
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

45

Using Memory Transfer Language (MTL) as a Tool for

Program Dry-running

Leonard J. Mselle
Computer Science

The University of Dodoma
Dodoma, Tanzania

ABSTRACT
In this paper, the use of visualization techniques in teaching

and learning programming is revisited. It is demonstrated that

MTL can be used to visualize most of programming aspects.

MTL, as a tool for dry-running programs, tracing and

correcting codes is used in a class experiment. Results show

that MTL can be used in teaching novice programmers to

improve their coding abilities.

General Terms
Teaching, Learning to program

Keywords
Program visualization, Memory Transfer Language (MTL),

comprehension, program dry-running

1. INTRODUCTION
Flow charts, pseudo codes and dry-running are among the

traditional tools used for programming comprehension.

Disciplines with a high dose of abstractness such as

mathematics, physics and programming are usually taught

with a combination of various tools and concrete models to

simplify both teaching and comprehension. In general, it can

be said that, for a subject of high complexity such as

programming, the necessity for invention of various concrete

models and tools for simplification of teaching, is highly

demanded. For computer programming, compared with a

discipline like mathematics, the number of tools and the

variety of approaches is still very low. The reason why

invention and application of varieties of teaching models and

techniques are so much underdeveloped in programming, may

be due to the reality that machine debugging and compilation

have traditionally been assumed to be sufficient in taking care

of the business. However, various research findings report

that, teaching and understanding programming has stubbornly

remained an uphill battle that does not seem to get an easy

solution [1], [2].

Recent attempts to introduce visualization as a technique for

teaching programming have produced promising results [3],

[4], [5]. However, most of the visualization techniques are

still very much entangled with machine mechanisms. In

addition, visualization in general is still underdeveloped.

While machine-driven visualizations are pivotal in program

debugging and comprehension, they have a negative effect of

inducing hopelessness to a weak novice programmer. Perkins

et al [6] report that novices often attribute human-like

reasoning to the machine. This has a negative influence in

debugging because when the compiler reveals bugs, a novice

who does not have confidence in his debugging capabilities

feels that the machine is stubbornly rejecting to understand

what the novice wants the machine to understand. Researchers

suggest that if students were patient enough to soft-track or

dry-run their codes, they would succeed in discovering the

errors and proceed to successfully produce a correct code [1],

[6].

Program dry-running and flow charts are the traditional tools

that are used for manual tracing of the code to verify its

correctness. Each of these methods have had limited success

in their application. Flow charts are used to generally

represent the logic that the programmer wants to put in the

machine in the form of statements. Flow charts however, lack

the means to show how correct a given line of code (the

syntax) is.

2. PROGRAM DRY-RUNNING
To execute a program by hand, writing values of variables and

other run-time data on paper, in order to check its operation or

to track down a bug is called dry-running. A dry- run is an

extreme form of desk check and is practical only for fairly

simple programs and small amounts of data. Most of

visualization techniques rely, to a certain degree, on program

dry-run which constitutes a mental run of a computer

program, where the computer programmer examines the

source code one step at a time and determines what it will do

when run. In theoretical computer science, a dry-run is a

mental run of an algorithm, sometimes expressed in pseudo

code, where the computer scientist examines the algorithm's

procedures one step at a time. In most cases, the dry-run is

frequently assisted by a table (on a computer screen or on

paper) with the program or algorithm's variables on the top.

Dry-running is similar to proof reading. It is based on the

assumption that the programmer knows for sure how correctly

the given line should be written.

2.1 Dry-running and trace tables
By their nature, dry-run and trace tables normally can go

together. Combining trace tables and dry-run evolved as a

traditional tool and method for code verification. Trace tables

were used for debugging and teaching programming when

Pascal and FORTRAN were the teaching languages [7]. The

use of trace tables for code dry-running is demonstrated in

Figure 1.

Fig 1: Dry-running a code segment using a trace table

Using the trace table, in Figure 1, the program is mentally run,

and values associated with variables x and i are checked at

each step of the code execution.

Code segment

int x=0; i x

int i=1; 1 1

while(i<5){ 2 3

x=x+i; 3 6

i++; 4 10

}

Trace Table

http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Pseudocode

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

46

In programming, a given problem can be solved through more

than one construct. The choice for a construct to use is a

matter of convenience including mastery of one alternative

over the other by the student. Consider for example, the case

of while and for loop constructs. Solving the problem, as

illustrated in Figure 1 with a for loop construct, would

produce the code segment and a trace table as depicted in

Figure 2.

Fig 2: Use of for instead of while loop construct

The trace table remains the same even though the syntax has

changed. In the literature, the two constructs are said to

accomplish the same thing. This is visibly demonstrated more

clearly by the trace table.

For reasons not yet clear, trace tables do not feature in modern

programming books, teaching notes or syllabuses. No

apparent reason is given for this abandonment. In this

research, a survey carried out in 56 programming books at

four universities in Tanzania and Rwanda found that there

was no single title that had made reference to trace tables.

Since trace tables and dry-run can be used to associate the

code with RAM they provide the means for learners to visibly

compare the syntax of the code with the semantics of the

machine.

3. HYPOTHESIS
Abstractness and general complexity have been a historical

problem in the realm of teaching and learning programming.

Waguespack [8] reports that poor programming skills and

complete inability to write program after two or even three

years’ study appeared to be a common problem to most

computer science students. He maintains that most computer

science students graduate with weaknesses reflected in:

i. Prior knowledge in the fundamental concepts and

general programming principles.

ii. Understanding of basic codes.

iii. Confidence in writing any program due to poor

memory of syntax.

Similar views are expressed by Dehnadi and Bornat [2] who

conclude that most students from all universities and colleges,

without exception in the type of the department’s intake fail

the first programming course. It is hypothesized that

programming abstractness can be tackled by applying

visualization approach capable of mimicking computer RAM

for most of programming aspects. Such a visualization

technique must satisfy the following conditions:

i. Be consistently and invariably applicable in all

basic programming aspects, i.e. variable declaration,

data feeding, data output, flow of control, functions,

arrays and file handling.

ii. Be independent of programming languages, i.e. it

must be capable of being applied in teaching any

programming language without changing its

substance.

iii. Be machine independent, i.e. it can be applied

effectively with or without a machine. That is, it can

be absolutely manual (paper-and-pencil) program

analyzer/builder and debugger, without denying it

the possibility of creating a machine-based version

whenever it is desired.

iv. Be useful for mentally visualizing and verifying

correctness or incorrectness of the code line-by-line,

and provide a lead for a possible correct solution.

v. In addition, it must provide features itemized by

Ramadhan and Du Boulay [9] in their DISCOVER

system. That is to say, a novice can use it to

conceptualize the solution path and direction. So, it

must visualize the dynamic behavior of programs in

relation to machine and it must be able to provide

the programmer with feedback on a successful step

towards a solution.

4. REVIEW OF PROGRAM

VISUALIZATION TECHNIQUES
Putnam et al [1] found that students had difficulty in keeping

track of the values of variables when tracing programs. This

constituted an obstacle in writing correct programs and in

debugging. Numerous researchers have come to a similar

conclusion that the big obstacle for novice programmers,

seems to be the early misconception about variables [6], [10],

[11] and [13].

Advocates of program visualization have reported progress in

increasing programming comprehension by introducing

animation tools in teaching programming. Scott et al [12],

Ala-Mutka [3], Ben Ari [5] and Ramadhan and du Boulay [9]

are among those who have confirmed that visualization can

increase programming comprehension. Animation tools have

the ability to show the novice what is happening inside

variables in the machine; as a result comprehension is

enhanced.

In spite of their experimental success, animation tools have

yet to find popular use in the realm of teaching programming.

They do not feature in mainstream programming books [13].

This possibly may be due to their infancy or due to the fact

that they are still entangled with machine mechanisms, which

taint them with a parochial character.

Although some of visual tools such as DISCOVER [9] which

combine both intelligent and unintelligent approaches are

available, MTL, as depicted in Figure 3 through 7, is made to

be applied outside the machine in order to be transformed into

a general, rigid, completely machine-independent tool which

can be applied to any programming language, outside the

machine environment, without denying it the flexibility to be

developed into machine-driven versions, if one wishes to.

5. USING MTL FOR PROGRAM DRY-

RUNNING
MTL, as a modified version of trace tables, constitutes a

visualization tool that can completely rely on paper and pencil

without eliminating a soft version in its design. Computer

RAM is used as the only concrete model to represent the

notional machine. The source-code only becomes relevant

when its meaning is extrapolated with its effect in the RAM,

line by line. RAM diagrams (modified trace tables) allow a

novice to close track the code by visualizing its execution in

the RAM. It allows the novice programmer, using paper and

pencil, to substitute the code, line by line, in the computer

memory and find out if the meaning of the code, as written by

Code segment

int x=0; i x

int i; 1 1

for (i=1;i<5; i++){ 2 3

x=x+i; 3 6

i++; 4 10

}

Trace Table

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

47

the programmer, matches with the meaning of the code as is

supposed to be understood by the computer. RAM diagrams,

as components of MTL, are demonstrated in Figure 3 through

7.

Fig 3: Using MTL to dry-run/close-track variable declaration, data inputting, data processing, data outputting and

SEQUENCE

Fig 4: Using MTL to dry-run/close-track variable declaration, data inputting, data processing, data outputting, SEQUENCE

and BRANCHING

1 //Program 1

2 #include<iostream.h> FREE RESERVED x 7 x

3 void main() FREE RESERVED y 4 y

4 { FREE RESERVED z RESERVED z

5 int x; FREE FREE FREE

6 int y;

7 int z;

8 x=4;

9 y=7;

10 z=x+y; 7 x 7

11 cout<<z; 4 y 4

12 } 11 z 11

FREE FREE

//Program 1, #include<>, void main(), { } x=7; y=4;

RAM on data operation

RAM after data feeding

RAM on data outputting

RAM on initial program-run

Step V (Execution of line 10)

cout<<z;

Step I (Execution of line 1, 2, 3, 4 & 12) Step II (Execution of line 4, 5, 6) Step III (Execution of line 7, 8)

Step IV (Execution of line 9)

z=x+y;

RAM after variable declaration

int x; int y; int z;

1 //Program 2

2 #include<iostream.h> FREE RESERVED x 7 x

3 void main() FREE RESERVED y 4 y

4 { FREE z z

5 int x, y; FREE FREE FREE

6 double z;

7 cin>>x;

8 cin>>y;

9 if(x>y) z=x/y;

10 z=x/y; 7 x 7

11 else 4 y 4

12 z=y/z; z

13 }
 ...

RAM on selection (is 7>4?)

YES. Perform, z=x/y; (z=7/4)

1.75

RAM on data feeding

RESERVED

RAM before program execution RAM after variable declaration

cin>>x; cin>> y;

Step I (Execution of line 1, 2, 3, 4&12) Step II (Execution of line 5, 6)

RESERVED

//Program 2, #include<>, void main(), { } int x, y; double z;

Step III (Execution of line 7, 8)

RAM on data operation and assignment

z=x/y;

Step V (Execution of line 10)

RESERVED

Step IV (Execution of line 9)

if(x>y)

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

48

Fig 5: Using MTL to dry-run/close-track variable and function declaration, data inputting, data processing, SEQUENCE and

FUNCTION CALL and PARAMETER PASSING

Fig 6: Using MTL to dry-run/close-track array declaration and data feeding in an ARRAY

1 // Program 3

2 #include<iostream.h>

3 void main() RAM RAM

4 { x RESERVED x 6

5 int sq(), x, z; z RESERVED z RESERVED

6 cout<<"Enter a number"; FREE FREE

7 cin>>x; RAM status on execution of cin>>x;

8 z=sq(x);

9 cout<<"The square of"<<x;

10 cout<< "is"<<z;

11 } RAM RAM

12 int sq(y) x 6 x 6

13 { z RESERVED z RESERVED

14 return(y*y); y 6 y 6 x 6

15 }

RAM

x 6

z 36

FREE

RAM status on execution of z=sq(x);

RAM status on execution of int sq(), x, z;

RAM status on execution of sq(x); RAM status during function call

and execution of return(y*y);

Re-execution of line 8

Variable and function declaration Data feeding

Function call Function execution

Execution of line 5 Execution of line 7

Partial execution of line 8 Execution of line 12 to 15

1 //Program 4

2 #include <iostream.h>

3 void main() RAM RAM

4 { int z[4]; RESERVED 20 z0

5 int z[4]; z RESERVED z 11 z1

6 cin>>z[0]; RESERVED z[2]=8; 8 z2

7 cin>>z[1]; RESERVED z[3]=400; 400 z3

8 z[2]=8; FREE FREE

9 z[3]=400; FREE FREE

10 } RAM status on execution of int z[4]; RAM status on execution of

cin>>z[0]; cin>>z[1]; z[2]=8;

and z[3]= 400;

Array declaration Data feeding in an array

Execution of line 5 Execution of line 6 to 9

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

49

Fig 7: Using MTL to dry-run/close-track variable declaration, variable initialization and LOOPING

As demonstrated in Figure 3 and Figure 4, MTL, relying on

rectangles, enables the learner to mimic the computer RAM

for visualizing variable declaration, data inputting, data

processing, data outputting, SEQUENCE and BRANCHING.

In Figure 5, the concept of cooperation between two functions

(function call and parameter passing) is visualized using the

same mechanism of rectangles. Figure 6 shows how arrays are

declared and inputted with data. Similarly, MTL can mimic

how data from arrays can be outputted by employing

rectangles to represent RAM. Figure 7 demonstrates how

MTL achieves visualization of LOOPING using the same

style of RAM mimicry by rectangles.

Conceptually, it can be said that MTL, as demonstrated in

Figure 3 through 7, can be applied consistently and invariably

in all basic programming aspects i.e. variable declaration, data

feeding, outputting, flow of control, functions, arrays and file

handling. MTL is independent of a programming language,

i.e. it can be applied in teaching any programming language

without changing its substance. MTL is machine independent,

i.e. it can be applied effectively with or without a machine.

That is to say, it can be absolutely a manual (paper-and-

pencil) program analyzer/builder and debugger, without

denying the possibility of creating a machine-based version

whenever it is desired. It can be used to mentally visualize and

verify correctness or incorrectness of the code, line by line,

and provide a lead for a possible correct solution. In addition,

MTL can be used by a novice to conceptualize the solution

path and direction, visualizing the dynamic behavior of

programs in relation to the machine while providing a

programmer with feedback on a successful step towards a

solution.

6. THE EXPERIMENT

6.1 The study setting
To test the effectiveness of MTL as a tool for tracking, dry-

running and detecting program correctness/incorrectness, 156

second-year students, all computer science majors, were

involved in the experiment.

The group had spent 162 hours learning programming as

follows: C++ Programming (for a total of 54 hours in the first

semester), Data Structures and Algorithms (for a total of 54

hours in the second semester) and Visual Basic (for 54 hours

in the second year’s first semester). Teaching had been carried

out by combining lectures, tutorials and laboratory classes.

When the group was studying Operating Systems during the

second semester in the second year, before engaging in the

topic of processes, an elementary programming quiz as shown

in Figure 8 was administered, as a means to revise basic

programming knowledge, as a preparation for studying the

concept of processes in operating systems.

Fig 8: Quiz number 1 and the model answer

Students were given six minutes to write the code. After

collecting the scripts, they were analyzed to find out correct

and incorrect answers. The count revealed that only 13

candidates out 156 were able to write correct codes. Answers

from incorrect codes were analyzed to find out the type of

errors committed. These were distinctively grouped in three

categories as:

i. Reference to undeclared variables; i.e. int yards,

float meters, yards6=yards*meters; (variable

yards6 is not declared).

ii. Multiple data feeding; i.e. int yards=6; cin>>yards;

(variable yards is referenced both in the assignment

and in the cin>> input stream).

iii. Data type mismatch; i.e. int yards, meters;

meters=yards*0.914; (variable meters is declared as

integer but it is assigned a float value).

1 //Program 5

2 #include <iostream.h> RAM Execution of: RAM RAM Execution of: RAM

3 void main() FREE int sum=0; 0 sum 0 sum sum=sum+i; 1 sum

4 { FREE int i=1; 1 i 1 i 0+1=1 2 i

5 int sum=0; FREE FREE FREE i=i+1; FREE

6 int i=1; FREE FREE FREE 1+1 FREE

7 while(i<4){

8 sum=sum+i; Is 1(i)<4? Is 2<4? … To round 3

9 i=i+1; YES YES

10 } Execution of: RAM Execution of: RAM

11 } sum=sum+i; 3 sum sum=sum+i; 6 sum

1+2=3 3 i 3+3=2 4 i

i=i+1; FREE i=i+1; FREE

2+1 FREE 3+1 FREE

Is 3<4? Is 4<4?

…from round 2 YES No END of the loop

Loop-test round 1 Loop-test round 2

Loop-test round 3 Loop-test round 4

RAM bofore execution of line 7 to 10 RAM on execution of line 7 to 10

RAM on execution of line 7 to 10 RAM on execution of line 7 to 10

RAM before program execution RAM on variable declaration and

initialization: execution of line 5 and 6

Quiz: Time allowed 6 minutes.

Given that 1 yard is equal to 0.914 meters,

write a code to convert 6 yards into meters.

Model solution

#include<iostream.h>

void main()

{

int yards=6;

double meters;

meters= 0.914*yards;

cout<<” 6 Yards = "<<meters <<" Meters";

}

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

50

These errors and their frequencies are summarized in Table 1.

Table 1. Distribution of errors before MTL

Reference to

undeclared

variables

Multiple

data

feeding

Data type

mismatch

Others

63 60 33 22

On analyzing a sample of 160 past examination scripts, it was

revealed that most students conceived program codes as solid

facts like history or geography. They considered codes to be

static and discrete. A big proportion of students performed

poorly in any question that required application of general

concepts. Most students had passed because they had

memorized some codes which had been discussed earlier

during class sessions and had reappeared in tests and in the

examination. One can compare this with the case of

mathematics students memorizing examples of mathematical

problems, perceiving them as all about the subject and

succeeding to do the question, only if it had earlier been

discussed. These findings confirm those by Waguespack [4],

and Dehnadi and Bornat [2] who contend that most computer

science candidates graduate as non programmers. It is further

confirmed that teaching programming for many hours and

teaching students multiple languages is a waste at best and

cruel at worst if the fundamentals are not firmly mastered

from the beginning [1], [2].

6.2 Assessing the impact of MTL
As a refresher, four hours were set aside for revision.

Throughout the revision, complex programming aspects such

as loops, and files were re-introduced to students. The entire

discussion was carried out by the aid of MTL. In the end of

revision, a question, as depicted in Figure 9, was

administered. In addition, students were instructed to

demonstrate their inputs and outputs using MTL.

Fig 9: Quiz number 2 and the model answer

7. RESULTS AND DISCUSSION

When all 156 examination scripts were analyzed for errors,

the distribution of errors was as summarized in Table 2.

Table 2. Distribution of errors

Reference to

undeclared

variables

Multiple

data feeding

Data type

mismatch

Others

8 4 9 11

Analysis of errors revealed that all those who had wrong

answers had not been able to employ MTL correctly in tracing

their codes.

Percentage of errors committed before and after introduction

of MTL is summarized in Table 3 and sketched in Figure 10.

Table 3. Percentage of errors committed by students before and after the use of MTL

Reference to undeclared

variables
Multiple data feeding Data type mismatch Others

Before After Before After Before After Before After

0.543 0.068 0.517 0.034 0.284 0.077 0.189 0.094

Quiz: Time allowed 6 minutes.

Given two numbers (x and y) write a code to

perform division operation on them, and store

the inputs and the output on a file in the disk

Model solution

#include<iostream.h>

#include<fstream.h>

void main()

{

int x, y;

ofstream savefile;

savefile.open(“Myfile.txt”);

cout<< “Enter the numerator”<<’”\n”;

cin>>x;

cout<< “Enter the denominator ”<<’”\n”;

cin>>y;

savefile<<x<<”\n”;

savefile<<y<<”\n”;

savefile<<x/y;

savefile.close();

}

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 9, January 2014

51

Fig 10: Percentage of errors committed before and after

introduction of MTL

Davies [11] posits that understanding the variables, their

relationship and roles is the core to understanding

programming. Early elimination of misconceptions about

variables is the cornerstone to understanding programming.

With a substitution tool like MTL, novices can avoid making

reference to undeclared variables, and multiple data feeding

since every variable visibly changes the status as it gets and/or

exchanges values. Confusion about data types is minimized

since each value inside a variable is seen and can be checked

whether it corresponds to its type-size or not.

8. CONCLUSIONS AND FUTURE

WORK
MTL is tailored to ensure that each code-line is explained and

justified with its corresponding impact on the RAM. The

impact of each code-line on the RAM is diagrammatically

visualized by depicting the perceived code-line impact or the

value in the corresponding cell of the RAM. The use of MTL

to close track the code, suppresses the possibility for students

to attribute computers with human reasoning abilities; a

concern that was pointed out by Perkins et al [6]. Using MTL

the learner is in absolute control of the process. According to

Dehnadi and Bonart [2], the inability to attribute meaning to

the code is the source for novices giving up programming.

MTL provides a means for a programmer to replay the rules

that the machine follows to get the results. It enables the

programmer to see the meaning that each code is making to

the machine. It is argued by Naps et al [13] that visualization

has not been widely applied in programming because it cannot

be integrated in programming books. MTL, as demonstrated

in Figure 3 to 7 can be integrated in elementary programming

books. MTL is suitable for most of the elementary

programming aspects.

Despite these results, MTL cannot be used for visualizing big

programs. MTL has never been tested in recursion and

problem solving aspects. Results of this experiment cannot be

used to conclude that MTL can so greatly enhance

understanding of programming. The questions involved are

very simple, and mostly similar. There is a need for further

investigation in higher programming aspects such as recursion

and problem composition.

However, the study confirms that most programming students

progress to high level without having minimum knowledge

about programs and programming. Elementary basics such as

variables, data inputting, data processing and outputting are

taken for granted as simple issues that all students can

understand. However, if these aspects are not re-emphasized

using concrete models such as MTL, a big number of students

leave colleges without the capability for elementary

programming. This state of affair, apart from the lack of

effective teaching tools, can be attributed to the misguided

quality assurance procedures and the efforts of colleagues

who doggedly believe in normal cave [2]. It was found that

most students find new concepts such as variables too

complex to be grasped in the short time that they are supposed

to learn and use it in programming. To mitigate this

catastrophic situation, tools like MTL which can be employed

in combination with other concrete tools used for teaching

programming, could provide a remedy.

Future work will be directed in incorporating aspects such as

recursion, library calling and problem composition in MTL.

9. REFERENCES
[1] Spohrer J. C. and Soloway, E. 1986. Some Difficulties of

Learning to Program. In Soloway, E. and Spohrer,J. C.

editors, Studying the Novice Programmer, pages 283–
299. Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[2] Dehnadi, S. and Bonart, R. 2006. The Camel has Two

Humps (working title). School of Computing, Middlesex
University, UK.

[3] Ala-Mutka, K. 2003. Problems in Learning and Teaching

Programming: A Literature Study for Developing

Visualizations in the Codewitz-Minerva Project.

http://www.cs.tut.fi/~edge/literature_study.pdf.
[Accessed on 27-11-07].

[4] Kuittinen, M., Tikansalo, T. and Sajaniemi, J. 2008, “A

study of the Development of Students' Visualizations of

Program State During an Elementary Object-Oriented

Programming Course”, ACM Journal of Educational
Resources in Computing, 7(4).

[5] Ben-Ari, M. and Sajaniemi, J. 2004. Roles of Variables

as Seen by Computer Science Educators. ITiCSE 2004,
52-56. [Accessed on 02-09-08].

[6] Perkins, D. N., Hobbs, H. R, Martin, F. and Simmons,

R. 1986. Conditions of Learning in Novice

Programmers. In Soloway, E. and Spohrer and J. C.,

editors, Studying the Novice Programmer, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1989. p. 261–279.

[7] Benedict J. H. and du Boulay, B. 1986. “Some

difficulties of learning to program”, Journal of

Educational Computing Research, 2(1) p. 57–73.

[8] Waguespack, Jr. L. J. 1989. Visual metaphors for

Teaching Programming Concepts. ACM SIGCSE
Bulletin, v. 21, n. 1, p.141-145.

[9] Ramadhan, H. and Du Bolay, B. 1992. DISCOVER:

Programming Environment for Novices. COMPSAC '92.

Proceedings, Sixteenth Annual International Chicago, p.
375 – 380.

[10] Samurcay, R. 1989. The Concept of Variable in

Programming: its Meaning and Use in Problem-Solving

by Novice Programmers. In: Studying the novice
programmer, Hillsdale, NJ, 1989, p.161-178.

[11] Davies, S. P. 1993. “Models and theories of

Programming Strategies”, International Journal of Man-
Machine studies, 39 (2), p. 237-267.

[12] Scott, A., Watkins, M. and Duncan, M. 2005. A Step

Back from Coding – An Online Environment and

Pedagogy for Novice Programmers,:

http://www.ics.heacademy.ac.uk/events/jicc11/scott.pdf.

[Accessed on 02-09-08].

[13] Naps, T., R¨oßling, G., Almstrum, V., Dann, W.,

Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,

McNally, M., Rodger, S. and Vel´azquez-Iturbide, A.

2003. Exploring the Role of Visualization and

Engagement in Computer Science Education. ACM
SIGCSE Bulletin, 35(2), p. 131–152.

IJCATM : www.ijcaonline.org

http://www.cs.tut.fi/~edge/literature_study.pdf
http://www.ics.heacademy.ac.uk/events/jicc11/scott.pdf

