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ABSTRACT 
Every step in the evolution of human kind is associated with 

the inherent quest for knowledge and substantial growth in 

intelligence. In the modern world, the thirst for information is 

quenched by search engines that crawl billions of pages on the 

World Wide Web. This paper endeavors to make the ranking 

of the indexed web pages more intelligent by using techniques 

followed by recommendation engines that, with the help of 

some algorithms, recommend products on e-commerce 

websites. The focus primarily lies on discovering user groups, 

finding the degree of similarity between users based on search 

queries and building a graph that tracks the clicks on search 

results within the group, enabling the machine to learn which 

result might meet the expectation of one particular user and 

rank the results accordingly. 
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1. INTRODUCTION 
Machine learning is a powerful tool to make web applications 

more intelligent. The idea of ranking web pages by following 

recommendation techniques is based on the principle of 

Collaborative filtering [1]. According to Toby Segaran [2], a 

collaborative filtering algorithm usually works by searching a 

large group of people and finding a smaller set with tastes 

similar to yours. It looks at other things they like and 

combines them to create a ranked list of suggestions. In this 

context, ‘similar taste’ is similar search queries and ‘things 

they like’ correspond to the result that people click on. In a 

nut shell, intuitively, it can be said that recommended results 

are in some way more meaningful to the user.  

There are basically three stages in search. The first step in 

creating a search engine is to develop a way to collect the data 

and this is called crawling. This stage is followed by Indexing, 

where the crawled data are stored in databases. The final step 

is returning a ranked list of documents from a query. 

2. EFFICIENT RANKING  
Ranking is the process of giving pages a score for a given 

query, as well as the ability to return them with the highest 

scoring results first. The ranking process of a modern, 

efficient search engine consists of several stages. Effectively, 

it can be considered three fold.  

2.1 Basic (primary) ranking  

This content-based ranking is the type of ranking which was 

used by search engines in the early stages which takes into 

consideration the word frequency, document location and 

word distance. 

2.2 Secondary Ranking (link analysis)  
There are various ranking algorithms that rank pages based on 

the number of incoming links like the In-degree, SALSA, 

Pagerank etc. [3]. Of these algorithms, the Page rank 

algorithm used by Google is the most popular one which is 

described as follows [3], [4]:  

Let u be a web page. Then let Fu be the set of pages u points 

to and Bu the set of pages that point to 

u. Let Nu = |Fu| the number of links from u and let c be a 

factor used for normalization (so that the total 

rank of all web pages is constant). We can now define a 

simple ranking R which is a slightly simplified version of the 

actual PageRank: 

 

     
    

  
    

 

 
This algorithm assigns every page a score that indicates how 

important that page is. The importance of the page is 

calculated from the importance of all the other pages that link 

to it and from the number of links each of the other pages has. 

2.3 Third stage (Taking clicks into 

account) 

 Conventional methods of taking user clicks into account 

include just remembering the query and counting how many 

times each result was clicked or more sophisticated methods 

like forming neural networks to track clicks are also 

employed.  

3. FORMING GROUPS AND 

ESTABLSHING SIMILARITY SCORES 
This part is the prime focus of this paper. While performing 

the third stage of the ranking process, rather than just counting 

clicks all over the world,  people are grouped together based 

on some factors and clicks by similar people are made to add 

more weight to the final score of the results by mimicking the 

operation of recommendation engines that recommend 

products bought by similar users. 
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3.1 Forming Groups 
The total number of people accessing the World Wide Web is 

seemingly infinite. To make the process more efficient, people 

can be clustered based on Geo-location (or IP geolocation), 

MAC address and various other factors to form a finite set of 

closely knit web searchers. This step however is not necessary 

if this algorithm is to be implemented on a small network 

rather than the entire web. In a considerably small group, this 

algorithm is sure to perform efficiently. 

 

3.2 Establishing the similarity scores 

within the group 
Recommendation engines use various algorithms like 

Euclidian distance, Pearson Correlation etc. to assign 

similarity scores based on the products bought or rating given. 

The Pearson correlation method [5] can be effectively used to 

find similarity between people who search the web based on 

the queries they use.  The correlation coefficient is a measure 

of how well two sets of data fit on a straight line. The formula 

for this is more complicated than the Euclidean distance score, 

but it tends to give better results in situations where the data 

isn’t well normalized such as the search queries that the 

people of the group make over a period of time.  

To visualize this method, you can plot the ratings of two of 

the critics on a chart, as shown in Figure 1. Superman was 

searched 3 times by John and 5 times by Ganesh, so it is 

placed at (3,5) on the chart. 

 

 
Fig.1: Comparing two people on a scatter plot based on 

the queries made.  

The straight line found in the figure is called the best-fit line 

because it comes as close to all the items on the chart as 

possible. If the two people had identical search trends, this 

line would be diagonal and would touch every item in the 

chart, giving a perfect correlation score of 1.  The algorithm 

for the Pearson correlation score first finds the queries 

searched by both people. It then calculates the sums and the 

sum of the squares of the number of searches for the two 

people, and calculates the sum of the products of their number 

of searches. Finally, it uses these results to calculate the 

Pearson correlation coefficient as shown. This formula is not 

very intuitive, but it does tell you how much the variables 

change together divided by the product of how much they 

vary individually. 

A sample python code for calculation of Pearson coefficient is 

as shown below: 

 

 

This function will return a value between –1 and 1 which 

gives the similarity score between two people.  

 

4. LEARNING FROM THE CLICKS 

AND RANKING THE RESULTS 

 
Now that the finite group of people with every person having 

a similarity score with every other person has been formed, 

ranking based on this similarity can be done. It is to be noted 

that the ranks of results for every individual will be different, 

similar users ending up with mostly the same results at the 

top. 

 

4.1 Learning from clicks 
 In the case of a search engine, each user will immediately 

provide information about how much he likes the results for a 

given search by clicking on one result and choosing not to 

click on the others. This section will look at a way to record 

when a user clicks on a result after a query, and how that 

record along with the similarity score can be used to improve 

the rankings of the results. For this purpose, a weighted edge 

graph with two layers can be used. In this case the first layer 

is a combination of inputs is a set of words, so you could also 

think of this as the query layer. The second layer is the output 

layer. Figure 2 shows the structure of the network. All the 

nodes in the input layer are connected to all the nodes in the 

output layer.  
 

# Returns the Pearson correlation coefficient for p1 and p2 

def sim_pearson(search,p1,p2): 

 # Get the list of mutually rated items 

 si={} 

 for item in search[p1]: 

  if item in search[p2]: si[item]=1 

  

 # Find the number of elements 

 n=len(si) 

  

 #if they are no ratings in common,return 0 

 if n==0: return 0 

  

# Add up all the number of searches 

 sum1=sum([search[p1][it] for it in si]) 

 sum2=sum([search[p2][it] for it in si]) 

 

 # Sum up the squares 

 sum1Sq=sum([pow(search[p1][it],2) for it in si]) 

 sum2Sq=sum([pow(search[p2][it],2) for it in si]) 

 

 # Sum up the products 

 pSum=sum([search[p1][it]*search[p2][it]for it in si]) 

 

# Calculate Pearson score 

num=pSum-(sum1*sum2/n) 

den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-

pow(sum2,2)/n)) 

if den==0: return 0 

r=num/den 

return r 
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Fig2: Structure of click tracking network. 

The weights of all the edges are made 0 initially. Over a 

period of time, the engine is made to learn which result is best 

for which user by adding corresponding weights, depending 

on the clicks by similar users, to the edges connecting the 

query node and the clicked result node. This can be called the 

modified backpropogation algorithm as this is similar to the 

backpropogation algorithm [6] used to train neural networks. 

It is again important to note that every user will have different 

weights of the edges. These can be stored against user 

accounts in big networks, centralized server for a small 

network of users or as cookies in the user’s computer.  

 

When a result is clicked by a person p1, the weight of edges 

connecting the query and the URL in another person p2’s 

graph is added with the similarity score of p1 and p2. Thus the 

weight of these edges will be more if the two are more 

similar. For example, consider that Fig 2 represents p2’s 

graph. If the word1 and word3 were person p1’s queries and 

url1 was clicked, weights of edges marked 1 and 2 are 

incremented with Pearson Score (p2, p1). 

 

4.2 Scoring and ranking the results 
Now that the edges are weighted according to the number of 

clicks and the ‘similarity value’ over a period of time, 

effective ranking can be done based on this. When a query is 

now made, a forward scoring algorithm can be implemented 

to rank the pages. Every URL node will have a score 

calculated by the following formula 

 

                                                     

 

Note:  

The net weight W can be positive or negative because the 

Pearson coefficient ranges between 1 and -1. 

 

            
 

   
 

        

 

                    
 

   
  

       

 

This returns a score between 1 and -1. The more the score, the 

higher should be the rank of the result. This along with the 

scores of the pages given by other ranking algorithms like the 

page rank algorithm should give more meaningful results at 

the top of the results page.  

5. CONCLUSION 
Thus, similarity between users is calculated and the search 

results are ranked based on clicks by similar users, making the 

results appearing on the top of search results more 

meaningful. The drawback is that every user has a different 

click tracking graph which might cause storage issues in big 

networks like the web on the whole. In smaller networks 

however, implementation of this algorithm will prove to be 

effective. With the enormous increase in today’s computing 

power, maintaining individual graphs in bigger networks 

should not be a problem in the near future. 
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