
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

21

 A Schematic Analysis on Selective-RDF Database

Stores

Sharmi Sankar 1, Awny Sayed 1,2, Jihad Alkhalaf Bani-Younis1

1
 College of applied Sciences, Ibri, Sultanate of Oman,

2
 Permanently Faculty of Science, Minia

University, Egypt

ABSTRACT
RDF has gained great interest in both academia and industry

as an important language to describe graph data. With the

increasing amount of RDF data which is becoming available,

efficient and scalable nowadays has become a challenge to

achieve the semantic web vision. The RDF model has

attracted the attention of the database community and

researchers to propose various methods to store and query the

RDF data efficiently. However, current RDF database suffer

from several problems, like, poor performance behavior for

querying RDF data.. This paper provides a comparative analysis

made on selective RDF databases storages. It provides a

precise study on the various means of having a persistent

storage and access of RDF graphs. Recently there has been a

major development on initiatives in query processing, access

protocols and triple-store technologies. In the evaluation the

use of a non- memory and a non-native store Sesame, a native

store Allegro graph and Jena API a main-memory based RDF

storage system, specifically designed to support fast semantic

association discovery. The framework and applications with

the ability to store and to query RDF data are analyzed and

investigated. Moreover, this paper gives an overview of the

features of techniques for storing RDF data and the main

purpose of study is to find suitable storage system to store

RDF data.

Keywords: W3C, API, RDF, RDFS, Native Store, OWL,

SPARQL, DAML, OIL, API, SDB/TDB.

1. INTRODUCTION – RDF
The Resource Description Framework (RDF) is a standard

data model for describing machine-readable information in

the emerging Semantic Web [24]. An RDF data set is a

collection of statements, called triples, of the form (S, P, O)

where S is a subject, P is a predicate (also called property) and

O is an object. Each triple states the relation (represented by

its predicate) between its subject and object. A set of triples

can be represented as a labeled directed graph, with nodes

representing subjects and objects and labeled edges

representing predicates, connecting subject nodes to object

nodes.

A triple store is a framework used for storing and querying

RDF data [6]. The number of triple stores has been

considerably increased from Jena and Sesame in the early

2000s to YARS2, Jena TDB, Jena SDB, Virtuoso,

AllegroGraph, BigData, Mu lgara, Sesame, Kowari, 3Store

and RDF Gateway. Among these some like Garlik and

YARS2 are not distributed [5]. A few like AllegroGraph are

commercially available. The others are open sources. Majority

of the efforts were laid in to check on the freely available

open source triple stores and hence the choice of

Allegrograph, Sesame, and Jena API.

Triple stores are basically divided into 3 categories based on

the architecture of their implementation.

* In-memory

* Native

* Non-memory and non-native.

The first category of triple stores, the in-memory triple stores

does store the RDF graph in main memory. These stores also

have efficient reasoners available and help to solve the issues

on performing inferences on persistent RDF stores, which is

complex to perform otherwise [15]. The second category of

triple stored, the native store provide persistent storage with

their own implementation of the databases, example:

Virtuoso, Mulgara, AllegroGraph, Garlik JXT [28]. It

provides support for transactions with their own SQL

compilers and generally relies on their own procedure

language. Recently native triple stores due to their superior

load times and ability to be optimized for RDF have gained

popularity. The third category of triple stores, the non -native

non-memory triples stores persistent storage systems are set

up to run on third party databases for eg. Jena SDB which can

be coupled with almost all relational databases like MySQL,

PostsgreSQL, Oracle so on and so forth [5,29].

In the evaluations a non-memory and non-native store Jena

SDB, a native store –Sesame native which has an API to

provide fine level access and Jena API native stores are

precisely analyzed based on the architecture/design and other

factors.

2. RDF DATA REPRESENTATIONS,

STORAGE APPROACH
There are several approaches for storage of RDF data. The

RDF data representations are in various formats as listed

below [1].

 Notation 3 (N3) is a very complex language in order

to store RDF-Triples, which was issued in 1998.

 N-Triples a recommendation of W3C, was launched

in the year 2004.It is a subset of N3 in order to

reduce the complexity involved with it.

 RDF Triple Language (Turtle) enlarges the

expressiveness of N-Triples.

 RDF/XML a XML syntax for representing RDF-

Triples [13].

This paper focuses on three fundamental storage approaches

that are taken into consideration at present for the comparative

analysis and they are:

 In-memory storage: It allocates a certain amount

of the available main memory to store the given

RDF data. This approach is restricted for storage

and can only store a few RDF data [12].

 Native storage: It saves RDF data permanently on

the file system [13].

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

22

 Non-Native and Non-Memory storage: Relational

database storage makes use of relational database

systems to store RDF data permanently. Unlike the

native storage, this approach relies on research

results in the database domain (e.g., indices or

efficient processing) [12, 13].

3. FEATURES OF PROPOSED RDF

STORAGE
Efficient storage of RDF data is plausible only when the

appropriate physical organization techniques are applied such

as triple table, property table to store it [25]. This may lead to

at most efficiency, Scalability and Robustness. The

characteristics of the selected RDF storage are tabulated

below in Table 1.

Table 1. Features of proposed RDF storage

TT: TripleTable, PT: PropertyTable, D:Database, F:File,

M: Main Memory.

Triple Table : The collections of triples are stored in one

single RDF table. The table approach is perhaps the most

straightforward mapping of RDF into a RDBMS [26]. Each

RDF statement of the form (subject, property, object) is stored

as a triple in one large table with a three-column schema.

Limitations: when the number of triples rises, the RDF table

may exceed main memory size. RDF triples store scales

poorly because complex queries with multiple triple patterns

require many self-joins on the single large table [16, 26].

Property Table: RDF tables are physically stored in a

representation closer to traditional relational schemas in order

to speed up the queries over the triple store [1].

4. RDF DATABASES WITH

CONSTRAINT EVALUATION
The framework design and applications with the ability to

store and to query RDF data are analyzed and investigated.

Further, all the databases shall have the ability to interpret

SPARQL queries.

4.1 Evaluation constraints:
Extensibility: It is a very important constraint for the

integration of new features, e.g., it optimizes the current

working process. One of these features may implement new

indices, which accelerate the performance and advance the

efficiency of the entire system.

Architectural overview: It offers the basic awareness on the

structure of the framework and the used programming

language.

Ontology Web Language (OWL): OWL should be

provisioned by the databases, as it broadens the semantic

expressiveness of RDF and helps for a better inference.

Query languages (supported): It is an additional support of

interest, to be aware of other supportive RDF addressing

query languages in addition to SPARQL as shown in table 1.

Interpretable RDF data formats: The most interpreted

formats should be covered by the frameworks to ensure

completeness [13].

4.2 Evaluation of selective RDF databases
This section covers the evaluation of, Jena API, Allegrograph

and Sesame following the investigation made upon the above

specified evaluation conditions.

4.2.1 Jena API:
The Jena API is capable of storing, accessing and querying

large ontologies. It does not use any database backend [18].

The features that lead to select this RDF data store is listed

below

 It is easily extensible as it is possible to plug

external inference engines into Jena.

 Simple indexing scheme based on elements

(Subject, Predicate, Object) are precise.

 RDFS and OWL resoners are available.

 DARPA Agent Markup Language (DAML) support

[27, 2].

Jena API is faster as it has a bulk loader. The bulk loader is a

faster way to load data into an empty dataset than just using

the Jena update operations. It also supports transactions,

which is the preferred way to work. It is possible to act

directly on the dataset without transaction with a Multiple

Reader or Single Writer (MRSW) policy for concurrency

access. It also employs caching at various levels, from RDF

terms to disk blocks. It is important to flush all caches to

make the file state consistent with the cached states because

some caches are write-behind so unwritten changes may be

held in-memory.

Store

Storage
scheme

Storage
support

Query

language
TT

PT

D

F

M

Jena API

X

X

SPARQL /
RDQL

Allegro
graph

X

X

SPARQL

Jena

X

X

X

SPARQL /
RDQL

http://jena.apache.org/documentation/tdb/tdb_transactions.html

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

23

Figure 1 JENA architecture [3].

4.2.2 Allegrograph
The software producers of Allegrograph are Franz's Semantic

Technology solutions Company. It is a persistent storage

system with their own implementation of databases. Figure 2

illustrates an architectural overview of Allegrograph [4] and

the features are as follows.

 It supports transactions such as Commit, Rollback,

check pointing.

 It has ability to recover data fast.

 It provides 100% read Concurrency, and full write

concurrency

 Ensures dynamic/auto indexing

 Powerful and expressive reasoning/querying.

Figure 2 Allegrograph Architecture [4].

AllegroGraph provides a REST protocol architecture,

essentially a superset of the Sesame HTTP Client. Franz's

staff directly supports adapters for various languages, Sesame

Java, Sesame Jena, Python using the Sesame signatures, and

Lisp. AllegroGraph is a modern, high-performance, persistent

graph database. AllegroGraph uses efficient memory

utilization in combination with disk-based storage, enabling it

to scale to billions of quads while maintaining superior

performance [4]. AllegroGraph's SPARQL, one of the W3C's

"interoperable implementations", includes a query optimizer,

and has full support for named graphs. It also provides ACID

transaction support, ACID (Atomicity, Consistency, Isolation,

Durability) is a set of properties that guarantee that database

transactions are processed reliably.

4.2.3 Sesame
The software producer of Sesame37 is Aduna. This company

sets the focus of their work in revealing the meaning of

information. Sesame was started as a prototype of the EU

project On-To-Knowledge39 and is now developed by Aduna

in cooperation with NLNet Foundation. Like Jena, Sesames

associated license is open source underlying the BSD

(Berkeley Software Distribution) license.

Figure 3 Sesame Architecture

Sesame is able to handle all three in section 2.1 discussed

approaches to store RDF data. The RDF Model implements

basic concepts about RDF data. The component RDF I/O

(Rio) consists of a set of parser and writer for the handling of

RDF data. This is for instance used by the Storage and

Inference Layer (Sail) API for initializing, querying,

modifying and the shutdown of RDF stores. On the topmost

layer constitutes the Repository API the main entrance to

address repositories. Compared to Sail, which is rather a low

level API, the Repository API is the associated high level API

with a larger amount of methods for managing RDF data. The

HTTP repository is an implementation that acts like a proxy in

order to connect to a remote Sesame server via the HTTP

protocol. In order to achieve OWL support a Plug-In is

available called (Ontology Web Language In Memory)

BigOWLIM. It is implemented as a high performance

semantic repository for Sesame and packaged as a Sail.

Alternatively to SPARQL Sesame is able to interpret the

Sesame RDF Query Language (SeRQL) integrated for

enhancing the functionality of RQL and RDQL. Sesame

offers parsers for various well known RDF formats N3, N-

Triples, RDF/XML, Turtle and two new formats TriG43 and

TriX [11].

5. PERFORMANCE METRICS
The Lehigh University Benchmark (LUBM) as the first in an

eventual suite of benchmarks that would standardize and

facilitate such evaluations. The individual metrics initially

used by the (Lehigh University Benchmark) LUBM were used

as a starting point for the data collection in this evaluation

study. Specifically, we collected data on as follows.

javascript:collapse6.slideit()
http://en.wikipedia.org/wiki/Atomicity_%28database_systems%29
http://en.wikipedia.org/wiki/Consistency_%28database_systems%29
http://en.wikipedia.org/wiki/Isolation_%28database_systems%29
http://en.wikipedia.org/wiki/Durability_%28database_systems%29
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

24

Cumulative load time: The time, measured in hours, to load

the OWL files describing university departments into the

triple-store for a given number of triples. This includes any

time spent processing the ontology and source files.

Query response time: Time calculated to respond to the

queries. Query response time is measured based on the mean

response time of executing each query a number of times.

Query completeness and soundness: A triple-store is

complete if it returns all of the correct responses to a query,

while a triple-store is sound if it only returns correct responses

to a query.

Performance Metrics for the selected RDF data store Jena

TDB, Allegrograph version 3.1 and 3.3, Sesame/BigOWLIM

with respect to the load and response time parameters are

discussed below.

5.1 Experimental results:
5.1.1 Data set (LUBM):
Our work borrows and shares the LUBM database

benchmark. The ontology used in the benchmark is called

Univ-Bench. Univ-Bench describes universities and

departments and the activities that occur at them. The LUBM

benchmark was downloaded from [21] . The benchmark is

intended to evaluate the performance of those repositories

with respect to extensional queries over a large data set that

commits to a single realistic ontology [22]. It consists of

university domain ontology, customizable and repeatable

synthetic data, a set of test queries, and several performance

metrics.

5.1.2 Query evaluation:
The LUBM offers 14 queries and readers are referred to

appendix for a list of these queries written in SPARQL [9].

Fourteen test queries are chosen to represent a variety of

properties including input size, selectivity, and complexity,

assumed hierarchy information, assumed logical inference,

amongst others. The total number of files read in is 1000. The

total number of triples after running the queries is 6,875,705.

In the LUBM results below, AllegroGraph's dynamic

materialization befell as it’s necessary to answer each query

[15]. For AllegroGraph version 3.3, loading, indexing and

merging required a total of 7 minutes and 50 seconds.

5.1.3 Results and discussion:
Table 2 shows the results of running the LUBM 50 queries

with both version 3.1 and 3.3 of AllegroGraph. The total

query time for the 14 queries on went from 275.379 seconds

in version 3.1 to 3.798 seconds in version 3.3. The results are

reported in seconds.

Table 2. Summary (LUBM results Allegrograph)

LUBM Query

Triples 3.1 Time 3.3 Time

Query 1 4 0 0.007

Query 2 130 2.634 0.33

Query 3 6 0.002 0.006

Query 4 34 0.046 0.03

Query 5 719 3.899 0.055

Query 6 519,842 5.42 1.363

Query 7 67 0.027 0.013

Query 8 7,790 3.371 0.303

Query 9 13,639 254.107 1.245

Query 10 4 0.002 0.01

Query 11 224 0.075 0.01

Query 12 15 3.47 0.025

Query 13 228 0.091 0.014

Query 14 383,730 2.235 0.387

Table 3: Summary (LUBM Queries)

Sesame/Big

OWLIM

msec.

(results)

Jena Allegro

Loading time

(sec.)
200 260 239

Query 1 2(4) 160 4

Query 2 1 873 (130) timeout 130

Query 3 1 (6) 215 6

Query 4 4 (34) 51 34

Query 5 6 (719) 585 719

Query 6
257

 (519 842)
215 519,842

Query 7 2 (67) 272951 67

Query 8 85 (7 790) timeout 7,790

Query 9
3 256 (13

639)
timeout 13,639

Query 10 1 (4) 209 4

Query 11 1 (224) 14 224

http://swat.cse.lehigh.edu/projects/lubm/

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

25

Query 12 5 (15) 4 15

Query 13 8 (228) 203 228

Query 14
193 (393

730)
220 383,730

Table 3 shows the response on the listed 14 queries and the

cumulative load time for all the 3 selective RDF data stores

are listed in the above table 2 [23]. The results when

compared with respect to the queries reveal that

sesame/BigOWLIM outperforms the others. The outcome is

visualized as shown in figure 4 with respect to the load time

for LUBM benchmark queries and figure 5 that depicts the

results on test queries respectively.

Figure 4 LUBM dataset Load time for Sesame, Jena and

Allegrograph.

Figure 5 Response on LUBM test queries.

As we observe the above visual representation the

sesame/bigOWLIM and allegrograph version 3.3 performance

matches very closely despite of the performance with respect

to query 14 where they vary slightly.

6. CONCLUSION
With LUBM test queries, Sesame out performs really better

than Jena and Allegrograph. The test queries are listed in

appendix 1. It is considered that sesame performs better than

others only with small datasets. However benchmark has been

found comparing Sesame, Allegrograph and Jena using

LUBM datasets. Testing systems that expose SPARQL

endpoints with realistic workloads of use case motivated

queries are listed below in table 2 [8, 9].

This experimentation on these selective RDF data stores to

compare the loading and querying performance. First, we

discovered that the performance of Jena and Allegrograph is

extremely poor as far as the cumulative loading time is

concerned. Second, Sesame’s load time increase exponentially

with the size of data loaded and has the least cumulative load

time. Third, as expected we showed that persistent storage

systems could handle larger data sizes than memory-based

systems, but we were surprised to discover that Sesame

memory could handle up to 110 MB of input data. Finally, we

found Sesame response was better at different queries [9]. The

results of this investigation to make universal pronouncements

may not be relative as quality of different benchmarks and

selective RDF stores may vary. This investigation has driven

us further into a deeper research in practical, scalable

reasoning systems and that by examining the relative strengths

and weaknesses of different systems and had guided us on

how to build a better OWL KBS.

7. FUTURE WORK
In future, a standard benchmark for Ministry of Higher

Education(MoHE), (Sultanate of Oman) will be shortly

deployed and similar performance measurement with queries

against large amounts of RDF data is to be made to ensure the

performance on complex critical datasets on the very same

selected RDF Stores. The benchmark would aid the evaluation

of Semantic Web repositories (MoHE) in an efficient way.

The evolution of such benchmarks enables the Omani

community to find, share, and combine information more

easily on the web.

8. REFERENCES:
[1] A survey of RDF storage approaches David C. FAYE,

Olivier CURE,Guillaume BLIN ARIMA Journal, vol. 15

(2012), pp. 11-35.

[2] http://jena.sourceforge.net/inference/index.html

[3] http://jena.apache.org/about_jena/architecture.html

[4] http://www.franz.com/agraph/allegrograph

[5]http://www.bioontology.org/wiki/images/6/6a/Triple_Store

s.pdf

[6] An Evaluation of Triple-Store Technologies for Large

Data Stores, Kurt Rohloff, Mike Dean, Ian Emmons,

Dorene Ryder and John Sumner.

[7]http://www.franz.com/agraph/allegrograph3.3/agraph3.3_b

ench_lubm.lhtml

[8] LUBM: A Benchmark for OWL knowledge base systems.

Yuanbo Guo, Zheng xiang pan, Jeff Heflin presented on

ISWC2004.

[9] Guo, Yuanbo, Pan, Zhengxiang and Heflin, Jeff. LUBM:

A Benchmark for OWL Knowledge Base Systems. Web

Semantics. 3(2) July 2005. pp.158-182.

Loading time (sec.)

Sesame/BigOW
LIM

Jena memory

Allegro

0

100000

200000

300000

400000

500000

600000

Q
u

er
y

1
 m

se
c.

 …

Q
u

er
y

3

Q
u

er
y

5

Q
u

er
y

7

Q
u

er
y

9

Q
u

er
y

1
1

Q
u

er
y

1
3

Sesame/Big
OWLIM

Jena
memory

Allegro

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

26

[10] Kevin Wilkinson, Carig Sayers, Harumi Kuno , Dave

Reynolds, “Efficient RDF storage and retrieve in Jena2 ”,

Enterprise system and data management laboratory

[11] Jeen Broekstra, Arjohn Kampman, Frank van Harmelen,

“ Sesame: An architecture for storing and quering RDF

data and schema information”, Vrije university

Amsterdam

[12] David C.Faye, Oliver crue, Guillaume BLIN, “a survey

of RDF storage approaches”,Arima Journal

[13] Florian Stegmier, Udo Grobner, Mario Doller, Harald

Kosch, Gero Baese, “Evaluation of current RDF database

solutions”, Chair of distributed information systems

University of Passau

[14] YingHong Liao, ChuenTsai Sun, “An educational genetic

algorithms learning tool”,

http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm.

[15] Performance of native SPARQL query processors ,

UPPSALA University, Shridevika Maharajan.

[16] Resource Description Framework (RDF).

http://www.w3.org/RDF/

[17] Y. Guo, Z. Pan, and J. Heflin. Choosing the Best

Knowledge Base System for Large Semantic Web

Applications. In Proc. of the 13th International World

Wide Web Conference (WWW2004) - Alternate Track

Papers & Posters, 2004.

[18] S. Alexaki et al. The RDFSuite: Managing Voluminous

RDF Description Bases. In Proc. of the 2nd International

Workshop on the Semantic Web (SemWeb’ 01), in

conjunction with the Tenth International World Wide

Web Conference (WWW10), 2001.

[19] S. Alexaki et al. On Storing Voluminous RDF

Description: The case of Web Portal Catalogs. In Proc. of

the 4th International Workshop on the Web and

Databases, 2001.

[20] J.J. Carroll and J.D. Roo ed. OWL Web Ontology Test

Cases, W3C Recommendation 10 February 2004,

http://www.w3.org/TR/2004/REC-owl-test-20040210/

[21] http://swat.cse.lehigh.edu/projects/lubm/

[22] http://www.w3.org/wiki/RdfStoreBenchmarking

[23] Tu Ngoc Nguyen, Wolf Siberski ,SLUBM: An Extended

LUBM Benchmark for Stream Reasoning.

[24] Eric Miller, An Introduction to the Resource Description

Framework, D-Lib Magazine, ISSN 1082-9873, May

1998.

[25] Alisdair Owens, An Investigation into Improving RDF

Store Performance,March 2009.

[26] Olivier Cure,David Faye,Guillaume Blin, Towards a

better insight of RDF triples Ontology-guided Storage

system abilities, Jun 2013.

[27] http://jena.apache.org/documentation/inference/#api

[28] http://www.w3.org/wiki/LargeTripleStores

[29]Vaibhav Khadilkar, Jyothsna Rachapalli,Bhavani

Thuraisingham,The University of Texas at Dallas,

Semantic Web Implementation Scheme for National

Vulnerability Database,2009.

APPENDIX - 1

LUBM benchmark test queries:

Query:1

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent .

?X ub:takesCourse

http://www.Department0.University0.edu/GraduateCourse0}

Query:2

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE

{?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y}

Query:3

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

27

{?X rdf:type ub:Publication .

?X ub:publicationAuthor

http://www.Department0.University0.edu/AssistantProfessor0}

Query:4

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y1, ?Y2, ?Y3

WHERE

{?X rdf:type ub:Professor .

?X ub:worksFor <http://www.Department0.University0.edu> .

?X ub:name ?Y1 .

?X ub:emailAddress ?Y2 .

?X ub:telephone ?Y3}

Query:5

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:Person .

?X ub:memberOf <http://www.Department0.University0.edu>}

Query:6

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X WHERE {?X rdf:type ub:Student}

Query:7

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y

WHERE

{?X rdf:type ub:Student .

?Y rdf:type ub:Course .

?X ub:takesCourse ?Y .

<http://www.Department0.University0.edu/AssociateProfessor0>,

ub:teacherOf, ?Y}

Query:8

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE

{?X rdf:type ub:Student .

?Y rdf:type ub:Department .

?X ub:memberOf ?Y .

?Y ub:subOrganizationOf <http://www.University0.edu> .

?X ub:emailAddress ?Z}

Query:9

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y, ?Z

WHERE

{?X rdf:type ub:Student .

?Y rdf:type ub:Faculty .

?Z rdf:type ub:Course .

?X ub:advisor ?Y .

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z}

Query:10

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

28

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:Student .

?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0>}

Query:11

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:ResearchGroup .

?X ub:subOrganizationOf <http://www.University0.edu>}

Query:12

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X, ?Y

WHERE

{?X rdf:type ub:Chair .

?Y rdf:type ub:Department .

?X ub:worksFor ?Y .

?Y ub:subOrganizationOf <http://www.University0.edu>}

Query:13

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:Person .

<http://www.University0.edu> ub:hasAlumnus ?X}

Query:14

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE {?X rdf:type ub:UndergraduateStudent}

IJCATM : www.ijcaonline.org

