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ABSTRACT 
Conjugate  gradient  method  holds  an  important  role  in 

solving unconstrained Optimizations , especially for large  

scale  problems.  Numerous studies and  modific ations have 

been done to  improve  this  method  . In this paper , we 

propose a new conjugate gradient meth od which  is  

computed by  modifying  Dai and Yuan  formula . This new  

k  
 formula for  the denominator is introduced and the 

numerator of  Dai and Yuan for mula is retrained , but still  

possesses global converge nce properties. Numerical results 

based on number of iterations and  number of function 

evaluations by usin g  exact  line search  have shown  that the  

new formul a is an  efficient  when we  comparative it with 

the oth er  conjugate gradient methods. 

Keywords 
Conjugate  gradient methods  , global convergence ,  

unconstrained optimization ,  exact line search 

 

1. INTRODUCTION 
The  conjugate  gradient  method  (CG)  plays  an imp ortant  

role in solving  the  unconstrained  optimization  problem. In 

general, the method has the following form  

  
nRxxf ),(min                                        (1.1) 

where RRf n :  is continuously differentiable. The CG   

method is an iterative method of the form, 

kkkk dxx 1        k=0,1,2,---              (1.2) 

Where kx  is the current  iterate  point , 0k  is a step 

size and   kd  is the search  direction . Basically   kd     is 

defined by:
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where 1kg is the gradient of  f(x) at the point 1kx    .

Rk    is known as conjugate gradient coefficient  and 

different 
 k  

will  yield  different  CG  methods . Some well-

known formulas are given as follows : 
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Where kg
is the  gradient of  f(x)  at  the  point kx

. In  this 

paper ,  FR  denotes  Fletcher  and Reeves [9] , HS denotes 

Hestenes  and  Steifel [12] ,   DY denotes  Dai andYuan [6] 

and lastly PR denotes Polak and Ribi ere [15] .We denotes  

norm of vectors as 
.

. It also shows that for   f (x)  that  is 

strictly  convex  quadratic  function  ,all these methods are 

equivalent , but for ge neral non  quadratic, their behavior is  

quite  different.  [5] , [23] . The most studied properties of   

CG   are its global convergence  properties .  Zoutendijk  [24]  

pro ved the global convergence of  FR  method.  Al-Baali  

[1] , Touati  - Ahmed  and  Storey  [20]  , Gilbert  and   

Nocedal  [10]  has further analyzed  the global conver  

gence  of  algorithms  related to the  FR  method  with strong  

Wolfe  condition. Powell [16] also proved  that     FR   is a  

superior   method  compared  to  others . For further reading 

and recent finding of CG methods refer to Sun  and  Zhang 

[19]  ,  Birgin  and  Matrtinez  [4] , Dai  and  Yuan [7]  ,Yuan 

and  Wei  [22] , Andrei  [3] and  Shi and  Gao [18] . A basic  

key  factor  of  global convergence  is selecting  the step size 

k . The most common search is to do the exact line. 
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In this paper, the proposed method  is solved by  using  the 

exact line  search. The remaining of study is organized as 

follows. Section  2.  Presented the new  algorith 

m. The global convergence of  the new  method is  pro ved by 

using the exact  line search for non convex  fun nction  in 

Section  3.  Some interesting  numerical resu lts  we  get it by 

comparing the  new  method with  oth er CG  methods 

presented  in Section 4  . Finally ,Secti  on  5.   Presented 

conclusions .  

2. NEW  DAI AND YUAN  ALGORITHM 
In  this section  we  propose new  algorithm based  on the 

original  DY algorithm , we  named  it  MDY . The new 

formula for the denominator  has been proposed  ,  the 

formula for numerator as the Dai and Yuan formu la has been 

retained  [17]  . then  
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Here the algorithm of MDY is shown as follows : 

MDY  Algorithm 

 Step  1 : Initialize, select 
nRx 0 , 0 ,  k=0 

Step  2 :  Compute  k   from  Eq.  (2.1) 

Step  3 :  Compute search direction  
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 If 01 kg , then terminate, else continue 

Step  4 :  Compute step size  

               
)(min

0
kkk dxf 




  

Step  5 :  Update new point         

Step  6 :   Convergence test and stopping criteria  If   

             
)()( 1 kk xfxf      and  If  

1kg
, 

                 then terminate else go to  step 1 with k=k+1  

3. CONVERGENT  ANALYSIS 

The  convergence properties  which we present  in this section 

follow from Dai ,et. al. [8] .  In the paper,  they  have proven  

the  global  convergence of  FR  and  PR methods . Here , we 

only showed the of  convergence for the general  CG methods. 

For this proof ,we assum e that every kd
satisfies  the descent 

condition  

  0k
T
k dg       1k                     (3.1) 

We now make the following  basic  assumption on the 

objective function . 

3.1   Assumption 
(1) f(x)  is bounded below on the level set   

            )}()({ 1xfxfxl   

             where  1x  is the starting point. 

(2) In some  neighborhood    N of  l  ,   f (x)  is  

              continuously  differentiable and  its gradient    

              is Lipschitz  continuous ; then ,  there  exists  

               a  constant   L > 0  such that   

 

             yxLygxg  )()(                  (3.2) 

Nyx  , .The step size k   in (1.2)  is computed  by 

carrying out a line search . In this case we consider the Wolfe  

line search which  consists of  finding a po sitive step size (

0k )  such that 

k
T
kkkkkk dgdxfxf   )()(           (3.3)  
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Where 10    .To  prove  global convergen ce for 

the FR  method , we used the strong Wolfe line search which 

requires  k  to satisfy (3.3) and 

   k
T
kk

T
kkk dgddxg   )(                      (3.5) 

 

The following important result was obtained by Zoute ndijk 

[24] and Wolfe [21] . 

 

3.2   Lemma 
Consider that the  Assumption is true . Consider any iteration 

method of the form (1.2) ,(1.3),  where kd  satisfies (3.1) and 

k  
  is obtained by the Wolfe line search . Hence  

 

  





1

2)(

k k

k
T
k

d

dg
                                   (3.6) 

 

The following theorem is a general and positive  result for   

CG   methods with the strong  Wolfe  line search. 

 

 

3.3    Theorem 
Consider that the Assumption is true for any   CG method of 

the form (1.2),(1.3), with kd  satisfying (3.1) and with  strong  

Wolfe  line search (3.3)  and  (3.4) , hence either  
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The following corollary is based on the  Theorem . 

 

3.4 Corollary   
Consider that the Assumption is true for any  CG met hod of 

the form (1.2) to (1.3), with kd satisfying (3.1) and with 

strong Wolfe line search (3.3)  and  (3.4) ,  If 
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For any   ]4,0[t  , the method converges in the sense that 

(3.7) is true. 

Proof  
In order to proof Corollary, we use contradiction . If (3.7) is 

not  true , it follows from  the theorem that 
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Because  kg   is  bounded  away  from  zero   and 

]4,0[t  ,  it is easy to see that  (3.10)  Contradicts  

(3.9).This  shows  that  the  Corollary  is true .Finally , if a 

conjugate gradient  method fails to converge , one can easily 

see that  the  length of  the  search  direction will converge to 

infinity [14]  . 

4. NUMERICAL RESULTS 
This section presents the performance of  FORTRAN  

implementation to the algorithm MDY by using a  set of well-

known unconstrained optimization test functio ns , for each  

function  we  have  considered numerical experiments with 

the number  of  variables      n = 100 , 1000 , 10000  and 

100000 .We compared the perform ance of the algorithm 

MDY with four famous formule  s  FR  ,  HS , DY and  PR  

,which they defined in (1.4) – (1.7) . All  these  algorithms  

are  implemented with the standard  Wolfe  line search  

conditions  with  001.0  and 5.0  ,  the stopping  

condition  defined  by   
6

1 101 
 kg  .  The  comparison  

includes   the following: 

NOI   :  number of iterations .  

NOF  :  number of function  evaluations .                                                                                                      

 From table (I)  we see that for more problems the new 

algorithm is really much better than other CG algorith ms 

especially  for high  dimensions . The comparison  is based on 

number of iterations and  number of functi on evaluations ,   

for  solving  (13)  problems . 

Note  that   the symbol  *  in table (I)  means that the  

algorithm is fail to converge. 

 

  

Table(I) Comparison of algorithms with respect to ( NOI , NOF ) for different dimensions (n=100,1000,10000,100000)  

Test         

functions 

    N       FR       

NOI-NOF 

     HS      

NOI-NOF 

     DY       

NOI-NOF              

     PR    

NOI-NOF 

    MDY     

NOI-NOF 

 

 

NOND 

100 

1000 

10000 

100000 

30-78 

30-78 

30-78 

30 -78 

28-67 

28-67 

28-67 

28-67 

28-68 

28-68 

28-68 

28-68 

30-78 

30-78 

30-78 

30-78 

26-64 

26-64 

26-64 

26-64 

 

 

POWELL 

100 

1000 

10000 

100000 

31-92 

36-110 

36-110 

39-131 

41-109 

41-109 

41-109 

47-133 

56-169 

56-169 

63-208 

63-184 

50-136 

62-203 

68-242 

72-279 

43-125 

44-127 

48-139 

53-159 

 

 

WOOD 

100 

1000 

10000 

100000 

29-66 

29-66 

30-68 

30-68 

33-73 

33-73 

34-75 

35-77 

28-68 

2868 

28-68 

28-68 

29-67 

29-67 

30-69 

30-69 

26-63 

26-63 

26-63 

26-63 

 

 

ROSEN 

 

100 

1000 

10000 

100000 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

30-76 

 

 

DIAGONAL-2 

100 

1000 

10000 

100000 

54-207 

157-647 

      * 

      * 

62-225 

180-685 

* 

* 

54-205 

157-647 

462-1927 

* 

62-225 

180-725 

* 

* 

54–210 

150-620 

467-1910 

* 

 

 

WOLFE 

100 

1000 

10000 

100000 

51-103 

59-119 

120-244 

134-276 

57-115 

79-159 

105-214 

114-232 

51-103 

59-119 

126-254 

128-260 

57-115 

57-115 

140-282 

119  - 243 

51–103 

59-119 

120-240 

128–265 
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ENGVAL1 

100 

1000 

10000 

100000 

21-44 

21-86 

23-124 

    * 

21-44 

23-1188 

26-230 

* 

21-46 

19-42 

* 

* 

22- 46 

22-51 

32-1959 

* 

21–43 

22-50 

30-275 

* 

 

 

EX.WOOD 

100 

1000 

10000 

100000 

27-61 

27-61 

29-66 

29-66 

29-65 

30-67 

33-73 

33-73 

26-60 

26-60 

26-60 

27-62 

29-67 

29-67 

29-67 

29-67 

26–57 

26–57 

26–57 

27–60 

 

 

DIXMAANB 

100 

1000 

10000 

100000 

5-13 

5-13 

6-16 

6-16 

5-13 

5-13 

6-16 

6-16 

5-13 

5-13 

6-16 

6–16 

5-13 

5-13 

6-16 

6-16 

5-13 

5-13 

6-16 

6-16 

 

 

DIXMAANC 

100 

1000 

10000 

100000 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5–15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

5-15 

 

 

SH       SHALLOW 

100 

1000 

10000 

100000 

10-25 

10-25 

10-25 

11-27 

10-25 

10-25 

10-25 

11-27 

10-25 

10-25 

10-25 

11–27 

10-25 

10-25 

10-25 

11-27 

10-25 

10-25 

10-25 

11-27 

 

 

EX.BDI 

100 

1000 

10000 

100000 

20-40 

22-46 

23-48 

25-52 

22-46 

23-48 

26-54 

28-58 

19-40 

21-44 

22-46 

24–50 

23-48 

24-50 

24-50 

26-54 

19–40 

21–44 

22–46 

24–50 

 

 

DENSCHNF 

100 

1000 

10000 

100000 

24-51 

24-51 

26-55 

26-55 

* 

* 

* 

* 

21-44 

21-45 

23-49 

23-49 

* 

* 

* 

* 

19–42 

21-45 

23-49 

23–49 
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5. CONCLUSION 

In this paper we have proposed a new and simple k  based 

on the proven Dai and Yuan  method . The comparison  

results for new  method with four famous methods FR,HS,DY 

and PR for  n=100, 1000 , 10000 and 100000 is more effective 

and  efficient than  those methods ,  also  numerical  results  

suggested that  this new method  converge globally. 

Further work , we should study  this  new  method for neural 

network training . Moreover ,  more numerical experiments 

for large practical problems should be done.    
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