
International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2014

19

Object Persistence Techniques - A Study of Approaches,

Benefits, Limits and Challenges

Clarence J M Tauro
Deparment of Computer

Science
Christ University, Bangalore,

India

Ritesh Kumar Sahai
Department of Computer

Science
Christ University, Bangalore,

India

Sandhya Rani A.
Department of Computer

Science
Christ University, Bangalore,

India

ABSTRACT
Object-Oriented paradigm becomes pioneer and best choice

while selecting language and writing software solution. In last

few decades there was significant change observed in

developing software solutions. Most of the application

developers prefer the object oriented model to exploit its

benefits. The major benefit we can obtain from Object-

Orientation is of course object itself and the feature that

enable us making an object persistent. Object-Persistence

feature contributes a major role in designing data model. If the

techniques used for Object-Persistence are designed correctly

then, we can obtain major benefits in the areas of software

productivity, maintainability and cost reduction. There are

many ways of implementing Object-Persistence among which

Gateway-based method, Object-Relational database method

and Object-Oriented database method are the three major

categories.

In this paper, we discuss about the characteristics of various

Object-Persistence techniques, the relevant areas in which

those techniques can be employed efficiently and how those

techniques can be used effectively on the basis of application

characteristics and requirements. We also discuss about the

benefits and limitations of persistence techniques. Further, our

discussion continues on various challenges that come along

the way of Object-Persistence and possible solutions to handle

those challenges.

Keywords
Object-Persistence; Gateway-Based Object-Persistence;

Object-Oriented Database; Object-Relational Database; Data

Model; Data Access; Data Sharing

1 INTRODUCTION
Object-Oriented development is bottom-up approach, which

focus on data instead of procedures that manipulates the data.

Object-Orientation is an efficient, powerful, reliable and well-

known technique that mimics a network of real life processes,

scalable applications, tasks, and business rules of a domain.

An object present in a software application consumes some

amount of memory space and exists for a specific time. When

an object is being created by an application, the scope of

object is limited to the application life cycle. When the

application terminates, object’s life also terminates. The

reason is, object is being stored temporarily in main memory.

To keep object alive, application need to store the object in

persistence storage [1].

The concept of maintaining the state of an object is termed as

Object-Persistence. Object-Persistence refers to the concept of

saving the state of an object so that it can be restored and used

at a later time. An object that does not persist basically dies

when it goes out of scope [3]. A persistent object continues to

exist, even when the application that created or used the

object has finished execution.

In an application, persistence can be implemented in many

ways, and few of them [16] are listed below:

• Storing object in a simple text file

• Storing object in an indexed sequence access mechanism

• Storing object in relational database

• Storing in an Object-Oriented database

A very simple way is to use text file as storage. All required

information can be stored on file by doing file write operation.

This stored information can be retrieved when restore is

required by performing file read operation. This kind of

persistence mechanism might be good for small applications,

where limited information saving is required and information

does not change frequently. But, representing complex

information in a text file is very complicated. Lot of

development efforts will be wasted in maintaining this.

However text files are very flexible, easy to implement, can

be accessed by more than one program, but they are not object

friendly [5]. Object-Oriented programs exhibit various kinds

of relationships with other objects, for example inheritance

and references with other objects. The challenge here is how

we can represent and maintain the different kinds of

relationships on text file while saving the object.

Object-Persistence can also be implemented by another

mechanism in which relational databases are used for object

storage. This approach is most appropriate for storing

business data as it can be easily formatted into rows and

columns [16]. This mechanism can be a good choice when

application needs database related functionalities like,

transaction with rollback, record locking and indexing.

Databases are generally expensive; managing them is even

more difficult. Object-Oriented instances are basically

structured in hierarchal order and relational database

structured in tabular format. These are two different structures

and a difference in two structures is known as “impedance

mismatch” problem [6]. Due to these limitations of databases,

this mechanism is not a best solution.

Implementation mechanism for Object-Persistence can be

broadly classified into three categories. First one is the

gateway-based approach which adds Object-Oriented

programming access to persistent data stored using traditional

non Object-Oriented data stores. The second mechanism is the

Object-Relational DBMS approach which enhanced the

extremely popular relational data model by adding Object-

Oriented modeling features and the final mechanism is the

Object-Oriented DBMS approach which adds persistence

support to objects in an Object-Oriented programming

language. OODBMS approach is more appropriate for

unformatted and/or scientific information.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

20

2 PERSISTENCE OF OBJECT -

FUNDAMENTAL APPROACHES
Object-Oriented languages mainly focus on objects, object

state and their behavior. An object can be created, initialized,

accessed and manipulated by certain methods defined in class.

By default, the object created by a program is transient, and

object state is maintained till the program life. To maintain the

state of object beyond the program life, also called persistent

object, four approaches were identified and used widely in

applications, namely persistence by class, persistence by

creation, persistence by marking and persistence by

reachability.

2.1 Persistence by Class
The simple approach is to declare a class to be persistent.

Based on Object-Oriented property all objects that belong to

this class will become persistent. However this is not flexible,

as it is often required to have single class with both transient

and persistent objects [4]. Declaring a class to be persistent is

referred and interpreted as “persistable'' by many OODB

systems; objects belonging to the persistable class can be

made persistent.

2.2 Persistence by Creation
An object can be transient or persistent. To make an object

persistent new syntax has been introduced; by extending the

syntax that used for creating transient objects. The object is

persistent or transient decided by its creation.

2.3 Persistence by Marking
A different approach compare to persistent by class and

creation. In this approach we mark an object as persistent after

object creation process. All objects are created as transient

without any change in object creation, based on requirement;

an identified object can be marked explicitly as persistent

object. Marking should be done after object creation and

before program terminates.

2.4 Persistence by Reachability
In this approach selected objects are declared as persistent

objects, often referred as root. All other objects, which are

referred from this persistent object (root), directly or

indirectly also becomes persistent object. In other words all

objects referenced or reachable from root persistent objects

are persistent. Advantage of this approach is to make

complete data structure persistent by merely declaring the root

of this structure as persistent. However it is much expensive

to follow the chains in detection for a database system.

In an execution environment several objects will be created

and performing specified task. All objects in a system

communicate to other objects. The system state is defined by

considering all objects and the relationship among them.

Object pointers are used to express the relationship among

objects in an Object-Oriented environment. “PersisentPtr”

was introduced to keep track of the relationship between

persistent object even after the program termination [12].

3 OBJECT PERSISTENCE

TECHNIQUES – BENEFITS AND

LIMITATIONS
In recent development era, most of the application developers

prefer Object-Oriented models for implementing advance

applications and hence object oriented paradigm is globally

adopted now. As most applications are developed using object

oriented model, the usage of persistent data is also increasing

day by day. Due to this reason, there is a great demand to

focus on different Object-Persistence techniques in order to

develop more efficient object oriented applications.

There are three major techniques used for implementing

Object-Persistence namely Gateway-Based, Object-Relational

DBMS and Object-Oriented DBMS techniques. Each of these

techniques has their own advantages and limitations. So

selection of a best Object-Persistence technique clearly

depends on the type and nature of the application.

3.1 Gateway-Based Object-Persistence

(GOP)
The Gateway-Based Object-Persistence (GOP) approach is

featured by being both application and data-independent. This

approach is mainly followed in applications in which

traditional non-Object-Oriented data stores are used to store

data for an object.

This approach is a middleware solution that attempts to bridge

the gap between the Object-Oriented paradigm data model

and the “Non-Object-Oriented” data model used to store the

objects [7]. This category of Object-Persistence methodology

provides a kind of runtime mapping or translation between the

two models in a manner that is transparent to the programmer.

However, the application developer has to give more focus in

the process when non-trivial mappings between types in the

models have to be stated explicitly.

This approach widely supports when programmers wants to

use existing non-Object-Oriented data stores but write

applications using Object-Oriented programming models[8].

The data store schema that is used to store the persistent state

of the objects in the data store is different from the objects

having a different model (object-oriented) for an application

so the system which is adopting GOP approach performs a

mapping between both Object-Oriented schema and non-

Object-Oriented data store schema [9]. During the execution

time of application, the GOP system translates objects from

the representation used in the data store to the representation

used in the application and vice versa. Table 1 explains the

advantages and limitations of Gateway-Based Object-

Persistence methodology.

The Object Management Group (OMG) develops the standard

activities which are relevant to GOP. The most important

specification OMG has adopted is CORBA (Common Object

Request Broker Architecture). Other than CORBA, Persistent

Object Service, Object Query Service, Object Relationships

Service, Object Transaction Service, and Object Security

Services are the specifications which are adopted by OMG

which directly relates to Object-Persistence.

Other than accessing and updating data in legacy databases, a

GOP application can also access other OODBMSs and even it

can store complex data objects natively in them. But, there are

some issues and challenges with this feature and efforts are

being carried out by the experts in resolving those issues.

Integration of Object-Persistence with object query, object

transaction and workflow, and object security are some of the

issues which are related to GOP approach.

Table 1. Gateway-Based Object Persistence

Benefits Limitations

 GOP provides Object-

Oriented access to legacy

applications as well as

non-Object-Oriented data.

 It maps Object-Oriented

models blindly to non-

Object-Oriented databases

because it gives bad

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

21

Benefits Limitations

 Supports and manage

shared, distributed,

heterogeneous, and

language-neutral

persistent business

objects.

 Helps to integrate

enterprise information

systems and provide a

common framework for

developing Object-

Oriented software

solutions.

 Developing a common

GOP application that

legacy applications

continue to work on data

that are also accessed by

newer applications.

 Developing solutions that

have an overwhelming

need to access legacy data

and heterogeneous data

access, while allowing

legacy applications to

continue to work on the

legacy data.

performance and complex

application logic.

 Lacks in handling

randomly and arbitrarily

complex objects in a

legacy database system.

There are many systems available which are evolved as the

applications of GOP approach namely VisualAge C++ Data

Access Builder, SMRC, ObjectStore Gateway, Persistence,

UniSQL/M, Gemstone/Gateway and Subtleware/SQL.

3.1.1 Object-Relational DBMSs (ORDBMSs)
The Object-Relational DBMS persistence (ORDBMS)

method is a bottom-up approach which is characterized by

being data oriented. In most of the today’s database

applications, the relational model is very extensively used and

SQL is already considered as a global standard. ORDBMSs

mainly supports for object oriented data modeling by

incorporating both the relational data model and the query

language. At the same time it retains the already successful

technology like SQL of a relational DBMS relatively intact.

This type of persistence methodology attempts to build on, or

extend, the existing relational data model to work with

objects. The RDBMS has a standard query language to

expand, implemented by successful vendors and it has been

extremely successful in business related applications [7].

RDBMS persistence depends on a persistence delegate, code

that hides or abstracts the details of object and table while

maintaining table concurrency [13].

By the extension of the SOL standard, the standards activities

are carried out on this area. X3H2 which is the American

committee responsible for the specification of the SQL

standard has been continuously working on object extensions

to SQL. In the new draft of the SQL standard named SQL3,

these object extensions have been included. Currently, the

SQL3 standard is an ongoing attempt to build standard

extensions to the query language and relational model. Table

2 lists the advantages and limitations of Object-Relational

DBMSs Persistence methodology.

There are two different categories of ORDBMS applications

available. The first category of ORDBMS applications are

those that have been implemented from scratch which include

Illustra and UniSQL. The second categories of ORDBMS

applications are those that are implemented by extending the

existing relational DBMSs which include DB2, Informix,

Oracle, and Sybase.

Table 2. Object-Relational DBMS

Benefits Limitations

 Very effective in

developing applications

that requires extremely

good query support,

excellent security,

integrity, concurrency and

robustness, and high

transaction rates.

 It extends the applications

and use of existing,

legacy data stored in

relational databases.

 ORDBMS addresses the

mismatch and

performance issues while

accessing relational data

from an Object-Oriented

programming language.

 Limited focus and only

concentrate on data stored

in relational databases or

whatever in the future can

be stored in extended

relational databases.

3.2 Object-Oriented DBMSs (OODBMSs)
The OODBMSs are normally referred as persistent

programming language systems as they have their core

platform in Object-Oriented programming languages. Object-

Oriented DBMSs methodology is a top-down approach which

is characterized by being application or programming

language centric. Table 3 describes the advantage and

limitations of Object-Oriented DBMSs.

“Extended database” and “Persistent programming language”

are the two available methods for creation of an Object-

Oriented database [4]. The functionality of extended database

method is to add the concepts of object orientation to existing

Object-Oriented language. The functionality of persistent

programming languages method is to inherit the features of

existing Object-Oriented languages and to extend the features

to deal with databases by adding persistence and collections

technologies.

The OODBMS provides an effective methodology to add

persistence to objects so that they can be used in an Object-

Oriented programming language (OOPL) like C++ or

Smalltalk.

The Object Database Management Group (ODMG)

consortium which is formed of OODBMS vendors specifies

the standard activities for OODBMSs. ODMG has specified

the ODMG-93 standard which defines an Object Definition

Language (ODL), an Object Query Language (OQL), C++

and Smalltalk language mappings to ODL and OQL.

Object-Oriented DBMSs support for persistent objects from

more than one programming language, advanced transaction

models, schema evolution, distribution of data, versions and

dynamic generation of new types. Among these features, few

of them have less impact on the object orientation but still,

Object-Oriented DBMSs includes them in their systems and

applications. Gemstone, Objectivity/DB, ObjectStore, Ontos,

O2, Itasca and Matisse are some of the Object-Oriented

DBMSs which are available.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

22

Table 3. Object-Oriented DBMS

Benefits Limitations

 OODBMS models allow

excellent support for

managing complex objects

and encapsulation, real-time

systems that need to handle

large and complex

applications would require an

object oriented approach

[14].

 Object-Oriented databases

are very useful for

applications that need

excellent navigational

performance.

 Object-Oriented model

allows storing application

objects, e.g., presentation or

view objects.

 An object-oriented based

database provides seamless

persistence from a

programming language point

of view.

 OODBMS provides

extensive support for the data

modeling features of one or

more Object-Oriented

programming languages,

which avoids mismatch

issues.

 Object-Oriented

databases lacks in

providing good query

facility as provided by

ORDBMSs.

 Object-Oriented

database is not much

efficient, the

transaction rates

supported by it do not

yet approach the high

rates achieved by

relational databases on

standard transaction

processing

benchmarks.

4 APPLICATION CHARACTERISTICS

AND REQUIREMENTS
This section describes about the various Object-Oriented

applications requirements, their usage, behavior and

characteristics. It also explains how these characteristics and

requirements are implemented by different Object-Persistence

methodologies. On a broader perspective, we have classified

the characteristics as data modeling, data access and data

sharing characteristics. The below section discusses all these

characteristics in detail.

4.1 Data Modeling Characteristics
A data model is a group of conceptual tools for describing

data, data semantics, data relationships and consistency

constraints. The Object-Oriented data model extends the

representation of entities by adding basic object oriented

elements such as encapsulation, methods and object identity.

Table 4. Data Modeling Characteristics [8]

Feature

Object-Persistence Approaches

Gateway-

Based Object-

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Managemen

t System

(OODBMS)

Complex

Objects

(objects

containing

non-first-

Can be

supported

using schema

mapping

Supported by

extensions to

the relational

data model

Supported

Feature

Object-Persistence Approaches

Gateway-

Based Object-

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Managemen

t System

(OODBMS)

normal form

data)

Composite

Objects

(grouping of

objects for

copying,

deleting, etc.)

Can be

supported

using schema

mapping(how

ever, there can

be limitations)

Starting to

provide

support

through a

combination of

triggers,

abstract data

types, and

collection

types

Supported

using class

libraries

Object

Identity

(OID)

Support

limited by

underlying

database

Starting to

provide

support

through row

identification

Supported

Encapsulation Supported at

application

but not at

database

To be

supported

using abstract

data types

(row objects

will remain

un-

encapsulated)

Supported

(but broken

for queries)

Relationships Can be

supported

using schema

mapping and

code

generation

Strong support

available

including

referential

integrity

Supported

using class

libraries

Method

overriding,

overloading,

and

dynamic

dispatching

Supported as

in an OOPL

Supported

(method

dispatching is

based on the

generic

function model

not the

classical object

model)

Supported as

in an OOPL

Inheritance Can be

supported

using schema

mapping

(however,

there can be

technical

limitations)

To be

supported

(separate

inheritance

hierarchies for

tables and

abstract data

types)

Supported as

in an object

oriented

programmin

g language

(OOPL)

The Object-Relational data model combines features of the

Object-Oriented data model and the relational data model.

The Object-Relational data model extends the relational data

model by providing a richer type system including object

orientation and collection types.

4.1.1 Complex Object
A Complex object is something that can be viewed as a single

thing in the real world but it actually consists of many sub-

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

23

objects. These sub-objects are actually the attributes of the

complex object.

There are two types of complex object. The first types of

complex objects are unstructured, difficult to determine the

structure and require a large amount of storage. Examples of

this type of complex object include Binary Large Objects

(BLOB). The second types of complex objects have a clear

structure and the sub-objects are said to be in a part-of

relationship. For example, region objects are complex

application objects that are frequently used in GIS

applications.

4.1.2 Composite Object
A composite object is a group of related objects that can be

processed in a single transaction. In a composite object, fields

that reference other objects can be used to manipulate the

dependent objects at the same time as the original object.

With this, transactional safety can be assured, since either the

entire transaction succeeds or if it fails the system state

remains same as if the transaction never started. Table 4

compares the three approaches under various data modeling

parameters.

4.1.3 Object Identity
Object identity is normally implemented using a unique,

system-generated Object ID called OID. The value of the OID

is not visible to the external user, but is used by the system

internally in order to identify each object uniquely and to

create and manage inter-object references. Even though there

is a change in some or all of the values of variables or

definitions of methods over a period of time, an object retains

its identity.

4.1.4 Encapsulation
An object hiding its attributes behind its operations is termed

as encapsulation. Encapsulation is most often achieved

through information hiding (not just data hiding), which is the

process of hiding all the secrets of an object that do not

contribute to its essential characteristics [2].

4.1.5 Relationships
The relationship between any two objects encompasses the

assumptions that each makes about the other, including what

operations can be performed and what behavior results [2].

4.1.6 Method Overriding, Overloading and

Dynamic Dispatching
In GOP systems, methods are not stored in the database and

hence they are executed only using the object representation

of the data. Where as in the case of ORDBMSs, both methods

and data can be stored within the database and hence they are

able to dispatch methods on objects within the DBMS server.

In OODBMS systems, normally methods are executed at the

client environment and hence most systems do not store

methods in the database.

4.1.7 Inheritance
Inheritance is one of the object oriented concept that when a

class of object is defined, any subclass that is defined can

inherit the definitions of one or more general classes. The

objective of arranging objects in a hierarchy of classes is to

share properties of the objects in a useful, economical and

meaningful ways through inheritance [10].

4.2 Data Sharing Characteristics
This section describes about how the various Object-

Persistence methods provide data sharing support for

applications. It describes how sharing of data takes place

between concurrent users, how crash recovery is performed,

details about advanced transaction models like long

transactions, versioning and nested transactions.

4.2.1 Crash Recovery
A GOP system does not provide a very strong support on

crash recovery feature but, it is able to provide whatever

support is available in the underlying data store. On the other

hand, ORDBMSs are strong in this area since these systems

extend relation DBMSs. OODBMS systems do provide

recovery support but it is not much robust in this area.

Table 5. Data Sharing Characteristics [8]

Feature

Object-Persistence Approaches

Gateway-

Based Object-

Persistence

(GOP)

Object-

Relational

Database

Managemen

t System

(OR

DBMS)

Object-

Oriented

Database

Management

System

(OODBMS)

Crash

recovery

Recovery

handled by the

backend data

store (cache is

not recovered)

Strongly

supported

Supported

(degree of

support varies

with

individual

product)

ACID

transactions

Support limited

by the

underlying data

store

(cache

management

might cause

complications)

Supported

Supported

Security,

views, and

integrity

Support

determined by

the

underlying data

store

Strongly

supported

Limited

support

Advanced

transaction

model

No support

No support Supported in

some products

4.2.2 ACID Transactions
ACID stands for atomicity, consistency, isolation, and

durability. GOP System provides limited support for ACID

transactions since the object cache maintained at the

application is loosely coupled to the DBMS. ORDBMSs

support all the traditional lock types available in relational

DBMS like tuple, page, and table locks. OODBMSs support

the conventional type of ACID transactions and also they

support various types of locking. The standard lock types are

page locks and object locks which are also known as record

locks in RDBMSs [8].

4.2.3 Security, Views, and Integrity
ORDBMSs guarantee that the entire application executes in

its own address space and it exhibits an effective security

mechanism by using the view mechanism. An OODBMS

system allows clients to cache data for acceptable

performance by using the page server concept.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

24

4.2.4 Advanced Transaction Models
GOP and ORDBMS approaches does not support advanced

transaction model very well whereas OODBMSs approach

provides better support for advanced transaction model. Table

5 shows the comparisons among GOP, ORDBMS and

OODBMS methods with respect to data sharing

characteristics.

4.3 Data Access Characteristics
This section explains about different data access features that

are exhibit from various Object-Persistence methodologies. It

describes how application objects are created and stored, in

what way it provides support for navigational and ad hoc

query types of access to persistent data, how interaction takes

place between client and server and the support characteristics

for schema evolution and integrity constraints.

4.3.1 Schema Evolution
There are two different phases involved in the Schema

evolution. The initial phase involves schema change and the

second phase involves modification and development of the

existing data to their new representation based on the

modified schema.

A GOP system provides a very limited support for schema

evolution. In contrast, an ORDBMS system can provide a

strong support for schema evolution of table definitions. An

OODBMS system can also provide support for schema

evolution but since the data model is complex, the schema

evolution in an OODBMS cannot be completely automated as

in case of a relational DBMS. Table 6 shows data access

comparisons among GOP, ORDBMS and OODBMS

methodologies.

4.3.2 Persistent Data Creation and Access
Persistence feature can be added to an object by following any

of the two major methods; one method is by overloading the

new operator and the other method is by inheriting a common

class whose definition and implementation part is provided by

the database system.

Accessing of persistence data can be made virtually

transparent to the application in all three Object-Persistence

methodologies. However, data updating is not transparent in a

GOP system and hence the underlying application has to

inform the GOP system whenever there is a change in the

object state. In an ORDBMS system, updates are performed

using a separate UPDATE statement and hence they are non-

transparent. The extent of transparency varies in the

OODBMS systems; in some cases, updates can be made

completely transparent where as in others, updates needs to be

explicitly specified by the application.

4.3.3 Triggers and Integrity Constraints
A GOP system cannot provide support for triggers and

integrity constraints. An ORDBMS system can provide

excellent support for and integrity constraints. OODBMSs

cannot virtually provide support for triggers and integrity

constraints.

4.3.4 Navigation
In GOP systems, navigation feature is supported by mapping

object accesses to the databases where the data is stored. In

case of OODBMS systems, the applications require fast

navigational access. For example, in an integrated circuit

application, the verification and routing requires fast access to

component objects since it is an extremely CPU-intensive

operation. In order to provide extremely fast navigational

access to data, OODBMS systems makes use of operating

system support for page faulting.

Table 6. Data Access Characteristics [8]

Feature

Object-Persistence Approaches

Gateway-Based

Object-

Persistence

(GOP)

Object-

Relational

Database

Management

System (OR

DBMS)

Object-

Oriented

Database

Management

System

(OODBMS)

Schema

evolution

Limited

support

(complete

support might

be difficult to

provide)

Supported Supported

Persistent

data

creation and

access

Supported

(might not be

entirely

transparent to

the application)

Supported

(not

transparent

since

application

always has to

take explicit

action)

Supported

(degree of

transparency

depends on

individual

product)

Triggers

and

Integrity

constraints

No support Strongly

supported

No support

Navigation Can be

supported by

transparently

mapping object

accesses to

underlying

database

operations (pre-

fetching/cachin

g needed for

good

performance)

Currently

supported by

joins (to be

supported

efficiently

using row

identification

)

Supported

efficiently by

most products

Ad hoc

query

facility

Supported

using data store

specific query

language (not

integrated well

with object

representation)

Excellent

support

(impedance

mismatch

remains an

issue)

Supported but

with

limitations

Object

server vs.

page server

Object server Object server Can be page

server or

object server

4.3.5 Ad-hoc Query Facility
A GOP system normally does not implement a new query

language on the object representation. In this system, the

query works on the base data model which is non-Object-

Oriented and fails to work well with the application object

model; this creates impedance mismatch problem [8]. In

contrast, an ORDBMS system supports queries in a most

efficient manner and performs well with the optimization and

index management. In an OODBMS system, the support of

query language is an extension of the Object-Oriented

programming language.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

25

4.3.6 Object Server Vs Page Server
In a normal client-server environment, both client and server

need to work on the assigned loads or the tasks. Hence, a

database management system has to utilize the available

resources of client and the server in an efficient way. Queries

are issued to an object server in order to request for a single

object or a group of objects. GOP and ORDBMSs systems

can be considered as object servers, where as an OODBMS

system can be both object and page server. ObjectStore and

O2 are few examples of page server architectures.

5 EMERGING CHALLENGES

5.1 Close Language Binding
There is a layer between database and the application using

the database for storage in the traditional relational systems.

Data is transient when it is available in application’s memory

and persistent when it is stored in database. The application

program often required to perform read and write operation on

database elements. However this separation is not present on

Object-Oriented database, application program manage

persistent as well transient data in similar way. In OODBMS

any kind of data can be persistent and same methods can be

used to perform operations on persistent as well as transient

data. Also, it offers the object to be retrieved identically

regardless of location. There are various approaches to

implement Object-Persistence (discussed above in section 2)

and a best way to achieve this by using "persistence by

reachability" [15]. The language interface for OODBMS

offers mechanisms to define and open databases, commit or

abort transactions, acquire locks, and accessing data within

database, and it does not require any additional overheads and

constructors. If an object has not been retrieved from the

database yet, in such cases the program does not need to do

any additional operations. The underlying database system

will automatically recognize the situation and retrieve the

object [15].

5.2 Unified Development Process
Close language binding offers scalability and design

flexibility that simplifies the lives of system analysts and

designers. The good point of Object-Oriented DBMS is that it

supports object oriented language and applies the object-

orientation concept in database as well. Object-Oriented

DBMS follows semantically same concept like Object-

Oriented modeling and design, Object-Oriented analysis, and

Object-Oriented languages allowing a unified conceptual

approach during the whole development cycle. Unified

approach has big advantage that it simplifies development and

eases the communication between users, analysts, and

developers. However in Object-Relational DBMS, the

relational database objects have to be mapped to tables. This

required some amount of time to create the relational tables

and views, and it is also complicated to keep up the model

with changes in the physical implementation. All this leads

complexity in applications as well as creates difficulty to

maintain the database. Object-Oriented database do not

required semantic transformations as the same underlying

object model is used during the whole development process.

This unified approach offers higher quality systems that are

flexible, scalable and easier to maintain [15].

5.3 High-Level Functional Requirements
In persistent Object-Oriented systems, following issues

require critical attention [17]:

• The uniform interfaces need to be independent from data

store type (JDBC, LDAP and some other interfaces, such as

Informix early-times proprietary Java Object Interface, were

important to deal with).

• Data store connection management – establishment, closing,

transactions; persistent object lifecycle – creation, read,

update, and delete (CRUD) operations.

• Mass creation of objects, data stores usage of them or their

attributes (e.g. search operations). In distributed object

environments, it is important to balance the load of database

operations.

5.4 Object-Relational Impedance

Mismatch
The Object-Oriented paradigm is efficient, capable and well

known in application development. Object-orientation is

based on proven software engineering principles. However the

relational paradigm is based on proven mathematical

principles. Both are having different structure and because

the underlying paradigms are different, the two technologies

do not work together seamlessly. The impedance mismatch

becomes clearly visible when we look at the preferred

approach to access; by using the object paradigm you traverse

objects via their relationships whereas with the relational

paradigm we join the data rows of tables. This fundamental

difference in the structure results in a non-ideal combination

of object and relational technologies. Following are

challenges of storing objects in relational database [16].

• Mapping Object-Oriented classes to relational tables

• Inheritance relationship and relational tables

• Mapping association in relational tables

• Multiplicity, association class and link table

• Mapping aggregation-composition and shared aggregation

• Shared aggregation and reference table

5.5 Transparency and Object-Fault
Persistent of object should be independent of how application

program modified and manipulates that object. Persistence

independence, also referred as transparency, requires that it is

indistinguishable whether programming code is operating on

persistent or transient data [10]. Persistence independence is

achieved by combining the features of reachability-based

identification with an object-faulting mechanism. The notion

of object fault [11] is similar to the notion of page fault in the

context of demand-paging virtual memory.

5.6 Serialization
Simple arrays and hashes can be represented and written on

file using commas, tabs, spaces or user defined format.

Complex and nested data structures such as arrays of arrays or

arrays of hashes have to lower down or serialized before

writing into file. Also data items can be of global type and

may contain references to other data items or pointers to

native “C” data structure.

5.6.1 Object Storage Problem
In persistence by reachability mechanism, persistence can be

defined as a network of persistent objects whose root is

serializable. In other words, any object that a persistent object

can touch automatically becomes persistent and thus a

member of the network. In Java execution environment,

during storage time, all the objects are converted in the

network to a byte stream for storage in a flat file. The

restriction of serialization stem from the fact that an

individual object cannot be modified and the entire network of

objects must be accessed as a whole. There is overhead that

each time a member of the object network is stored, the entire

byte stream that contains all objects in the network has to be

serialized and stored. The opposite procedure occurs each

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

26

time a persistent object is accessed. A multi-user enterprise

application requires fundamental database capabilities, like

transaction and queries, however object serialization lacking

in this area. In general we can say serialization is inadequate

for robust application development. However ODMG binding

for Java provides a good alternative for persistent object

development with Java [18].

5.7 Data Source Related Issues
JDBC provides standard for communication between Java

based application and relational database. Several frameworks

have been designed with the focus on independence from data

store type, however still JDBC-compliant data stores captured

the popularity and most of attention and efforts. JDBC itself is

quite convenient and simple set of interfaces, the actual

implementations tend to deviate from the standard by

providing proprietary extensions in some cases or postponing

certain important implementations like metadata until better

times [17]. This resulted into tough job for balancing between

proprietary vendor extensions usage and the complexity

involved in encapsulating the differences into application

abstractions. Metadata, mappings of SQL data types to JDBC

data types, processing of BLOB/CLOB data and unique

incremental Id’s were some of the concerns in this area.

5.8 Versioning Issues
Sometimes with change in application requirement, class

definitions for all objects change over time, and that requires

attention to deal with versioning objects. The serialization

mechanism may have read in out dated objects, whose

structure has been modified and different from current version

of the class it belongs to. The possible cases that may occur

should to be outlined and well defined in serialization

specifications. A major change to an object, or changes in its

location in a hierarchy, requires the developers to manually

convert the out-of-date objects, in some cases this can be

handled automatically or nearly so [5].

5.9 Concurrency Control
In recent development, concurrency control becomes basic

need for scalable applications, which allows multiple users to

access the data storage at the same time. Effective and

efficient concurrency control mechanism enables guaranteed

data integrity, and consistent information received by users. In

real time execution environment, different applications or

users may want concurrent access to persistent data stores,

such as file or database. Few systems ignore concurrency

issue altogether; others offer different types of locking

schemes.

5.10 Boundaries
Traditional and ordinary files are based on byte stream and

generally they do not provide any limitation and restriction on

boundaries. File users need to decide how to represent distinct

data item on file and make them recognizable on disk so that

they can be retrieved easily. Indexed Sequential Access

Method (ISAM) and DBM systems are based on Record-

Oriented structure and RDBMS provides record and column

boundaries. It is always good to have well defined data

structure, slotted in grid structure else “impedance mismatch”

will occur. Latest solutions, such as OR-DBMS and OO-

DBMS, attempt to make this "restriction" or "failure" a non-

issue.

5.11 Security Issues
Security is a big concern when a serialized object traveling

across the internet through sockets or network

communication. This serialized object can be read by

unintended parties, or may be tampered and modified while in

transit. To prevent the data from being written when the

object is serialized; sensitive data, such as socket file

descriptors, or other handles to system resources, should be

made private as well transient. Also when the object is

retrieved back from a stream, only the originating class can

assign a value to the private data field. A validation method

can also be used to check the integrity of a group of objects

when they are retrieved from a stream.

To avoid security problems, the efficient way is to encrypt the

serialization stream, ensuring both privacy and integrity. To

achieve this, customized readObject and writeObject methods

can be implemented, or can be achieved by using the

Externalizable. For a global application, ObjectInputStream

and ObjectOutputStream class can be customized to encrypt

the entire object stream [5].

5.12 Machine independence
During computation operation files are being created in

different systems and on different type of machines. These

files are being used by other systems with different type of

machines. This requires continuous tracking of differences in

size and byte order of integer, and floating-point

representation.

6 CONCLUSION
In this paper we have discussed the different Object-

Persistence techniques, advantages and limitations of each of

these techniques. Our discussion continued further on the

characteristics and requirements of applications; and how well

these features are supported by major category of Object-

Persistence techniques, such as GOP, ORDBMS and

OODBMS. Later we discussed more about the object

persistent challenges.

Gateway-based technique basically uses traditional non-

Object-Oriented data stores, for example flat files, relational

and hierarchical databases. Gateway-based is middleware

approach and very good for providing a common framework

for building Object-Oriented applications and integrating

diversified enterprise information systems. It offers excellent

support for managing shared, distributed, heterogeneous, and

language neutral persistent business objects. GOP is having

disadvantage that it blindly maps Object-Oriented models to

non-Object-Oriented databases. It is most suitable for

applications that have critical need to access legacy and

heterogeneous data; while allowing legacy applications to

continue to work on legacy data.

Object-Relational technique involves improving the relational

data model by adding the Object-Oriented modeling features

to it. Object-Relational technique is a bottom-up approach and

very efficient for extending the usefulness of existing, legacy

data stored in relational databases. It addresses the mismatch

and performance issues while accessing relational data from

an Object-Oriented programming language. Object-Relational

techniques have the best robustness, concurrency, and crash

recovery characteristics among all three Object-Persistence

methods. The major drawback of Object-Relational technique

is that it concentrates only on data stored in relational

databases or whatever in the future can be stored in extended

relational databases. Object-Relational is very effective

technique in developing applications that requires extremely

good query support, excellent security, integrity, concurrency

and robustness, and high transaction rates.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 5, January 2014

27

Object-Oriented database adds persistence support to objects

in an Object-Oriented programming language. Object-

Oriented is a top-down approach and provides excellent

support for storing application objects, for example,

presentation or view objects. Object-Oriented databases are

best for providing seamless persistence, from a programming

language point of view. The good point about Object-Oriented

databases is that it avoids the impedance mismatch by

providing extensive support for the data modeling features.

On the negative side of Object-Oriented databases, it lacks in

providing good query facility as provided by Object-

Relational systems. OODBMS is suitable for applications that

need excellent navigational performance, that do not have

complex query, and that are prepared to sacrifice some

integrity and security for achieving good performance.

Object-Oriented databases are being preferred in modern trend

as it offers close language binding, unified development

process that helps developer a lot in development process.

All persistence techniques, including GOP, ORDBMS, and

OODBMS are having both advantages as well as limitations,

and they have their own positive and negative impact on

object data. Recent development trend shows that, all three

techniques are having some importance and they play major

roles for different application characteristics and

requirements. Object-Oriented database satisfies the needs of

specialized markets, so it is obvious to see the continued

presence of it. On the other side Object-Relational database

fulfill the needs of traditional commercial markets; Gateway-

based technique combined with object query, object

transaction and workflow, and object security, hence its

importance and existence is keep increasing. Effective and

efficient persistence technique selection is an important factor

and it clearly depends upon the application characteristics and

requirements. Based on requirements, an application

developer can choose best suitable Object-Persistence

technique for storing objects. Every Object-Persistence

technique has some associated challenges in it; there has been

a continuous effort carried out in addressing those challenges

and already many solutions exists in the object storage field.

7 REFERENCES
[1] Clarence J M Tauro, N Ganesan, Ritesh Kumar Sahai

and Sandhya Rani A., Comparative Study on Object

Persistence Methods. International Journal of Computer

Applications 42(7):17-, March 2012. Published by

Foundation of Computer Science, New York, USA

[2] C. Booch, Object-Oriented Analysis and Design with

Applications, second edition, The Benjamin/Cummings

Publishing Company, Redwood City, CA (1994).

[3] Matt Weisfeld, The Object-Oriented Thought Process,

Third Edition 3ed.Sep.2008

[4] Silberschatz−Korth−Sudarshan: Database System

Concepts, Fourth Edition, 2001

[5] Jim Coker, Object Persistence and Distribution,

http://java.sun.com/developer/technicalArticles/RMI/Obj

ectPersist/index.html, Feb 1997.

[6] Scott W. Ambler, Impedance Mismatch,

http://www.agiledata.org /essays/

impedanceMismatch.html , 2005

[7] Raffi Khatchadourian, Object Databases: an Analytical

Approach, http://www.cse.ohio-

state.edu/~khatchad/reports/ khatchad-objdb.pdf, 2006

[8] V. Srinivasan and D. T Chang, "Object persistence in

Object-Oriented applications, " IBM Systems Journal,

vol. 36, pp. 66–87, 1997

[9] Patrik Hildenborg, Muhammad Irfan Tahir, Object

Persistence: Persistence approaches in object oriented

environment, http://www.idt.mdh.se/kurser/cd5130/

 msl/2005lp4/downloads/reports/ object_persistence.pdf

[10] Ashrafuzzaman, M.; Kusalik, A.J., An implementation

architecture for orthogonally persistent deductive Object-

Oriented database systems, Database Engineering and

Applications, 1999. IDEAS '99. International

Symposium Proceedings

[11] S. J. White and D. J. DeWitt. A performance study of

alternative object faulting and pointer swizzling

strategies. In L.-Y. Yuan, editor, International

Conference on Very Large Databases, number 18,

pages 419–431, Vancouver, Canada, August 23-27,

1992.

[12] Vogelsang, H.; Brinkschulte, U.; Stormanolakis,

M.;,Archiving system states by persistent objects,

Engineering of Computer-Based Systems, 1996.

[13] Richard T. Baldwin,"Views, Objects, and Persistence for

Accessing a High Volume Global Data Set", Proceedings

20th IEEE/11th NASA Goddard Conference on Mass

Storage Systems and Technologies, 2003 , Page(s): 77 -

81

[14] Juhnyoung Lee, Sang H. Son, Myung-Joon Lee, Issues in

Developing Object-Oriented Database Systems for Real-

Time Applications, Proceedings of the IEEE Workshop

on Real-Time Applications, 1994. On page(s): 136 - 140

[15] Richard G. Gibson, Object Oriented Technologies:

Opportunities and Challenges, Idea Group Publishing,

1999, Page: 47

[16] Bhuvan Unhelkar, Practical Object Oriented Design,

Thomson Social Press, 2005

[17] Adomas Svirskas, Jurgita Sakalauskaite, An Approach

for Solving Java Object Persistence Issues using RDBMS

and other Data Sources.

[18] Douglas Barry, Solving the Java Object Storage Problem,

0018-9162/1998 IEEE

IJCATM : www.ijcaonline.org

