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ABSTRACT 

Nonnegative matrix factorization (NMF) is an algorithm used 

for blind source separation. It has been reported that NMF 

algorithms can be utilized as an effective means to extract 

features from a motor-imagery related EEG spectrum, which 

is often used in brain-computer interfaces (BCI). BCI systems 

enable users to control electrical devices without moving their 

body parts, and are often tasked with interpreting a user’s 

intentions through motor-imagery related EEG features. In 

other words, they require EEG signal classification in order to  

reflect user intentions. In this study, constraints are placed on 

NMF and kernel NMF (KNMF) algorithms to increase the 

discriminability between two classes by increasing the energy 

difference between their potential sources in a spectral EEG 

signal. To evaluate the proposed algorithms, the IDIAP 

database, which contains the motor-imagery related EEG 

spectrum of three subjects, was adopted to test the 

discrimination between two classes. Using the database, the 

classification accuracy of the proposed constraint was 75%, 

which was 7% higher than what was obtained through NMF 

without a constraint. Similarly, the classification accuracy of 

KNMF with the proposed constraint was also 4% higher than 

that of KNMF without a constraint, and reached 78%. 
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1. INTRODUCTION 
Nonnegative matrix factorization (NMF) is a type of blind-

source separation method [1] that is directly applicable to 

nonnegative data, such as images, spectrograms, and 

documents [2, 3, 4], and can decompose a nonnegative input 

data matrix X into a nonnegative source matrix 0U  and 

dictionary 0V , i.e., 
TUVX  . In doing so, NMF 

employs a non-subtractive and part-based representation of 

nonnegative data. 

It was previously reported that NMF algorithms were 

effective in extracting features from an electroencephalogram 

(EEG) for use in a brain-computer interface (BCI) [5, 6]. In an 

EEG-based BCI, nonnegative spectral EEG features involving 

motor movement are often used, and a  rhythm (8–12 Hz) 

and  rhythm (18–25 Hz) can be cited as motor-imagery 

related spectral characteristics. It has been noted that these 

frequency bands decrease during actual or imagined limb 

movements, which can be observed in the hemisphere 

opposite the limb. This phenomenon is called event-related 

desynchonization (ERD). As it stands, ERD might be seen in 

a different frequency band in each subject. For example, one 

subject may have an ERD at 8 Hz and another subject at 16–

20 Hz. To summarize, the suitable spectral features for BCI 

applications differ for every user. Wherein, NMF was 

proposed as a data-driven ERD detection method that 

accounted for individual differences as it pertains to BCI 

applications. 

Of the several algorithms presented, convex NMF, semi 

NMF, and kernel NMF (KNMF), KNMF were suggested as 

effective methods for EEG feature extraction [7]. While 

standard NMF requires a pseudo-inverse matrix or a fixation 

of the factor matrix, KNMF overcomes these problems 

because of its greater feasibility for EEG-based BCI 

applications. Moreover, the authors in [7] stated that KNMF 

was superior to other previously presented algorithms with 

respect to spectral EEG feature extraction. 

In accordance with these previous studies, a KNMF algorithm 

using a constraint to improve classification accuracy was 

proposed with the aim of applying it to the BCI system in 

author’s previous study [8]. This paper describes NMF and 

KNMF algorithms with constraints that increase the 

discriminability of two classes for ERD detection and 

compares the level of accuracy of the improved NMF 

algorithms. 

2. NONNEGATIVE MATRIX 

FACTORIZATION ALGORITHMS 

WITH PROPOSED CONSTRAINTS 

2.1 NMF 

NMF decomposes an input data matrix 
mnX 

R into the 

source matrix 
rnU 

R and dictionary
rmV R , and the 

relation of these matrices can be expressed as follows: 

TUVX  . (1) 

In this research, n  indicates the number of samples, while 

m  and r  refer to the dimension of the input data and source 

matrices, respectively, and are both set to 96. A pre-computed 

power spectral density of an EEG signal ( 96n ) is regarded 

as the input data matrix X . 

Incorporating assumption (1), the Euclidean distance-based 

objective function can be written as follows: 

2

2

1
),( T

N UVXVWD  . (2) 
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Typically, (2) is rewritten using a different approach for a 

slightly more general objective function by taking additional 

constraints into consideration: 

)()(
2

1
),(

2

UJVJUVXVWD UV

T

N   , (3) 

where   and   are nonnegative regularization parameters 

and penalty terms )(VJV
and )(UJU

are determined in 

order to enforce certain application-dependent characteristics. 

In this paper, )(VJV
 is set to increase the discriminability 

of two classes. Note that input data matrix X  is divided into 

matrices of class 1,
mnX 

 1

1 R , and class 2, 
mnX 

 2

2 R  

( 21 nnn  ). The constraint for NMF is as follows: 

)}](){()}(){([)( 1122 UUtrUUtrVJ TT

V  . (4) 

Given that the source matrix U can be expressed 

as 1)( TVX , Eq. ( 4) is rewritten as follows: 
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VXVXtr
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Eq. (5) indicates the difference between the energy 

summations of the class 1 source matrix, 1

11 )(  TVXU , and 

class 2 source matrix, 1

22 )(  TVXU . Hence, the objective 

function of the proposed NMF using a constraint to increase 

the discriminability (NMF_ID) can be rewritten as follows: 

U
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. (6) 

The constraint for source matrix U, 1l -norm was selected, as 

it is typically used to increase sparsity. The extremization of 

(6) containing the constraint written in (5) solves V, which 

maximizes the ratio of energy between 
1U  and 

2U . This idea 

was inspired by the common spatial pattern (CSP). The CSP 

learns spatial filters that can maximize the variance of a 

dataset from one class while minimizing the variance of  

datasets from other classes [9, 10], and the proposed method 

is expected to produce similar results while guaranteeing the 

sparsity of source matrices 
1U and 

2U . 

The partial derivations of Eq. (6) with respect to dictionary V 

and source matrix U are as follows: 

1

1122 ))(( 


 TTTTTNr VXXXXUXUVU
V

D
 (7) 

 





XVVUV

U

D TNr . (8) 

To optimize dictionary V , a multiplicative update rule of 

NMF_ID is generated using the standard gradient (SG), 












UVU

VKKUX
VV

T

TT
new

1

12 ))((
 (9) 

where   represents component-wise multiplication,   is a 

small positive constant used to avoid numerical instabilities, 

and
 C

T

CC XXK   ( 2,1c ). In a similar way, source 

matrix U  is updated using the SG, 










VUV

XV
UU

T

new . (10) 

2.2 KNMF 

KNMF is based on a convex NMF, which constrains 

dictionary vectors into a convex combination of the input data 

matrix,
mnX 

R  [11]. Source matrix
rnU 

R  can be 

described as follows: 

XWU   (11) 

where each column in factor matrix 
rmW 

R satisfies a 

sum-to-one constraint. Incorporating assumption (11), the 

objective function for the KNF algorithm can be written as 

follows: 

2

2

1
),( T

K XWVXVWD  . (12) 

The column vectors in dictionary 
rmV R are called bias 

vectors, which indicate that r  representative spectral features 

are generated from training the EEG data samples. (In this 

research, 96r .) 

To improve the performance of KNMF, the objective function 

described in Eq. (12) can also be rewritten to consider 

additional constraints:  

)()(
2

1
),(

2

VJWJXWVXVWD VW

T

K   , 

(13) 

where   and   are nonnegative regularization parameters 

and constraints )(WJW
and )(VJV  

are added for the factor 

matrix W  and the dictionary V , respectively. 

To increase the discriminability of two classes using KNMF, 

)(WJW
 should be devised, because factor matrix W  is 

related more directly to an estimation of the source matrix 

than dictionaryV . Note that input data matrix X is divided 

into matrices of class 1, 1X , and class 2, 2X  
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( 21 nnn  ), and the source matrices can be expressed as 

WXU 11  and WXU 22   using the common factor 

matrix W . The proposed constraint for KNMF is as follows: 

)}](){()}(){([)( 1122 WXWXtrWXWXtrWJ TT

W  . 

(14) 

Eq. (14) also refers to the difference of energy summations 

between the class 1 source matrix WXU 11  , and class 2 

source matrix WXU 22  . Hence, KNMF with a proposed 

constraint to increase the discriminability (KNMF_ID) models 

can be rewritten as follows: 

V

WXWXtrWXWXtr

XWVXVWD

TT

T

Kr








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2

2

1
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1122

2

. (15) 

In the same way as NMF, 
1l -norm is selected as a constraint 

for the dictionary V .  

To minimize the objective function (15), 
KrD  is partially 

differentiated with respect to the factor matrix W  and 

dictionary V as follows in (16) and (17). 

WXXXXVXXVWVXX
W

D TTTTTKr )( 1122 



  . 

(16) 





WXXWXXVW

V

D TTTKr  .  (17) 

In the KNMF algorithm,
C

T

CC XXK  ( 2,1c ) is called 

linear kernel matrix (
21 KKK  ), and eqs. (16) and (17) are 

rewritten as follows: 

WKKKVVKWV
W

D TKr )( 12 



   (18) 





KWKWVW

V

D TKr .  (19) 

To optimize the factor matrix W  and dictionaryV , the SG 

leads to the following multiplicative update rules for 

KNMF_ID, 










VKWV

WKKKV
WW

T

new )( 12  (20) 








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KWVW

KW
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T

new  . (21) 

In this research, a linear kernel XXK T
 
is adopted. 

Generally, we can select kernels such as  TK , which 

are expressed as an inner product of  that maps data matrix 

X  into a feature space.  

3. EVALUATION AND RESULTS 

3.1 Evaluation of IDIAP database 
To evaluate the KNMF_ID-based EEG feature extraction, a 

database from the BCI competition III provided by the IDIAP 

Research Institute (Silvia Chiappa, José del R. Millán) was 

used [12]. 

In this database, EEG data from three subjects was recorded 

during four non-feedback sessions. Each subject sat in a 

normal chair, rested and relaxed their arms on their legs, and 

performed the following three tasks.  

i. Imagine repetitive self-paced left-hand movements  

ii. Imagine repetitive self-paced right-hand movements  

iii. Generate words beginning with the same random letter 

Four 4-min sessions were conducted on the same day, with 5-

10 min breaks between each session. The subjects performed 

each task for approximately 15 s. The tasks were switched 

randomly between one another at the request of the operator.  

In this research, pre-computed signals from recorded EEG 

data were used, which were obtained as the power spectral 

density (PSD) in the 8–30 Hz band every 62.5 ms with a 2 Hz 

frequency resolution for eight EEG electrodes: C3, Cz, C4, 

CP1, CP2, P3, Pz, and P4. As a result, the number EEG 

sample dimensions is (8 channels)  (12 frequency 

components) = 96.  

For the BCI competition III, a discrimination of three classes, 

i, ii, and iii, is required. However, in our study we utilized this 

database for the discrimination of only two classes. 

Henceforth, class i and classes ii and iii will be called the 

target (class 1, described in section II) and non-target (class 2) 

classes, respectively. 

3.2 Preprocessing 

The training data matrix
96)21(R 

 nnX can be expressed as 

],....,,[ )()2()1( kPPPX  . 12)21()(

,

)( R][ 

 nnk

ft

k pP  is a 

spectral matrix in the -th electrode (k = 1, 2,…, 8). Time and 

frequency indices run over t = 1,...,(n1 + n2 = 10528), 

and }30,...,12,10,8{f . Before multiplicative update rules 

of (9) and (11) (or those of (20) and (21)) are performed, the 

spectral matrix is normalized as follows: 




f

k

ft

k

ftk

ft
P

P
P

)(

,

)(

,)(

,

.  (22) 

Test data matrix 
963504R 

testX  is also normalized by (22) 

before decomposition. 

3.3 Features and classifier 

To discriminate the target class from the non-target class, the 

liner discriminant (LD) classifier was adopted. The LD 

classifier was generated using features calculated as a 

maximum value every 0.5 s in each dimension of the source 



International Journal of Computer Applications (0975 – 8887)  

Volume 85 – No 7, January 2014 

4 

matrix trainingU , as other features, such as the mean, 

standard deviation, median, or minimum value, did not yield 

better results in comparison to the maximum value. For the 

test dataset, the features were calculated in the same manner 

as the training dataset, and the correct classification rate was 

then evaluated for each subject. 

3.4 Results 

Table 1 shows the classification accuracies obtained through 

two methods: the NMF without an applied constraint (NMF), 

the proposed NMF_ID, the KNMF without an applied 

constraint (KNMF) and the proposed KNMF_ID. 

Figures 1 and 2 illustrate the  )9696( UU T

 
matrices of 

subject 1 calculated by KNMF and KNMF_ID, respectively. 

Figures 1 (a) and 2 (a) show the matrices of the target classes, 

and Figures 1 (b) and 2 (b) depict those of the non-target 

classes. Figures 3 and 4 present the )9696( UU T

 
matrices of subject 1 computed by NMF and NMF_ID, 

respectively. The colors shown in Figures 1 through 4 

represent the energy intensity; brown indicates higher energy, 

whereas blue indicates lower energy.  

 

Figure 1: )9696( UU T  matrices of subject 1 obtained by KNMF: (a) target; (b) non-target, 913.0)(/)( 2211 UUtrUUtr TT  

 

 

Figure 2: )9696( UU T  matrices of subject 1 obtained by KNMF_ID: (a) target; (b) non-target, 788.0)(/)( 2211 UUtrUUtr TT  
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Figure 3: )9696( UU T  matrices of subject 1 obtained by NMF: (a) target; (b) non-target, 939.0)(/)( 2211 UUtrUUtr TT

 

 

Figure 4: )9696( UU T  matrices of subject 1 obtained by NMF_ID: (a) target; (b) non-target, 0.7895)(/)( 2211 UUtrUUtr TT  

4. DISCUSSION 
NMF algorithms are a more effective than algorithms that 

have been previously proposed for the extraction and 

classification of spectral EEG features. The goal of this 

research was to effectively discriminate two classes 

characterized by motor imagery EEG spectrums, and to 

improve conventional NMF algorithms using a constraint that 

maximizes the difference between the spectral energies of 

both classes. Of the several NMF algorithms, NMF and 

KNMF were the focus of this research. 

 As shown in Table 1, the classification accuracy yielded 

through NMF_ID was approximately 75% on average, which 

was 7% higher than that of normal NMF. It should be noted 

that this accuracy was also higher than that of normal KNMF. 

This result indicates the effectiveness of the proposed 

constraint, as previous research [7] shows that KNMF is 

superior to NMF for EEG feature extraction.  Additionally, 

the classification accuracy obtained by KNMF_ID was 

approximately 78% on average, which was 4% higher than 

those obtained by KNMF without a constraint. 

  Figures 1 and 2 show that KNMF_ID results in higher 

energies for the decomposed source matrices of both the 

target and non-target classes compared to KNMF without a 

constraint. However, the ratio between the trace of source 

matrices 11 UU T
 and 22UU T

 show that KNMF_ID can 

increase the difference between the energies of the 

decomposed source matrices of the two classes compared to 

KNMF without a constraint. While, in Figures 3 and 4, though 

NMF_ID also increases energies for the decomposed source 

matrices of both the target and non-target classes compared to 

NMF without a constraint, the effectiveness of the proposed 

constraint in NMF is visually clearer than that of KNMF.  

NMF_ID also descended the energy ratio between the trace of 

source matrices 11 UU T
 and 22UU T

 at the same level as 

KNMF_ID.  

From these results, an increase in the energy difference 

between the two classes can be expected to contribute to a 

more accurate classification of motor imagery EEG spectrums. 

The influence of the constraint was verified in both NMF and 

KNMF, and it can be concluded that KNMF_ID was superior 

to NMF_ID in respect to classification accuracy. In future 
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work, the contribution of proposed constraint will be 

evaluated further using simulated data and other databases. 

 

 

 

 

 

 

 

5. CONCLUSION 
This study presented NMF and KNMF algorithms with 

effective constraints used to classify motor imagery EEG data. 

The constraint was added to improve the discriminability 

between two classes during motor imagery tasks. A linear 

discriminant classifier was used to discriminate the two 

classes, and the IDIAP database was used to evaluate the 

proposed constraints,. After the source matrices were 

computed using NMF_ID and KNMF_ID, the energy 

differences between the source matrices of the target and non-

target classes were actually increased. As a result, the 

classification accuracies obtained by the proposed methods 

were higher than those of NMF and KNMF without a 

constraint. This indicated that the constraint effectively 

increased the discriminability between two classes.  
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Table 1. Classification  accuracies 

Method Subject1 Subject2 Subject3 Average 

NMF 71.00 66.82 66.06 67.96 

NMF_ID 78.54 75.58 69.50 74.54 

KNMF 83.10 74.42 65.60 74.37 

KNMF_ID 85.37 77.19 71.33 77.96 
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