand,
India

 Sachin Tripathi
Department of Computer
Science and Engineering
Indian School of Mines,

Dhanbad-826004, Jharkhand,
India

ABSTRACT

Secure group communication is an active area of research and

its popularity is fuelled by the growing importance of group

oriented internet applications such as voice & video

conferences, pay per view, etc. Several groupware

applications like video conferences, distributed computations,

etc requires secure transmission while communicating over

the Internet. For secure communication, the integrity of the

messages, member authentication, and confidentiality are

must be provided among group members. To provide message

integrity all group members must be agreed up on a common

group key to encrypt and decrypt the messages. This paper

proposes an efficient and contributory group key agreement

protocol and also support dynamic operations like join, leave,

merge, etc. by using ECC based Diffie Hellman key

exchange. This protocol employs ternary tree like structure

instead of binary tree in the process of group key generation.

The performance of the proposed scheme is compared with

that of several others existing schemes in literature and it is

found that the proposed one is performs well in terms of

communication and computation cost. In addition, the formal

security validation is done using AVISPA tool that

demonstrated that the proposed protocol is safe against

passive and active attacks.

Keywords

ECC, group key agreement, ternary tree, ECC based Diffie-

Hellman, AVISPA.

1. INTRODUCTION
For several groupware applications like voice & video

conferences, distributed computation etc. over the insecure

network like Internet, it is require to develop an efficient

group key agreement protocol for secure communication.

Consider a group of N members in a network would like to

discuss on secrete common concern. These N members must

able to communicate among themselves over a public channel

in a secure manner such that any user other than the group

must not be able to listen in to the conversation between

legitimate members. The general aim of secure group

communication is to construct a common secrete key among

the group members for confidential communication. Although

several tree based group key establishment technique like

CCEGK [27], EGK [1], TGDH [11], STR [10], etc. are

available in literature, all of which employ a binary tree for

computing group key and uses two parties Diffie Hellman key

exchange as the basic operation. However [24] introduces

ternary tree in their protocol and uses GDH.2 [23] as the basic

operation for the group of restricted size 3k where k is any

integer. In order to improve the efficiency of the

cryptographic technique the ECC based cryptosystem can

play an important role since it offers similar level of security

which can be achieve with shorter keys size than existing

methods which are based on difficulties of solving discrete

logarithms over integers or integer factorization. The use of

elliptic curve in public key cryptography was independently

proposed by Koblitz and Miller in 1985 [12] and since then,

an enormous amount of work has been done on elliptic curve

cryptography. This paper proposes ECC based contributory

key computation for secure group communication in dynamic

environment. The proposed technique organises the key

generation process in ternary tree like structure in which every

node can have at most three children as in [24], but there is no

restriction of the no of group members (not necessary 3k as in

[24]). The advantages of using ternary tree instead of binary

tree are already justified in [24]. The protocol uses three

parties ECC based Diffie Hellman key exchange which is

discussed in section 3.3 as its basic operation. Along with the

ternary tree, since the proposed technique uses ECC approach

which has low computation cost and smaller key size, the

overheads are reduces and the performance of the protocol

improves significantly.

The rest of the paper is organized as follows. Section 2

summarises the related works. Section 3 describes the

Preliminaries of the entire paper. Section 4 discusses the

proposed protocol followed by a pictorial representation of

step by step group key generation process between the

members. Section 5 discussed the suggested authentication

scheme for proposed protocol. In section 6 security analysis of

proposed protocol are discussed followed by its verification

result using AVISPA tool in Section 7. Section 8 provides

analytical performance comparison with other existing

protocols and finally section 9 concludes this paper.

2. RELATED WORK
Several approaches have been proposed for group key

generation in current literature. These approaches can be

classified into three categories: Centralized, Decentralized and

distributed approaches [5, 6, 19, 21].

In Centralized approaches [8, 14, 21] an entity usually called

key server, is responsible for generation and distribution of

group key to all members of the group a trusted third party

(TTP) can make this possible. However the main problem

with this approach is the TTP must be constantly available

and in every possible subset of group there must be a TTP

available in order to support continued operation in the event

of network partitions.

In decentralized approaches [13, 17, 18] the whole group is

split into small subgroups. Each subgroup is managed by

Subgroup Controller (SC) which minimizes the problem of

concentrating the work on a single point. The failure of one

SC will not escort to the failure of the whole group. But also

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

18

in most of the decentralized technique, the SC may become a

bottleneck because the SC must decrypt the group messages

and then re encrypt it using the sub key [13].

In distributed approaches, the group key is generated in a

contributory fashion, where all members contribute their own

share in computing the group key. Steiner et al. [23] extended

the Diffie Hellman protocol, which is the first pioneering two

party key agreement protocols, to multi-party scenario. The

Group Diffie Hellman key agreement protocol (GDH) require

N rounds to agree up on a common session key for a group of

N members. In particular, the number of rounds may be

crucial in a large number of group members environment,

because members can’t communicate until the other members

finish the foregoing round protocol.

Kim, Perrig, Tsudik [11] proposed a tree based group key

agreement protocol called TGDH. TGDH computes a group

key derived from contribution of all group members using a

binary tree. Compared to GDH, TGDH just needs constant

rounds to agree up on a common group key and has some

computational advantages. Now a days a number of tree based

group key agreement protocols have been proposed based on

TGDH, including those in [10, 20, 24, and 27]. [24]

Introduces first time a ternary tree approach and uses GDH.2

[23] as the basic operation to establish a contributory group

key among the group members. This results significant

reduction in height of the tree and reduces the computation

and communication overhead. But the main drawback of this

approach is that it support only for the no. of group members

in the form of 3k where k is any integer. Moreover this

protocol did not specify how to manage the resultant members

after a single join or leave operation when the no. of group

members essentially becomes other than 3k.

3. PRELIMINARIES
Since the proposed paper based on ternary tree approach with

ECC based GDH as its basic operation, the ECC and ECDH

techniques are described in this section. The use of ternary

tree instead of conventional binary tree has been already

justified in [24].

3.1 Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) was discovered in 1985

by Victor Miller(IBM) and Neil Koblitz (University of

Washington) as an alternative mechanism for implementing

public-key cryptography. The primary benefit promised by

ECC is a smaller key size, reducing storage and transmission

requirements i.e., an elliptic curve system could provide the

same level of security afforded by an RSA-based system with

a large modulus and correspondingly larger key e.g., a 256-bit

ECC public key should provide comparable security to a

3072-bit RSA public key.
In ECC non-singular type of Elliptic curves over the real

number are used. The elliptic curve over real numbers takes

the general form as:

In cryptography, variables and coefficients of elliptic curve

equation are restricted to elements in a finite field. Thus for

above equation x, y are co-ordinates of GF(p), and are

integer modulo , satisfying

(for non singular elliptic curve).Where is a modular prime

integer which make the EC of finite field. An elliptic curve E

over GF(p) consist of points () defined by above two

equations, along with an additional point called O (point at

infinity or zero point) in EC. The 'O' point plays the role of

identity element for EC group.

Usually an elliptic curve is defined over two types of finite

fields: the prime field containing elements (prime curve)

and the characteristic 2 finite field containing 2m elements

(binary curve).This paper focuses on the prime finite field as

the prime curve are best suit for software applications [22].

Elliptic Curve Arithmetic

Cryptographic schemes based on ECC rely on scalar

multiplication of elliptic curve points. Given an integer k and

a point P (), scalar multiplication is the process of

adding P to itself k times. The result of this scalar

multiplication is denoted k P or kP.

Points addition and point doubling form the basis to calculate

EC scalar multiplication efficiently using the addition rule

together with the double-and-add algorithm or one of its

variants. The detail description of ECC (including its point

addition rule) can be found in various papers including [12,

20, 26].

The security of ECC based protocols are based on

intractability of Elliptic Curve Discrete Logarithm

Problem(ECDLP). ECDLP state that: Given P, Q E , find an

integer k Z* such that Q = kP. It is relatively easy to

calculate Q given k and P, but it is relatively hard to

determine k given Q and P.

3.2 Two Parties Elliptic Curve Diffie-

Hellman Protocol
Similar to DLP-based Diffie-Hellman key exchange

agreement, a key exchange between users A and B using

Elliptic Curve Diffie-Hellman (ECDH) can be accomplished

also discussed in [26] as follows:

1) A selects an integer a1 Z* , this is A's private key. A then

generates a public key X = a1P; the public

key is a point in Ep(a, b).

2) B similarly selects a private key a2 Z* , and computes a

public key Y = a2P.

3) A generates the secret key K = a1 Y .

4) B generates the secret key K = a2 X .

3.3 Three Parties Elliptic Curve Diffie-

Hellman Protocol
Three parties Elliptic Curve Diffie-Hellman

Protocol based on GDH.2 discussed in [24] implemented with

elliptic curve for the group of three parties (A, B & C) as

follows:

1) A, B and C chooses their own private keys a1, a2, a3 Z*

respectively and keep it secret.

2) A calculate X = a1 P and send to B.

3) B calculates Y1 = a2 P ; Y2 = a2X and construct the set {X

(as received from A), Y1, Y2 } which is then transmitted to C.

4) C calculates K = a3Y2; Z1 = a3Y1 and Z2 = a3X. It keeps

secret ‘K’ as the contributory group key and broad cast

remaining {Z1,Z2} to the user A and B.

5) On receiving from C each member can calculates same

group key as

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

19

 A: K = a1Z1 ; and

B: K = a2Z2.

On completing all three members have a common point in the

elliptic curve i.e. K = a3Y2 = a1Z1 = a2Z2 = a1a2a3P . If this

secret key is to be used as a session key, a single integer must

be derived. There are two categories of derivation: reversible

and irreversible [26]. If the session key is also required to be

decoded as a point in elliptic curve, it is reversible. Otherwise,

it is irreversible. The reversible derivation will result in a

session key which doubles the length of the private key. In the

irreversible derivation, we can simply use the X-coordinate or

simple hash function of the X-coordinate as the session key

[26].

4. PROPOSED PROTOCOL
The proposed protocol chooses a k-bit prime p and determine

following public parameters:

{Fp, E/Fp, G, P}.

where E/Fp: Elliptic curve over Fp.

G: Cyclic additive points group formed by points on

E/Fp.

P: Generator of G.

The protocol describes operation to generate common

Session key among n members (it is not important whether

n is equal to 3k
 or not) called Initialization operation along

with others group operations like Join, Leave, Merge, etc. for

dynamic group.

4.1 Initialization
Let us suppose all members identified by M1,M2,..., Mn

are arranged as the leaf nodes of a ternary tree. Now each

member Mi randomly chooses a secrete ai Zp
* (for i =1to n)

and keep it safe. The sequence of operations in each round are

follows.

1) In first round all members are arranged in
subgroups having set of three members in each. (If n

is not the multiple of 3 then remaining one or two

members supposed to forward in next round and

they does nothing in current round. The same

condition is in every round) Member in every set

form their own common EC points by using ECC

based Three Parties Diffie Hellman key exchange as

discussed in section 3.3.

At the end of first round every subgroup has its own

secret key (a point in EC group) in the form of

(axi.ayi.azi.P) for i=1... Where axi, ayi & azi are

private keys of first ,second and third member of

i’th subgroup.

One member from every subgroup comes forward as the

group controller (GC) for the next round. In this

way we treat every subgroup as a new node

controlled by their GC.

2) In second round There are total

 nodes (along

with the remaining node coming from previous

round) form the subgroups having set of three

participants of each and calculates their secrete

subgroup key as in previous. This time GCs uses x-

co-ordinate of their own subgroup keys as the

private key. GC1 calculate (x1.P) and unicast to

GC2. GC2 calculates (x2.P) and (x2. x1.P) and

broadcast {(x1.P) ,(x2.P),(x2.x1.P)} to the all

members of third subgroup. The members of third

subgroup now can calculate common key as (x3.

x2.x1.P) and keep it secret .GC3 additionally

calculates {(x3.x1.P), (x3.x2.P)} and broadcast to the

all members of its sibling groups. All sibling

subgroup members calculates common key by

multiplying their own private value.

 Note that GC1, GC2 and GC3 are group controllers

and x1, x2 and x3 are their x co-ordinates of common

points of first, second and third subgroups

respectively.

3) Repeats the above process in subsequent rounds .In

every round no. of nodes becomes (1/3) of the

previous round. After
 rounds we have a

single group which includes all the members, each

sharing the group secret key.

4) If in last round the no of participants remains only

two then instead of three parties it employs two

parties ECC based Diffie Hellman for calculating

final group key.

An example to initialize 12 (12 ≠ 3k) members by above

protocols is illustrated in Figure 1. Members of the group are

represented by leaf node M1,..,M12. In First round four groups

are formed with their own group key shown as the parent

nodes G1…G4 of corresponding members. Only one group G5

is possible in second round with participants G1, G2 and G3

they form a common key which is shared by all the members

of G1, G2 and G3. Group G4 doing nothing in this round
forwarded to the next round. In third round remain only two

participants G4 and G5 .They employ two parties ECC based

Diffie Hellman as suggested in our protocol to compute final

group key which is shared by all the members M1,..,M12.

The worst case cost of initialization operation are summarised

in following table:

Table1. The Worst case cost of Initialization Operation

Communication: Computation:

Rounds

Messages

(Unicast +

Broadcast)

Point Multiplications:

h =

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

20

Figure 1: Initialization of 12 Members

4.2 Join Operation:
Efficient Join and Leave algorithms are very important to the

dynamic group key agreement protocols, since any member

can leave and join the group at any time. The proposed

protocol handles the join operation in two ways: single join

when only one new member wants to join the group and mass

join when multiple new members want to join the existing

group. When a join request is come to the GC it wait till the

predefined thresholds (a small time slot) if more join requests

are come within the threshold then these requests are handled

by mass join operation. On the other hand in case of single

request it is handled by single join operation.

4.2.1 Single join

For single join the GC of initial group do the two parties

Diffie Hellman Key exchange with the new member. So there

are only two messages are required for single join. Initially

joining member choose a secrete value anew Zp* and

calculate blind key as (anew.P) and broadcast to the members

of current group. All members of current group (including

GC) can calculates new group key Knew = (x.anew.P) and

keep it secret .Now GC of current group send (x.P) to the new

member and then the new member can calculates Knew =

(anew.x.P). Note that ‘x’ is the group secret of existing group.

The total no. of point multiplications require in single join is:

(n+2).

4.2.2 Mass Join
Suppose there are ‘m’ new members want to join the current

group with ‘N’ members having common group key K then:

a) First initialize ‘m’ members to form their own

independent group by initialization operation

discussed in section 4.1 and form their own group

key say Knew .

b) Merge the new group to the old existing group.

c) To merge these two groups, sponsor(GC) of each

group broadcasts their blind key to the all members

of other group and form a new group key (x1.x2.P)

just like as two parties key exchange. Where x1 , x2

are group secrets of old and new group

respectively.

M2

M3 M4 M5 M6 M7

M8 M9

M10
M11

M1

M12
 G1

G2 G3

G5

G4

 G

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

21

Figure 1 Mass Join

The total no of messages involved in mass join operation are: Messages required to initialization of ‘m’ members + 2

=

 + 2.

Total no. of point multiplication can be calculated as:

 +

 + + + 2

=

Where and are heights of initial and new group tree

respectively. Note that the discussion of point multiplication

cost for all operations of in this paper is worst case cost in

practical scenario it is much less than the worst case.

Note that although we are using merge operation of CCEGK

for mass join in current paper but we can use any method like

mass join-iterative [1], mass join-simultaneous, etc. as

discussed in [27].

4.3 Leave Operation
If no. of leaving member is one or very few then it can be

handle few times calling of single leave operation which

require just one broadcast message. But if the no. of leaving

members are very large then Mass Leave operation is perform

which is suggest that it is better to reinitialize the tree with

other than leaving members.

4.3.1 Single Leave:

In case of single leave, key path from the leaving member to

the root of the tree must be updated. If the leaving member is

group controller (GC) then choose some other member as the

group controller but no need to change other subgroup

controller.Leave operation in proposed protocol is very

similar to that in TGDH [11] .Suppose that we have n

members in the group and assume that member Md leaves the

group. First, each member updates its key tree by deleting the

leaf node corresponding to Md. If Md have only one sibling,

the former sibling of Md is promoted to replace Md’s parent

node. Leave operation in proposed protocol is very similar to

that in TGDH [11] the sponsor generates a new key share,

computes all {key & blind key contribution with others

siblings} on the key-path up to the root, and broadcasts the

new set of blind key contributions. This allows all members to

compute the new group key. So there is only one round and

only one message is require in leave operation. The no. of

point multiplication is depends on the location of the leaving

member and tree structure. In worst case it is + 3

when the leaving node locates in deepest level. Note that the

sponsor in this case is the rightmost leaf node of the sub tree

rooted at the leaving member’s sibling node.

4.3.2 Mass Leave:
If the no. of leaving members are very large then it is better to

reinitialize the tree with other than the leaving members. So if

 be the total no. of members in initial group and is the no.

of leaving members from current group then

The message cost of the mass leave operation is:

Total no. of point multiplication is:

Note that after numerous group operations like join, leave,

mass join etc. the resultant key tree becomes quit unbalanced.

So as suggested in [27] when the key tree reaches a certain

imbalance point, we should rebalance the tree and treat the

rebalance operation as the group operation required. The

imbalance point can vary depending on network and

efficiency requirement. The proposed paper does not provide

any new rebalancing scheme however protocol can use any

scheme discussed in [27]. Also sometimes it is more suitable

to reinitialize the tree instead of rebalancing.

5. AUTHENTICATION
Although the proposed protocol is based on elliptic curve

Diffie Hellman which is secure and not easy to break, the

entire system is vulnerable if the keys are not securely

distributed. Therefore, we should implement an authentication

algorithm in the protocol. There are several ways to

authenticate a group key exchange, such as centralized

authentication, implicit authentication, and pairwise

authentication [3, 4, 9, 11, 16]. In all operations of the

protocol any of the above authentication schemes can be used.

The advantages and limitations of different authentication

schemes are discussed in CCEGK [27].

Gold Gnew

Old group tree with ‘n’

members

New group

initialized with

‘m’members

 G

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

22

6. SECURITY ANALYSIS
The Security of ECC is due to the discrete logarithm problem

over the points on the elliptic curve. Cryptanalysis involves

determining x given Q and P where P is a point on the EC and

Q = x P that is P added to itself x times. The best known

algorithm to break the elliptic curve points is the pollard – rho

algorithm which is a fully exponential algorithm and difficult

to solve. Forward and Backward secrecy are maintained as

each session. Also the proposed protocol is analyzed by

AVISPA tool and it is found to be safe against the various

attacks. The detail output of AVISPA tool and role

specification in HLPSL are shown in next section. In this

section we address the possible types of attacks. Security

tolerance of the proposed scheme in response to the various

attacks is discussed in the following subsections.

Exterior Collecting Attack
The first potential attack is from an outsider. If an attacker is

outsider, it means no idea about what EC or base point is

being used is known and hence more difficult to attack.

Therefore, the proposed scheme restricts intrusion from

outsiders.

Interior Collecting Attacks

If a group member has many ancestors and if it negotiates

with one parent also by knowing the key as there is no relation

parameter among any of the ancestor nodes it is not possible

to obtain the key.

Known Session Key Security In each session, each member

Mi randomly chooses an private key ai ϵ Zp* and the

generated group session key depends on each member’s

private key ai . The adversary that compromises one session

key should not compromise other session keys, so this

protocol can provide known session key security.

No Key Control The group session key in the protocol is

determined by all members’ private keys ai , for i=1,2,3,……n

so that neither party alone can control the outcome of the
session key. So it is fully contributory technique.

Forward and Backward Secrecy The new coming member

does not know what was the group key earlier because they

receives only a point in EC which is generating point

multiplied with the group secrete. New member cannot get the

secret due to ECDLP. Also the leaving member cannot

compute the new group key because all blind key contribution

from leaving member to the root are updated by leave

controller and its share is no longer part of the new group

key.

7. FORMAL SECURITY

VERIFICATION USING AVISPA

TOOL
Recently, AVISPA tool [25] is widely used by many

researchers [15] for the automated validation of Internet

security protocols and applications. The AVISPA is a

pushbutton tool designed by University of Geneva, Italy using

the concept of Dolev and Yao intruder model [7], where the

network is controlled by an intruder (Active and passive);

however he is not allowed to crack the underlying

cryptography. The AVISPA tool supports High Level

Protocol Specification Language (HLPSL) based on which the

cryptographic protocols are to be implemented and analyzed.

It has four model checkers/back-ends, called OFMC (On-the-

fly Model-Checker), CL-AtSe (Constraint-Logic-based Attack

Searcher), SATMC (SAT-based Model-Checker) and TA4SP

(Tree Automata-based Protocol Analyzer). The details

description about AVISPA and HLPSL can be found in [2].

The role specification of each party involved in key

generation just for three parties and the results of OFMC &

CL-AtSe are shown below:

Role Specification:

role party1 (P1,P2,P3:agent,G: text, SND, RCV :

channel(dy),K1,K2,K3: public_key)

played_by P1

def= local

State : nat,

A1 : text,

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key,

K : symmetric_key

% knowledge(P1) = {inv(K1)}

init State :=0

transition

 1.State=0/\RCV(start)=|>

 State' := 1/\ A1':= new()

/\ X':=exp(G,A1')

/\SND({{P1.X'}_inv(K1)}_K2)

/\ witness(P1,P2,party2_party1_x,X')

2.State=1 /\ RCV({{Xa3'.Ya3'}_inv(K3)}_K1)=|>

State':= 2

/\request(P1,P3,party1_party3_ya3,Ya3')

/\ K':= exp(Ya3',A1)

/\secret(K',k,{P1,P2,P3})

end role

role party2(P2,P3,P1: agent, G : text,SND,RCV:

channel (dy),K1,K2,K3 : public_key)

played_by P2 def=

local

State :nat,

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key,

K : symmetric_key,

A2 :text

init State :=0

% knowledge(P2) = {inv(K2)}

Transition

1.State =0 /\RCV({{P1.X'}_inv(K1)}_K2)=|>

State':=1/\request(P2,p1, party2_party1_x,X')

/\ A2':= new()

/\ Y':= exp(G,A2')

/\ Xa2' := exp(X',A2')

/\ SND({{P1.P2.X'.Y'.Xa2'}_inv(K2)}_K3)

/\ witness(P2,P3,party3_party2_x,X')

/\ witness(P2,P3,party3_party2_y,Y')

/\ witness(P2,P3,party3_party2_xa2,Xa2')

2.State =1 /\ RCV({{Xa3'.Ya3'}_inv(k3)}_K2)=|>

State':=2

/\ request(P2,P3,party2_party3_xa3,Xa3')

/\ K' := exp(Xa3',A2)

/\ secret(K',k,{P1,P2,P3})

end role

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

23

role party3(P3,P1,P2: agent,G:text,SND,RCV:

channel(dy),K1,K2,K3 : public_key)

played_by P3 def=

local

State :nat,

X,Y,Z,Ya3,Za2,Xa2,Xa3 :public_key,

K :symmetric_key,

A3 : text

init State := 0

transition

% knowledge(P3) = {inv(K3)}

1.State = 0 /\

RCV({{P1.P2.X'.Y'.Xa2'}_inv(K2)}_K3)=|>

State':= 1/\ request(P3,P2,party3_party2_x,X')

/\ request(P3,P2,party3_party2_y,Y')

/\ request(P3,P2,party3_party2_xa2,Xa2')

/\ A3' := new()

/\ Z':=exp(G,A3')

/\ K' := exp(Xa2',A3')

/\ secret(K',k,{P1,P2,P3})

/\ Xa3' := exp(X',A3')

/\ Ya3' := exp(Y',A3')

/\ SND({{Xa3'.Ya3'}_inv(K3)}_K1)

/\ SND({{Xa3'.Ya3'}_inv(K3)}_K2)

 %.{P1.P2.P3.X'.Y'.Z'}_K

/\ witness(P3,P1,party1_party3_ya3,Ya3')

/\ witness(P3,p2,party2_party3_xa3,Xa3')

end role

Simulation result of our scheme on OFMC model checker:

% OFMC

% Version of 2006/02/13

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

 /home/avispa/web-interface-

computation/./tempdir/workfileufnO9q.if

GOAL

 as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 0.14s

visitedNodes: 16 nodes

depth: 4 plies

Simulation result of our scheme on CL-AtSe model

checker:

SUMMARY

SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /home/avispa/web-interface-

computation/./tempdir/workfileufnO9q.if

GOAL

As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 9 states

 Reachable : 0 states

 Translation: 0.04 seconds

Computation: 0.00 seconds

8. COMPARISON WITH OTHER

EXISTING PROTOCOLS
This section compares the costs of major group key

management operations of proposed technique with other

existing binary tree based group key technique .The

comparison chart shown in Table 2 uses the following

notation for comparison.

 : Number of members in a group.

 : Number of new member send requests to join/leave the

original group.

h =
 , which is the height of original key tree in

proposed technique.

 , which is the height of new key tree created by

new members in proposed technique.

 Which is the height of new key tree

with) members in proposed technique after mass leave

event.

 Which is the height of new key tree

with) members in other existing binary tree based

technique.

It is noted that Maria et al. [20] and TGECDH in

[26] do not provides the cost of initialization operation in their

papers. So we first calculate no. of messages and point

multiplications of these protocols based on the concepts

discussed in their papers and compare with proposed

protocols. Same for other operations in Maria et al.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

24

Table2. Comparison Table

9. CONCLUSON
This paper proposed an efficient contributory group key

agreement protocol for dynamic group. Here group is

organized in a logical ternary key tree instead of binary tree.

For key computation it uses ECC based three parties Diffie-

Hellman based on GDH.2. The paper describes the

implementation of major group key management operations.

The security verification of the protocol is done by using

AVISPA tool and found to be safe under various attacks.

Finally The cost of the various group operations are compared

with others existing techniques which shows its efficient

performance than the existing protocols.

10. REFERENCES
[1] Alves-Foss, J. An e_cient secure authenticated group key

exchange algorithm for large and dynamic groups. In IN

PROC. 23 RD NATIONAL INFORMATION

SYSTEMS SECURITY CONFERENCE (2000), pp.

254-266.

[2] Armando, A., Basin, D., Boichut, Y., Chevalier, Y.,

Compagna, L., Cuellar, J., Hankes Drielsma, P., He_am,

P.-C., Mantovani, J., Modersheim, S., von Oheimb, D.,

Rusinowitch, M., Santiago, J., Turuani, M., Vigan_o, L.,

and Vigneron, L. The AVISPA Tool for the Automated

Validation of Internet Security Protocols and

Applications. In Proceedings of the 17th International

Conference on Computer Aided Veri_cation (CAV'05),

K. Etessami and S. K. Rajamani, Eds., vol. 3576 of

LNCS. Springer, 2005. Available at http://www.avispa-

project.org/publications.html.

[3] Ateniese, G., Steiner, M., and Tsudik, G. Authenticated

group key agreement and friends. In Proceedings of the

5th ACM conference on Computer and communications

security (New York, NY, USA, 1998), CCS '98, ACM,

pp. 17-26.

[4] Burmester, M., and Desmedt, Y. E_cient and secure

conference-key distribution. In Proceedings of the

International Workshop on Security Protocols (London,

UK, UK, 1997), Springer-Verlag, pp. 119-129.

[5] Challal, Y., and Seba, H. Group key management

protocols: A novel taxonomy.

[6] Ching Chan, K., and h. Gary Chan, S. Key management

approaches to offer data confidentiality for secure

multicast. IEEE Netw (2003), 30-39.

[7] Dolev, D., and Yao, A. C. On the security of public key

protocols. Information Theory, IEEE Transactions on

29,2 (1983), 198-208.

[8] Jun, Z., Yu, Z., Fanyuan, M., Dawu, G., and Yingcai, B.

An extension of secure group communicationusing key

graph. Information Sciences 176, 20 (2006), 3060-3078.

Protocol Group

Operation

Rounds Messages Point Multiplications

Proposed

Initialization =

Join 1 2 +2

Mass Join

Leave 1 1 + 3

Mass Leave

TGECDH

[26]

Initialization =
)

Join 2 3

Leave 1 1 +

Mass Leave

Maria et

al[20]

Initialization =
)

Join 1 2

Leave 1 1 +

Mass Leave

)

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 7, January 2014

25

[9] Just, M., and Vaudenay, S. Authenticated multi-party key

agreement. In Advances in Cryptology – ASIACRYPT

'96, International Conference on the Theory and

Applications of Cryptology and Information Security,

Kyongju, Korea, November 3-7, 1996, Proceedings

(1996), vol. 1163 of Lecture Notes in Computer Science,

Springer, pp. 36-49.

[10] Kim, Y., Perrig, A., and Tsudik, G. Group key agreement

efficient in communication. IEEE Transactions on

Computers 53, 7 (2004), 905-921.

[11] Kim, Y., Perrig, A., and Tsudik, G. Tree-based group key

agreement. ACM Trans. Inf. Syst. Secur. 7, 1 (Feb.2004),

60-96.

[12] Koblitz, N. Elliptic curve cryptosystems. Mathematics of

Computation 48, 177 (Jan. 1987), 203-209.

[13] Mittra, S. Iolus: A framework for scalable secure

multicasting. pp. 277-288.

[14] Ng, W. H. D., Howarth, M., Sun, Z., and Cruickshank,

H. Dynamic balanced key tree management for secure

multicast communications. IEEE Trans. Comput. 56,

5(May 2007), 590-605.

[15] Nicanfar, H., and Leung, V. C. M. Multilayer consensus

ecc-based password authenticated key-exchange

(mcepak) protocol for smart grid system. IEEE

Trans.Smart Grid 4, 1 (2013), 253-264.

[16] Perrig, A. Efficient collaborative key management

protocols for secure autonomous group communication.

In In International Workshop on Cryptographic

Techniques and E-Commerce (CrypTEC 99 (1999), pp.

192-202.

[17] Peyravian, M., Matyas, S., and Zunic, N.

Decentralizedgroup key management for secure multicast

communications. Computer Communications

22,13(1999), 1183 -1187.

[18] Rafaeli, S., and Hutchison, D. Hydra: a

decentralisedgroup key management. In Enabling

Technologies: Infrastructure for Collaborative

Enterprises, 2002. WET ICE 2002. Proceedings.

Eleventh IEEE International Workshops on(2002),pp.62-

67.

[19] Rafaeli, S., and Hutchison, D. A survey of key

management for secure group communication. ACM

Comput.Surv. 35, 3 (Sept. 2003), 309-329.

[20] S. Maria Celestin Vigila, K. M. Ecc based contributory

group key computation scheme using one time

pad.JOURNAL OF COMPUTING.

[21] Setia, S., Zhu, S., and Jajodia, S. A scalable and reliable

key distribution protocol for multicast group

rekeying,2002.

[22] Stallings, W. Cryptography and Network Security:

Principles and Practice, 3rd ed. Pearson Education, 2002.

[23] Steiner, M., sudik, G., and Waidner, M. Diffie-Hellman

key distribution extended to group communication. ACM

Press, pp. 31-37.

[24] Tripathi, S., and Biswas, G. P. Design of efficient

ternary tree based group key agreement protocol for

dynamic groups. In Communication Systems and

Networks and Workshops, 2009. COMSNETS 2009.

First International (2009), pp. 1-6.

[25] Vigan, L. Automated security protocol analysis with the

avispa tool. In In Proceedings of MFPS05 (2006), p.

2006.

[26] Wang, Y., Ramamurthy, B., and Zou, X. The

performance of elliptic curve based group diffe-hellman

protocols for secure group communication over ad hoc

networks. In Communications, 2006. ICC '06. IEEE

International Conference on (2006), vol. 5, pp. 2243-

2248.

[27] Zheng, S., Manz, D., and Alves-Foss, J. A

communication-computation efficient group key

algorithm for large and dynamic groups. Comput. Netw.

51,1(Jan. 2007), 69-93.

IJCATM : www.ijcaonline.org

