Weakly (πp, μ_y) – Continuous Functions on Generalized Topological Spaces

C.Janaki

Asst. Professor Dept. of Mathematics L.R.G. Govt. Arts College for Women Tirupur-4, India

ABSTRACT

This paper introduces and study a class of function namely weakly $(\pi p, \mu_y)$ – continuous functions. Some characterizations and properties concerning weakly $(\pi p, \mu_y)$ – continuous functions are obtained.

2000 Mathematics subject classification: 54A05

Keywords: Weakly $(\pi p, \mu y)$ - continuous functions, πp -closed space. πp -Frontier, πp -closed space.

1. INTRODUCTION AND PRELIMINARIES

In 2002, Á.Császár [5] introduced the notions of generalized topology and many authors [9, 10] have studied various types of continuity using weak forms of open sets in generalized topological spaces.

In this paper the weakly $(\pi p, \mu_y)$ – continuous function is introduced and studied. Moreover basic properties and preservation theorems of weakly $(\pi p, \mu_y)$ - continuous functions are investigated and the relationships between weakly $(\pi p, \mu_y)$ – continuous function and graphs are also investigated.

We recall some basic concepts and results.

Let X be a nonempty set and let exp(X) be the power set of X. $\mu \subset exp(X)$ is called a generalized topology [5](briefly, GT) on X, if $\emptyset \in \mu$ and unions of elements of μ belong to μ . The pair (X, μ) is called a generalized topological space (briefly, GTS). The elements of μ are called μ -open subsets of X and the complements are called μ -closed sets. If (X, μ) is a GTS and A \subseteq X, then the interior of (denoted by $i_{\mu}(A)$) is the union of all G \subseteq A, G \in μ and the closure of A (denoted by $c_{\mu}(A)$) is the intersection of all μ -closed sets containing A. Note that $c_{\mu}(A) = X - i_{\mu}(X-A)$ and $i_{\mu}(A) = X - c_{\mu}(X-A)$ [5].

Definition 1.1[6] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be

- (i) μ semi open if $A \subseteq c_{\mu}(i_{\mu}(A))$.
- (ii) μ pre open if $A \subseteq i_{\mu}(c_{\mu}(A))$.
- (iii) μ - α -open if $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$.
- (iv) μ - β -open if A $\subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$.
- (v) μ -r-open[11] if $A = i_{\mu}(c_{\mu}(A))$
- (vi) μ -r α -open[2] if there is a μ -r-open set U such that $U \subset A \subset c_{\alpha}(U)$.

K.Binoy Balan Asst. Professor Dept. of Mathematics Ahalia School of Engineering & Technology Palakkad-678557, India

Definition 1.2 [2] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be μ - π r α closed set if $c_{\pi}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ -r α -open set. The complement of μ - π r α closed set is said to be μ - π r α open set.

The complement of μ -semi open (μ -pre open, μ - α -open, μ - β -open, μ -ropen, μ -r α -open) set is called μ - semi closed (μ - pre closed, μ - α - closed, μ - β - closed, μ -r- closed, μ -r α -closed) set.

Let us denote the class of all μ -semi open sets, μ -pre open sets, μ - α -open sets, μ - β -open sets, and μ - π r α open sets on X by $\sigma(\mu_x)$ (σ for short), $\pi(\mu_x)$ (π for short), $\alpha(\mu_x)$ (α for short), $\beta(\mu_x)$ (β for short) and $\pi p(\mu_x)$ (πp for short) respectively. Let μ be a generalized topology on a non empty set X and S \subseteq X.

The μ - α -closure (resp. μ -semi closure, μ -pre closure, μ - β closure, μ - π r α -closure) of a subset S of X denoted by $c_{\alpha}(S)$ (resp. $c_{\sigma}(S)$, $c_{\pi}(S)$, $c_{\beta}(S)$, $c_{\pi p}(S)$) is the intersection of μ - α -closed(resp. μ - semi closed, μ - pre closed, μ - β -closed, μ - π r α closed) sets including S.

The μ - α -interior (resp. μ -semi interior, μ -pre interior, μ - β -interior, μ - π r α -interior) of a subset S of X denoted by $i_{\alpha}(S)$ (resp. $i_{\sigma}(S)$, $i_{\pi}(S)$, $i_{\beta}(S)$, $i_{\pi p}(S)$) is the union of μ - α -open (resp. μ - semi open, μ - pre open, μ - β -open, μ - π r α open) sets contained in S.

Definition 1.3[2] A function f between the generalized topological spaces (X, μ_x) and (Y, μ_y) is called (μ_x, μ_y) - πra continuous function if $f^1(A) \in \pi p(\mu_x)$ for each $A \in (Y, \mu_y)$.

2. WEAKLY (IIP, μ_Y) - CONTINUOUS FUNCTIONS

Definition 2.1Let (X, μ_x) and (Y, μ_y) be GTS's. Then a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is said to be weakly $(\pi p, \mu_y)$ -continuous function if for each $x \in X$ and each μ_y -open set V of Y containing f(x), there exists $U \in \pi p(\mu_x)$ such that $f(U) \subseteq C \mu_v(V)$.

Remark 2.2 Every (μ_x, μ_y) - $\pi r\alpha$ continuous function is weakly $(\pi p, \mu_y)$ - continuous function.

Example 2.3 Let $X = \{a, b, c, d\}$. Consider GTS's $\mu_x = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mu_y = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ as follows f(a) = b, f(b) = f(c) = d and f(d) = c.

Then since $C\mu_y(\{a, c\}) = C\mu_y(\{b, c\}) = C\mu_y(\{a, b, c\}) = X$. It is obvious that f is weakly $(\pi p, \mu_y)$ - continuous. But f is not (μ_x, μ_y) - $\pi r\alpha$ continuous. **Theorem 2.4** Let (X, μ_x) and (Y, μ_y) be GTS's. Then for a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ following statement are equivalent.

(i)	f is weakly $(\pi p, \mu_y)$ - continuous function.
-----	---

(ii)
$$f^{1}(V) \subseteq i_{\pi p}(f^{1}(C\mu_{y}(V)))$$
 for every μ_{y}
open subset V of Y.

(iii)
$$c_{\pi p}(f^{-1}(i\mu_{y}(F))) \subseteq f^{-1}(F)$$
 for every μ_{y} -
closed set F of Y.

(iv)
$$c_{\pi p}(f^{-1}(i\mu_y(C\mu_y(B)))) \subseteq f^{-1}(C\mu_y(B))$$
 for every set B of Y.

(v)
$$c_{\pi p}(f^{-1}(V)) \subseteq f^{-1}(C\mu_{y}(V))$$
 for every μ_{y}^{-1} open subset V of Y.

Proof: (i) \Rightarrow (ii). Let V be a μ_{y} -open subset of Y and $x \in f^{1}(V)$. Then $f(x) \in V$. There exists a $U \in \pi p(\mu_{x})$ such that $f(U) \subseteq C \mu_{v}(V)$. Thus obtain $x \in U \subseteq f^{1}(C \mu_{v}(V))$.

This implies that $x \in i_{\pi p}$ (f¹($C\mu_y(V)$) and consequently f¹(V) $\subseteq i_{\pi p}$ (f¹($C\mu_y(V)$)).

(ii) \Rightarrow (iii). Let F be any μ_y -closed set of Y and $x \notin f^1(F)$.Since Y\F is μ_y - open in Y and (ii),

$$x \in X \setminus f^{1}(F) \subseteq f^{1}(Y \setminus F) \subseteq i_{\pi p}(f^{1}(C \mu_{v}(Y \setminus F)))$$

 $= i_{\pi p}(f^{1}(Y \setminus i \mu_{\gamma}(F)))$

$$= i_{\pi p}(X \setminus f^{1}(\dot{i}\mu_{y}(F))) = X \setminus c_{\pi p}(f^{1}(\dot{i}\mu_{y}(F))).$$

Then $x \notin c_{\pi p}(f^{-1}(\mathbf{i}\mu_{\gamma}(F)))$.

Hence $c_{\pi p}(f^{-1}(i\mu_{\nu}(F))) \subseteq f^{-1}(F)$.

(iii) \Rightarrow (iv). Let B be any subset of Y. Then $C\mu_y(B)$ is closed in Y and by (iii), implies

 $c_{\pi p}(f^{1}(\dot{1}\mu_{y}(C\mu_{y}(B)))) \subseteq f^{1}(C\mu_{y}(B)).$

(iv) \Rightarrow (v). Let V be any μ_y -open subset of Y.

By (iv) $c_{\pi p}(f^{-1}(V) = c_{\pi p}(f^{-1}(i\mu_{y}(V)))$

$$\subseteq c_{\pi p}(f^{-1}(i\mu_{\nu}(C\mu_{\nu}(V))))$$

 $\subseteq f^{-1}(C\mu_{y}(V)).$

 $(v){\Rightarrow}(i).$ Let $x{\in}X$ and V be any $\mu_y\text{-open subset of }Y$ containing f(x).

Then by (v), $x \in f^{-1}(V) \subseteq f^{-1}(\dot{i}\mu_y(C\mu_y(V)))$

$$\subseteq f^{1}(i_{\pi p} (C\mu_{y}(V)))$$

$$= X \setminus f^{1}(c_{\pi p} (Y \setminus C\mu_{y}(V)))$$

$$\subseteq X \setminus c_{\pi p} (f^{1}(Y \setminus C\mu_{y}(V)))$$

$$= i_{\pi p} (f^{-1}(C\mu_{y}(V))).$$

Therefore, there exists $U \in \pi p(\mu_x)$ such that $U \subseteq f^1(C\mu_y(V))$. This shows that f is weakly $(\pi p, \mu_y)$ – continuous.

Theorem 2.5 Let (X, μ_x) and (Y, μ_y) be GTS's. Then for a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ following statement are equivalent.

- (i) f is weakly $(\pi p, \mu_v)$ continuous function.
- (ii) $c_{\pi p}(f^{1}(i\mu_{y} (C\mu_{y}(V)))) \subseteq f^{1}((C\mu_{y}(V)))$ for every μ_{y} - $\pi \pi \alpha$ closed set V.
- (iii) $c_{\pi p}(f^{1}(V)) \subseteq f^{1}(C\mu_{y}(V))$ for every μ_{y} -pre open subset V of Y.
- (iv) $f^{-1}(V) \subseteq i_{\pi p}(f^{-1}(C\mu_y(V)))$ for every μ_y pre open subset set V of Y.

Proof: (i) \Rightarrow (ii). It follows from Theorem 2.4.

(ii) \Rightarrow (iii). Let V be $\mu_{y^{-}}$ pre open set. Since every $\mu_{y^{-}}$ pre open set is $\mu_{y^{-}}\pi r\alpha$ open set and by (ii)

$$c_{\pi p}(f^{-1}(V)) \subseteq c_{\pi p}(f^{-1}(\dot{I}\mu_{\nu} (C\mu_{\nu}(V)))) \subseteq f^{-1}(C\mu_{\nu}(V)).$$

(iii) \Rightarrow (iv).Let V be μ_{y} - pre open set.

Then by (iii) $f^{1}(V) \subseteq f^{1}(\dot{I}\mu_{y} (C\mu_{y}(V)))$

 $= i_{\pi p}(f^{-1}(C\mu_{v}(V))).$

(iv) \Rightarrow (i).It follows from Theorem 2.4 since every μ_{y} - open set is μ_{y} - pre open set.

We recall that a GTS (X, μ) is said to be

- μ-πrα T₁[3] if for each pair of distinct points x and y in X, there exist two disjoint μ-πrα open sets U and V in X such that x∈U, y∉U and y∈V, x∉V.
- (ii) μ - π r α T₂[3] if for each pair of distinct points x and y in X, there exist two disjoint μ - π r α open sets U and V containing x and y respectively.
- (iii) Hausdorff space [7] if for each distinct points x and y of X, there exist disjoint µopen sets U and V containing x and y respectively.
- (iv) μ -Urysohn space [3] if for each pair of distinct points x and y of X, there exist μ open sets U and V containing $x \in U$, $y \in V$ and $c_{\mu}(U) \cap c_{\mu}(V) = \emptyset$.

For a map f :(X, μ_x) \rightarrow (Y, μ_y), the subset {(x, f(x)); x \in X \in X \times Y is called the graph of f [3] and is denoted by G_µ(f).

Theorem 2.6 Let (X, μ_x) and (Y, μ_y) be two GTS's. If a function $f:(X, \mu_x) \rightarrow (Y, \mu_y)$ is weakly $(\pi p, \mu_y)$ - continuous injection function. Then the following hold:

(i) If Y is Urysohn then X is μ - $\pi r \alpha T_2$.

(ii) If Y is Hausdorff then X is μ - π r α T₁.

Proof: (i) Let x_1 and x_2 be any distinct points in X. Then $f(x_1) \neq f(x_2)$ and there exists μ_y - open sets U_1 and U_2 of Y containing $f(x_1)$ and $f(x_2)$ respectively such that $C\mu_{\nu}(U_1) \cap C\mu_{\nu}(U_2) = \emptyset$.

Since f is weakly $(\pi p, \mu_y)$ - continuous, there exist V₁, V₂ $\in \pi p(\mu_x)$ such that $f(V_1) \subseteq C\mu_y(U_1)$ and $f(V_2) \subseteq C\mu_y(U_2)$. Since $f^1(C\mu_y(U_1))$ and $f^1(C\mu_y(U_2))$ are disjoint, $V_1 \cap V_2 = \emptyset$. Hence X is μ - $\pi r \alpha T_2$.

(ii)Let x_1 and x_2 be any distinct points in X. Since f is injective $f(x_1) \neq f(x_2)$.Since Y is Hausdorff there exists disjoint μ_{y^-} open sets U_1 and U_2 of Y such that $f(x_1) \in U_1$ and $f(x_2) \in U_2$. Since $U_1 \cap U_2 = \emptyset$ then $C\mu_y(U_1) \cap U_2 = \emptyset$ and $U_1 \cap C\mu_y(U_2) = \emptyset$.Then obtain $f(x_2) \notin C\mu_y(U_1)$ and $f(x_1) \notin C\mu_y(U_2)$.Since f is weakly $(\pi p, \mu_y)$ - continuous, there exist $V_i \in \pi p(\mu_x)$ containing x_i such that $f(V_i) \subseteq C\mu_y(U_i)$, i = 1, 2. Thus $x_1 \notin U_2$ and $x_2 \notin U_1$.

Hence μ - $\pi r \alpha T_1$.

Definition 2.7 [3]

The graph $G_{\mu}(f)$ of a map $f : (X, \mu_x) \rightarrow (Y, \mu_y)$ between GTS's is said to be contra(πp , μ_y)- closed if for each $(x, y) \in (X \times Y) \setminus G_{\mu}(f)$, there exist an μ - $\pi r \alpha$ open set U in X containing x and a μ -closed set V in Y containing y such that $(U \times V) \cap G_{\mu}(f) = \emptyset$.

Proposition 2.8 [3] The following properties are equivalent for the graph $G_u(f)$ of a map f in GTS's.

- (i) $G_u(f)$ is contra $(\pi p, \mu_v)$ closed.
- (ii) For each $(x, y) \in (X \times Y) \setminus G_{\mu}(f)$, there exist an μ - $\pi r \alpha$ open set U in X containing x and a μ -closed V in Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 2.9 Let (X, μ_x) and (Y, μ_y) be two GTS's. If a function $f:(X, \mu_x) \rightarrow (Y, \mu_y)$ is weakly $(\pi p, \mu_y)$ - continuous function and (Y, μ_y) is a Hausdorff space, then the graph $G_{\mu}(f)$ is a contra $(\pi p, \mu_y)$ -closed set of $X \times Y$.

Proof: Let $(x, y) \in (X \times Y) \setminus G_{\mu}(f)$. Then, we have $y \neq f(x)$. Since (Y, μ_y) is Hausdorff, there exist disjoint μ_{y^-} open sets W and V such that $f(x)\in W$ and $y\in V$. Since f is weakly $(\pi p, \mu_y)$ - continuous function, there exist a μ_x - $\pi r\alpha$ open set U containing x such that $f(U)\subseteq C\mu_y(W)$. Since W and V

are disjoint subsets of Y, then $V \cap C\mu_y(W) = \emptyset$. This shows that $(U \times V) \cap G_{\mu}(f) = \emptyset$ and $G_{\mu}(f)$ is contra $(\pi p, \mu_y)$ -closed set.

Definition 2.10 A generalized topological space (X, μ_x) is called μ_x - connected [1] if X is not the union of two disjoint non empty μ -open subsets of X.

Definition 2.11A generalized topological space (X, μ_x) is called πp - connected [2] if $(X, \pi p(\mu))$ is connected.

Theorem 2.12 Let (X, μ_x) and (Y, μ_y) be two GTS's. If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is a weakly $(\pi p, \mu_y)$ -continuous surjective function and (X, μ_x) is a πp -connected space, then Y is a connected space.

Proof: Assume that (Y, μ_y) is not connected. Then there exist non empty μ -open sets V_1 and V_2 such that

 $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = Y$.

Hence $f^1(V_1) \cap f^1(V_2) = \emptyset$ and $f^1(V_1) \cup f^1(V_2) = X$. Since f is surjective $f^1(V_1)$ and $f^1(V_2)$ are non empty subsets of X.

By Theorem 2.4 $f^{-1}(V_i) \subseteq i_{\pi p}(f^{-1}(C\mu_y(V_i)))$, i = 1, 2. Since V_i is μ - open and μ - closed and every μ -closed set is μ - $\pi r\alpha$ closed, $f^{-1}(V_i) \subseteq i_{\pi p}(f^{-1}(V_i))$ and hence $f^{-1}(V_i)$ is μ - $\pi r\alpha$ open for i = 1, 2. Therefore (X, μ_x) is not π p-connected. This is contradiction and hence (Y, μ_y) is connected.

Definition 2.13 A GTS (X, μ_x) is called

- (i) πp -compact [4] if each cover of X composed of elements of μ - $\pi r \alpha$ open sets admits a finite subcover.
- (ii) πp-closed space if every cover of X by μ-πrα open sets has a finite sub cover whose μ-πrα closure (c_π)cover X.

Definition 2.14 A subset A of a GTS (X, μ_x) is said to be πp -closed relative to X if for every cover $\{V_{\alpha}: \alpha \in \Lambda\}$ of A by μ - $\pi r \alpha$ open sets of X, there exists a finite subset Λ_0 of Λ such that $A \subseteq \bigcup \{c_{\pi p}(V_{\alpha}) / \alpha \in \Lambda_0\}$.

Theorem 2.15 Let (X, μ_x) and (Y, μ_y) be two GTS's. If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is a weakly $(\pi p, \mu_y)$ -continuous function and A is a πp -compact subset of (X, μ_x) , then f(A) is πp - closed relative to (Y, μ_y) .

Proof: Let $(V_i: i \in \Lambda)$ be any cover of f(K) by μ - open sets of Y.For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is weakly $(\pi p, \mu_y)$ - continuous, there exists $U_x \in \pi p(\mu_x)$ containing x such that $f(U) \subseteq C \mu_y(V_{\alpha(x)})$ The family $\{U_x / x \in \Lambda\}$ is a cover of A by μ - $\pi r\alpha$ open sets of X. Since A is πp -compact, there exists a finite number of points, say, x_1, x_2, \ldots, x_n in A such that $A \subseteq \cup \{Ux_k / x_k \in \Lambda, 1 \le k \le n\}$.

Therefore, $f(A) \subseteq \bigcup \{ f(Ux_k) / x_k \in \Lambda, 1 \le k \le n \}$

 $\subseteq \bigcup \{ c_{\pi p}(V_{\alpha}(x_k) / x_k \in \Lambda, 1 \le k \le n \}.$

This shows that f(A) is πp -closed relative to (Y, μ_y) .

Corollary 2.16 Let (X, μ_x) and (Y, μ_y) be two GTS's. If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is a weakly $(\pi p, \mu_y)$ -continuous surjective function and the space (X, μ_x) is πp -compact, then (Y, μ_y) is a πp - closed space.

Definition 2.17 [8] If X is a generalized topological space and $B \subseteq X$, the frontier of B is denoted by $Fr_X(B)$ is defined as $Fr_X(B) = c_u(B) \cap c_u(X \setminus B)$.

Definition 2.18 Let A be a subset of a GTS (X, μ_x) . Then the πp - frontier of A , denoted by πp -Fr(A) is defined as πp -Fr(A) = $c_{\pi p}(A) \cap c_{\pi p}(X \setminus A)$.

Theorem 2.19 Let (X, μ_x) and (Y, μ_y) be two GTS's and the set of all points $x \in X$ at which a function $f:(X, \mu_x) \rightarrow (Y, \mu_y)$ is not weakly $(\pi p, \mu_y)$ - continuous if and only if the union of πp -frontier of the inverse images of the closure of μ -open sets containing f(x).

Proof: Suppose that f is not weakly $(\pi p, \mu_y)$ - continuous at $x \in X$. Then there exists an μ -open set V of Y containing f(x) such that f(U) is not contained in $c_{\mu}(V)$ for each $U_x \in \pi p(\mu_x)$. Hence $U \cap (X \setminus f^{-1}(c_{\mu}(V))) \neq \emptyset$, for each $U_x \in \pi p(\mu_x)$. So $x \in c_{\pi p}(X \setminus f^{-1}(c_{\mu}(V)))$.

On the other hand, $x \in f^{1}(V) \subseteq c_{\pi p}(f^{1}(c_{\mu}(V)))$.

Hence $x \in \pi p$ -Fr(f⁻¹($c_{\mu}(V)$)).

Conversely, suppose that f is weakly $(\pi p, \mu_y)$ - continuous at x \in X and let V be any μ -open set of Y containing f(x), then there exists $U_x \in \pi p(\mu_x)$ such that $U \subseteq f^{-1}(c_u(V))$.

Hence by Theorem 2.4, $x \in f^1(V) \subseteq i_{\pi p}(f^1(c_{\mu}(V)))$ and hence $x \in \pi p$ -Fr($f^1(c_{\mu}(V))$), for each μ -open set V of Y containing f(x).

3. CONCLUSION

The study of this concept has led to certain findings and conclusions and constitutes a fundamental tool in the study of generalized topological spaces.

4. ACKNOWLEDGEMENTS

The author is thankful to the referee for his/her comments to improve the perfection of this paper.

5. REFERENCES

- A.AL-Omari and T.Noiri, A unified theory of contra (μ, λ)- continuous functions in generalized Topological space, Acta Math. Hungar.,135(1-2)(2012),31-41.
- [2] K.Binoy Balan and C.Janaki, μ - π r α closed sets in generalized topological space, Int.Journal ofAdv.sci.and Tech. research, 2(6),(2012), 352-359.
- [3] K.Binoy Balan and C.Janaki, Contra (π p, μ _y)continuity on generalized topological space,

Int.Journal of Statistika and Mathematika, (Vol 6)(1)(2013),30-34.

- [4] K.Binoy Balan and C.Janaki, On πp-compact spaces and πp-connectedness, Int. Journal of scientific and Research publications, (Vol 3)(9)(2013),1-3.
- [5] Á.Császár, Generalized topology, generalized continuity, Acta Math.Hungar., 96,(2002), 351-357.
- [6] Á.Császár, Generalized open sets in generalized topologies, Acta Math.Hungar., 106,(2005), 53-66.
- [7] S.Jafari, R.M.Latif and S.P.Moshokoa, A note on generalized topological spaces and preorder, CUBO, 12(02)(2010),123-126.
- [8] R.Khayyeri and R. Mohamadian, On Base for Generalized Topological spaces, Int.J. Contemp. Math.Sciences, (Vol 6)(2011)(48)2377-2383.
- [9] S.Krishnaprakash, V.Dhanya and R.Ramesh, On Weakly (b, μ_y)-continuous functions, Int.Journal of Math. Archive, 3(10)(2012)3692-3695.
- [10] W.K.Min, Weak continuity on generalized topological spaces, Acta Math. Hungar., 124(1-2)(2009), 73-81.
- [11] R.Shen, Remarks on products of generalized topologies, Acta Math. Hungar., 124(4)(2009),363-369.