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ABSTRACT 
The aim of this work is to lay the groundwork for identifying 

digital mechanical parameters of materials with elastic. Most 

of the tests do not allow identifying these parameters 

automatically. The use of the finite elements of calculations 

for sizing works is thus limited by a poor understanding of the 

mechanical properties.  In this context, it raises the issue of 

inverse analysis [1] [2]. From this information about the 

parameters of the laws of material behavior, is it possible to 

obtain the displacement field from in situ measurements and 

how does digital technology obtain a determination of these 

parameters accurately and systematically? 

In this work we present a new approach by providing a 

formulation is easily used by treating the inverse problem. It 

is based on the finite element method, which, in a direct 

problem, gives the displacement field knowing the mechanical 

properties and an inverse problem gives the mechanical 

knowledge of the field trips. 

The resolution of the direct problem has yielded results. The 

latter is in agreement with the simulation code of commercial 

calculation. This allowed us to address the inverse problem 

with no understanding by offering an alternative identification 

using a database   previously determined [3]. 

Keywords 
Mechanical parameters, identification, direct problem, the 

inverse problem 

1. INTRODUCTION 
The mechanical properties of materials are the focused point 

because they determine not only the problems but also 

shaping their behavior during their service in extremely 

diverse industrial applications. The appropriate choice of the 

materials for an industrial part depends on the mechanical 

properties, strength, hardness, ductility ... It is therefore 

necessary to accurately measure these physical quantities by 

mechanical tests. 

The determination of these properties to design and model the 

mechanical parts is necessary for efficiency, performance and 

design. 

Indeed, in response to these powers we propose a new way of 

identification. It consists in using the finite elements of a 

method as a basis to develop a model that meets the above 

requirements. This writing will help us to simplify the 

boundary value problem for a differential equation problem   

resolved easily and can be used for the inverse problem. This 

approach can be extended to amore complex behavior 

materials such as composites. 

2. POSITION OF THE PROBLEM 

1.1. Strong formulation 
 Before addressing the problem by finite elements we are 

forced to go through the strong formulation that comes down 

to this. 

Find the displacement field U in a field    border     

such as: 

In    the balance equation  0div f    connecting the 

stress tensor     and volume forces f . 

The elastic constitutive law between the stress tensor   and 

the strain tensor  : 

2A tr I        
 

 

Where I is the identity tensor, and A the flexibility matrix. 

The boundary conditions are: 

0U U  on uS  

n p    on  S  

As uS S    and uS S   

1.2. Matrix formulation 
Using the convention Voigt matrix vector displacements, 

strains and stresses are written respectively in a two-

dimensional pattern by: 
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To make the flexibility matrix diagonal, we adopt a new 

convention, whose base is formed by two spherical and 

deviatoric. The base is chosen is the following: 

1

0 11

1 02
E

 
  

 
 , 2

1 01

0 12
E

 
  

 
 et 3

1 01

0 12
E

 
  

 
 

Thus, the vectors of stress and strain that we denote 

respectively by Y and X be written into the new database: 
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Within the base of the matrix diagonal and flexibility is of the 

form: 

2 0 0

0 2 0

0 0 2( )

A





 

 
 

  
  

 

Where   and   are the Lame coefficients. 

1.3. Weak formulation 
To address the problem by finite elements, the weak 

formulation is very useful. It is to rewrite the formulation as 

high energy using the principle of virtual work, which states: 

The work of external forces   is equal to the deformation 

energy w  : w   

where

   
t

i i i i i i

v s v s

f u dv u p ds f u dv u p ds

 

            

with i ij jp n  

and

       
t t

t
ij ij

v v v

w dv dv u A u dv                     

with

Y X

X Y

X Y

  
 
  
  

       
 
  

 
  

 derivative operator is written in 

matrix form in the basis ( 1E , 2E , 3E ). 

Determining the displacement field amounts to solving the 

linear system given by the finite element method; adopted 

elements are triangles with three nodes: 

   K u F    

such that: 

t
e e e e

e e

K K P k P                 is the global stiffness 

matrix, 

eP 
 

 is the matrix of the positioning member (e) in the 

overall structure. 

t
e e e

e

k B A B dv



               is the elementary stiffness 

matrix. 

e eB N         
 is the gradient of the interpolation functions. 

eN    is the matrix of elementary interpolation functions. 

 u  is the vector of nodal displacements in the overall 

structure. 

   
T

e e

e

F P f 
   is the vector of global nodal forces. 

with     
Te

S

f N p ds



    . 

Determining the scope of displacement amounts to solving the 

linear equation    K u F   . 

with boundary conditions: 

0U U     on uS  

.n p      on S  

as uS S   and uS S   

This equation is much more accessible to its simplicity. 

3. RESULTS 
Consider a homogeneous solid rectangular plate having a 

thickness e, the length L and width h. Shifts in the distribution 

of the plate is measured in 2-D. plate occupies the interval [0, 

L] of the Ox axis,[0, h] of the axis Oy demands are varied and 

must be independent. Below are three examples of types of 

load applied to the plate: 

• shear 
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Fig. 1 Axial displacement function of x 
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Fig. 2 Displacement along y axis 

• Traction diagonal 
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Fig. 3 Axial displacement function of x 
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Fig. 4 Displacement along y axis 

• Traction biaxial 
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Fig 5. Displacement along y axis 
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Fig 6. Axial Displacement function of x 

The comparison with the results given by a code of 

commercial calculation (CAST3M) for example tensile 

biaxial validates our approach (Figure 6). This gives 

substantially the same displacement and that the three types of 

stress (Figures 1-5). 

4.  FORMULATION OF THE INVERSE 

PROBLEM 
The goal of the inverse problem is to find the coefficients   

and  matrix A in the behavior law. 

Note that A  is diagonal and positive definite if 0  and 

0   . First, we seek to identify  K , 

the finite element method, knowing the nodal displacements 

 u  and nodal forces  F  solutions of the linear system 

   K u F   . Then find A  by minimizing the function 

2

1

2

T T
e e e e

e e

K P B A B P



                   

Suppose have i experience as    i iK u F    ; if we multiply 

this by right relationship  
t

iu  and if the sum of all the 

experiences i we obtain the following system: 

     
t t

i i i i

i
B

H

K u u F u     

to determine  K  must be chosen so that sufficient 

experience  H  is invertible in these conditions  
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K B H


          where   

t

i i

i

H u u    and 

  
t

i iB F u    . 

The identification of the elasticity tensor A is equivalent to 

solving the following linear system: 

( )
T T

e e e e

e e

P B A B P dv K L A K



                     

L is a linear operator. 

The shape of A becomes when we ask : 

1 2

1 0 0 0 0 0

2 0 1 0 2 0 0 0

0 0 1 0 0 1

A A

A  
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        with 1 2h   and 2 2h   
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1 1

T T
e e e e

i i i i

i e ie

K h P B A B P dv h H

 

                        

Our process is based identification sue the method of least 

squares. It is to determine the matrix A , minimizing the 

quadratic form: 
2

2

1

1
( )

2
i i

i

J h h H K



   called cost function. 

It is written below in more detail: 
2

2

1

1 1 1
( ) ( )

2 2 2

T T T
i i

i

J h h H K h Sh h V tr KK



      

where the components of the matrix S  and the vector V  are 

respectively ( )T
ij i jS tr H H  and ( )i iV tr H K  

We note that, K , 1H et 2H  are symmetric and S is 

symmetric positive. Thus the cost function ( )J h  convexe. is 

its derivative is written as: 

( )gradJ h Sh V   

One solution to this problem is to minimize the cost function: 

1 1
( ) ( )

2 2

T T TJ h h Sh h V tr KK    

with taking into account inequalities: 1 0h  , 2 0h   

and if we set 1 1( )g h h  , 2 2( )g h h  

Minimize the problem of starting with constraints in the sense 

  is as good situation to maximize with constraints in the 

direction   .In this case the multiplier is positive  

1 1

1
( )

0
gradg h e

 
   

 
 , 2 2

0
( )

1
gradg h e

 
   

 
 

The formulation of the inverse problem amounts to solving 

the following problem by introducing the Kuhn-Tucker 

multiplier 1  and 2 . 

For a general solution must be found  1 2 1 2, , ,h h    Solutions: 

2
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1 1 2 2
21

1 1

2 2

1 2 1 2

( )
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0

0, 0, 0, 0

i i

i

gradJ gradg h e e Sh V
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
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 
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  

 



    



 

5. CONCLUSION 
This work has allowed us to validate our approach based on 

the finite element method and build a database used by the 

inverse problem. The identification and modeling systems 

from experimental data is an active area of research in several 

areas, especially in materials. The aim of the identification is 

then to provide an estimate of the mathematical model of the 

system considered in order to simulate, to order or to 

determine in a systematic way the physical parameters of a 

material. The finite element method is essential to this kind of 

problem. The direct formulation of the problem is completed 

giving satisfactory results. It nevertheless remains to be 

validated in real cases. The inverse problem is posed and is 

also completely to apply to concrete cases. 

6. REFERENCES 
[1] M. Grediac, F. Pierron Applying the Virtual Fields 

Method to the identification of elasto-plastic constitutive 

parameters. International Journal of Plasticity. Volume: 

22. Pages: 602-627. 2006.Elsevier. . 

[2] S. Avril ,  M.Bonnet, A.-S Bretelle., M.Grediac, F.Hild, 

P.Ienny, F.Latourte, D.Lemosse,  E.Pagnacco,  F.Pierron 

Identification from measurements of mechanical fields. 

Experimental Mechanics. Volume : 48. N°4. Pages : 381-

402. 2008. Springer.  

[3] M. Grediac,E.Toussaint, F.Pierron L’identification des 

propriétés mécaniques de matériaux avec la méthode des 

champs virtuels, une alternative au recalage par éléments 

finis. Comptes rendus Mécanique. Volume : 330. N°2. 

Pages : 107-112. 2002. Elsevier. 

[4] W. Nunes dos Santos, P. Mummeryb , A. Wallwork: 

Thermal diffusivity of polymers by laser flash technique, 

Polymer Testing 24 (2005) 628-634. 

[5] A. Germaneau and JC Dupré: Termam exchanges and 

termomechanical couplings in amorphous polymers, 

Polymers & Polymer Composites, Vol. 16, No. 1, pp. 9-

17, 2008. 

[6] K. Atchonouglo, M. Banna, C. Vallée and J.C Dupré, 

Inverse Transient Heat Conduction Problems and 

Application to the Estimation of Heat Transfer 

Coefficients, Heat and Mass Transfer, Vol. 45,Number 1, 

pp. 23-29, November 2008. 

[7] K. Atchonouglo, Identification des Paramètre 

Caractéristiques d’un Phénomène Mécanique ou 

Thermique Régi par une équation différentielle ou aux 

dérivées Partielles, Thèse de Doctorat, Université de 

Poitiers, 2007.  

[8] E. Barkanov, Introduction to the Finite Element Method, 

Institute of Materials and Structures, Faculty of Civil 

Engineering, Riga Technical University. 

[9] P. Corde et A. Fouilloux, Cours Langage Fortran, 2008 

IJCATM : www.ijcaonline.org 


