
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 8, January 2014

16

Intelligent Search Engine Ranking Algorithm inspired by

Recommendation Engines

Ganesh Venkataraman
Sri Venkareswara College of Engineering, Anna University

Pennalur, Irungattukottai – 602 117
Tamil Nadu, India

ABSTRACT
Every step in the evolution of human kind is associated with

the inherent quest for knowledge and substantial growth in

intelligence. In the modern world, the thirst for information is

quenched by search engines that crawl billions of pages on the

World Wide Web. This paper endeavors to make the ranking

of the indexed web pages more intelligent by using techniques

followed by recommendation engines that, with the help of

some algorithms, recommend products on e-commerce

websites. The focus primarily lies on discovering user groups,

finding the degree of similarity between users based on search

queries and building a graph that tracks the clicks on search

results within the group, enabling the machine to learn which

result might meet the expectation of one particular user and

rank the results accordingly.

General Terms

Intelligent systems, Algorithms, Machine learning, Web

systems, ranking algorithm.

Keywords

Search engine, ranking algorithms, intelligent ranking,

recommendation systems.

1. INTRODUCTION
Machine learning is a powerful tool to make web applications

more intelligent. The idea of ranking web pages by following

recommendation techniques is based on the principle of

Collaborative filtering [1]. According to Toby Segaran [2], a

collaborative filtering algorithm usually works by searching a

large group of people and finding a smaller set with tastes

similar to yours. It looks at other things they like and

combines them to create a ranked list of suggestions. In this

context, ‘similar taste’ is similar search queries and ‘things

they like’ correspond to the result that people click on. In a

nut shell, intuitively, it can be said that recommended results

are in some way more meaningful to the user.

There are basically three stages in search. The first step in

creating a search engine is to develop a way to collect the data

and this is called crawling. This stage is followed by Indexing,

where the crawled data are stored in databases. The final step

is returning a ranked list of documents from a query.

2. EFFICIENT RANKING
Ranking is the process of giving pages a score for a given

query, as well as the ability to return them with the highest

scoring results first. The ranking process of a modern,

efficient search engine consists of several stages. Effectively,

it can be considered three fold.

2.1 Basic (primary) ranking

This content-based ranking is the type of ranking which was

used by search engines in the early stages which takes into

consideration the word frequency, document location and

word distance.

2.2 Secondary Ranking (link analysis)
There are various ranking algorithms that rank pages based on

the number of incoming links like the In-degree, SALSA,

Pagerank etc. [3]. Of these algorithms, the Page rank

algorithm used by Google is the most popular one which is

described as follows [3], [4]:

Let u be a web page. Then let Fu be the set of pages u points

to and Bu the set of pages that point to

u. Let Nu = |Fu| the number of links from u and let c be a

factor used for normalization (so that the total

rank of all web pages is constant). We can now define a

simple ranking R which is a slightly simplified version of the

actual PageRank:

This algorithm assigns every page a score that indicates how

important that page is. The importance of the page is

calculated from the importance of all the other pages that link

to it and from the number of links each of the other pages has.

2.3 Third stage (Taking clicks into

account)

 Conventional methods of taking user clicks into account

include just remembering the query and counting how many

times each result was clicked or more sophisticated methods

like forming neural networks to track clicks are also

employed.

3. FORMING GROUPS AND

ESTABLSHING SIMILARITY SCORES
This part is the prime focus of this paper. While performing

the third stage of the ranking process, rather than just counting

clicks all over the world, people are grouped together based

on some factors and clicks by similar people are made to add

more weight to the final score of the results by mimicking the

operation of recommendation engines that recommend

products bought by similar users.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 8, January 2014

17

3.1 Forming Groups
The total number of people accessing the World Wide Web is

seemingly infinite. To make the process more efficient, people

can be clustered based on Geo-location (or IP geolocation),

MAC address and various other factors to form a finite set of

closely knit web searchers. This step however is not necessary

if this algorithm is to be implemented on a small network

rather than the entire web. In a considerably small group, this

algorithm is sure to perform efficiently.

3.2 Establishing the similarity scores

within the group
Recommendation engines use various algorithms like

Euclidian distance, Pearson Correlation etc. to assign

similarity scores based on the products bought or rating given.

The Pearson correlation method [5] can be effectively used to

find similarity between people who search the web based on

the queries they use. The correlation coefficient is a measure

of how well two sets of data fit on a straight line. The formula

for this is more complicated than the Euclidean distance score,

but it tends to give better results in situations where the data

isn’t well normalized such as the search queries that the

people of the group make over a period of time.

To visualize this method, you can plot the ratings of two of

the critics on a chart, as shown in Figure 1. Superman was

searched 3 times by John and 5 times by Ganesh, so it is

placed at (3,5) on the chart.

Fig.1: Comparing two people on a scatter plot based on

the queries made.

The straight line found in the figure is called the best-fit line

because it comes as close to all the items on the chart as

possible. If the two people had identical search trends, this

line would be diagonal and would touch every item in the

chart, giving a perfect correlation score of 1. The algorithm

for the Pearson correlation score first finds the queries

searched by both people. It then calculates the sums and the

sum of the squares of the number of searches for the two

people, and calculates the sum of the products of their number

of searches. Finally, it uses these results to calculate the

Pearson correlation coefficient as shown. This formula is not

very intuitive, but it does tell you how much the variables

change together divided by the product of how much they

vary individually.

A sample python code for calculation of Pearson coefficient is

as shown below:

This function will return a value between –1 and 1 which

gives the similarity score between two people.

4. LEARNING FROM THE CLICKS

AND RANKING THE RESULTS

Now that the finite group of people with every person having

a similarity score with every other person has been formed,

ranking based on this similarity can be done. It is to be noted

that the ranks of results for every individual will be different,

similar users ending up with mostly the same results at the

top.

4.1 Learning from clicks
 In the case of a search engine, each user will immediately

provide information about how much he likes the results for a

given search by clicking on one result and choosing not to

click on the others. This section will look at a way to record

when a user clicks on a result after a query, and how that

record along with the similarity score can be used to improve

the rankings of the results. For this purpose, a weighted edge

graph with two layers can be used. In this case the first layer

is a combination of inputs is a set of words, so you could also

think of this as the query layer. The second layer is the output

layer. Figure 2 shows the structure of the network. All the

nodes in the input layer are connected to all the nodes in the

output layer.

Returns the Pearson correlation coefficient for p1 and p2

def sim_pearson(search,p1,p2):

 # Get the list of mutually rated items

 si={}

 for item in search[p1]:

 if item in search[p2]: si[item]=1

 # Find the number of elements

 n=len(si)

 #if they are no ratings in common,return 0

 if n==0: return 0

Add up all the number of searches

 sum1=sum([search[p1][it] for it in si])

 sum2=sum([search[p2][it] for it in si])

 # Sum up the squares

 sum1Sq=sum([pow(search[p1][it],2) for it in si])

 sum2Sq=sum([pow(search[p2][it],2) for it in si])

 # Sum up the products

 pSum=sum([search[p1][it]*search[p2][it]for it in si])

Calculate Pearson score

num=pSum-(sum1*sum2/n)

den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-

pow(sum2,2)/n))

if den==0: return 0

r=num/den

return r

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 8, January 2014

18

Fig2: Structure of click tracking network.

The weights of all the edges are made 0 initially. Over a

period of time, the engine is made to learn which result is best

for which user by adding corresponding weights, depending

on the clicks by similar users, to the edges connecting the

query node and the clicked result node. This can be called the

modified backpropogation algorithm as this is similar to the

backpropogation algorithm [6] used to train neural networks.

It is again important to note that every user will have different

weights of the edges. These can be stored against user

accounts in big networks, centralized server for a small

network of users or as cookies in the user’s computer.

When a result is clicked by a person p1, the weight of edges

connecting the query and the URL in another person p2’s

graph is added with the similarity score of p1 and p2. Thus the

weight of these edges will be more if the two are more

similar. For example, consider that Fig 2 represents p2’s

graph. If the word1 and word3 were person p1’s queries and

url1 was clicked, weights of edges marked 1 and 2 are

incremented with Pearson Score (p2, p1).

4.2 Scoring and ranking the results
Now that the edges are weighted according to the number of

clicks and the ‘similarity value’ over a period of time,

effective ranking can be done based on this. When a query is

now made, a forward scoring algorithm can be implemented

to rank the pages. Every URL node will have a score

calculated by the following formula

Note:

The net weight W can be positive or negative because the

Pearson coefficient ranges between 1 and -1.

This returns a score between 1 and -1. The more the score, the

higher should be the rank of the result. This along with the

scores of the pages given by other ranking algorithms like the

page rank algorithm should give more meaningful results at

the top of the results page.

5. CONCLUSION
Thus, similarity between users is calculated and the search

results are ranked based on clicks by similar users, making the

results appearing on the top of search results more

meaningful. The drawback is that every user has a different

click tracking graph which might cause storage issues in big

networks like the web on the whole. In smaller networks

however, implementation of this algorithm will prove to be

effective. With the enormous increase in today’s computing

power, maintaining individual graphs in bigger networks

should not be a problem in the near future.

6. REFERENCES
[1] Algorithms of the Intelligent Web, Haralambos

Marmanis and Dmitry Babenko,

[2] Programming Collective Intelligence- Building Smart

Web 2.0 Applications, Toby Segaran, 2007

[3] A Survey of Ranking Algorithms, Alessio Signorini,

Department of Computer Science, University of Iowa,

September 11, 2005

[4] S.Brin, L.Page, The anatomy of a large-scale hyper

textual web search engine, Proceedings of the 7th

International World Wide web Conference, 1998

[5] Pearson’s Correlation Coefficient:

http://faculty.uncfsu.edu/dwallace/lesson%2017.pdf

[6] The Backpropogation algorithm. http://page.mi.fu-

berlin.de/rojas/neural/chapter/K7.pdf

IJCATM : www.ijcaonline.org

