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ABSTRACT 

This paper describes parallel implementation of an artificial 

neural network training algorithm and its effectiveness when 

applied to performing cryptographic functions. As a 

cryptographic function a permutations have been used 

because of its prevalence in complex cryptographic functions 

such as block ciphers. In order to enhance performance of 

artificial neural network training algorithm a method of 

backward propagation of errors has been parallelized. 
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1. INTRODUCTION 
As a result of widespread demand to transmit confidential 

data safely via computer networks, cryptography began to 

play key role in modern information technology, presenting 

an opportunity to protect sensitive data. 

Therefore research and development of cryptographic 

algorithms and its optimization is impotent. In this work, 

artificial neural networks (ANNs) have been used to perform 

cryptographic functions, because ANNs are able to implement 

different operations after being trained [1]. 

Functionality of artificial neural networks is determined by its 

structure, connections between nodes, training algorithm and 

characteristics of neurons making up a neural network. 

Artificial neural networks possess a processing power because 

of their distributed structure and ability to learn. 

2. CRYPTOGRAPHIC FUNCTION 
The goal of this research is to find an efficient, parallel ANN 

training algorithm which could be used to train ANN to 

perform permutations of an input block of bits according to a 

training program. Transformation implementing by this 

network could be described by following expression: 

 niii ...,, 21    (1) 

In expression (1), i1 is a place of a first input bit in an output 

vector of bits, while i2 is a place of second input bit, etc. 

Depending on the number of input bits, the overall number of 

different permutations is !n . 

The benefit of using ANN to perform cryptographic functions 

is related to the capability of changing implemented 

algorithms without changing network itself, just applying 

different training set. ANN could be trained to perform a 

reliable algorithm instead of a vulnerable one, in the same 

way as the SSL protocol allows to change compromised 

cryptographic algorithm to another reliable algorithm [2]. 

Such an approach is especially useful for cryptographic 

hardware, which cannot be modified after releasing. In 

addition to the above, there are papers which describe 

implementing cryptographic algorithms using programmable 

logic devices, emphasizing the significance of using flexible 

methods for developing hardware cryptographic systems [3 - 

5]. 

3. ANN DESIGN 

3.1 Structure of ANN 
On abstraction level ANN performing permutation of bits is 

presented in Figure 1. 

 

Fig. 1: ANN implementing primitive permutation 

ANN depicted in Figure 1 has two inputs and two outputs, and 

it’s capable to perform 2! different permutations. To train this 

artificial neural network, 
n2  training pairs is required, which 

are presented in Table 1. 

Table 1. Training set for primitive permutation 

Input vector Target vector 

(0,0) (0,0) 

(0,1) (1,0) 

(1,0) (0,1) 

(1,1) (1,1) 

 

Since an amount of training pairs depends exponentially on a 

number of ANN inputs, there are a limited number of input 

bits. In this research, to estimate efficiency of parallelization 

of an ANN training algorithm, neural network consisting of 3 

neuron layers with 16 neurons in each layer has been trained. 

The designed ANN is a fully connected feedforward neural 

network; its topology is presented in Figure 2. 

As an activation function for all neurons in ANN, a sigmoid 

function has been used. It’s presented in Formula 2. 
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Fig. 2: Topology of designed ANN. 

 

The activation function (Formula 2) is a hyperbolic tangent, 

where x is a weighted total of all input signals and s is a 

coefficient of steepness of activation function. A derivative of 

the activation function is presented in Formula 3. 

)1( yysy     (3) 

3.2 Training algorithm 
As a training algorithm, a method of backward propagation of 

errors has been chosen [6]. This method is an iterative 

gradient descent algorithm often used for training ANN. The 

key idea of this algorithm is a backward propagation of errors 

from output neurons to input ones. 

To train ANN for each vector of input set, the following steps 

are implemented: 

1. The vector of signals is given to artificial neurons of 

input. 

2. The results of all outputs of neurons in layer Li are 

calculated layer by layer. 

3. The signal values of output neurons are compared 

with objective vector. 

4. In case an error is more than an allowable error, 

value δij is calculated from Formula 4 for each 

neuron in layer Li starting from output layer. 

5. For each neuron connection, a weight change Δwij is 

calculated from Formula 6. 

6. The weights of all neuron connections are changed 

by value Δwij. 

Calculating of weight change of neurons in output layer is 

computed from Formula 4, where 
ir  is an output value of 

neuron and 
it  is a desired value. 

))(1( iiiii rtrr    (4) 

Amending of neuron connections weights in layers other than 

the output layer is presented in Formula 5, where kiw ,  is the 

weight of connection between ith and kth neurons and K is the 

set of all neurons connected to ith neuron. 

 
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A change in weight is computed according to Formula 6. 

ijji rw  ,    (6) 

The above described algorithm is executed until ANN outputs 

for all 65536 training pairs does not be differ from a desired 

output of more than an allowable error. An output error is 

computed as a Euclidean distance in n-dimensional space 

according to Formula 7, where yi is an output value of neuron 

and ti is a desired output. 
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To avoid an endless training of an ANN, there are a limited 

number of epochs of training a network, and after executing 

this number of epochs the algorithm finishes. 

In Figure 3, a parallel implementation of ANN training 

algorithm is depicted. After initializing connection weights 

with a small random numbers, the outer loop is executed until 

the ANN is trained or a number k is achieved, where k is a 

maximum number of epochs. 

4. CONCLUSION 
There are a number of papers describing performance 

enhancing of ANN training algorithm as applied to different 

architectures (CPU [7], GPU [8, 9] and FPGA[10]) and 

various types of training algorithms. Acceleration of parallel 

implementation may range within fairly broad limits because 

of differences in architecture and specification of hardware. 

A developed parallel application ran on 2 cores has 25% 

better performance compared to sequential application. 

Increasing the number of cores does not increase performance 

due to rising overhead expenses.  

Rising of overheads is caused by the fact that ANN training 

algorithm is not parallel and requires synchronizations after 

each ANN layer is trained. Increasing the number of neurons 

in each layer should decrease the influence of overheads and 

lead to achieving a better performance of parallel application. 
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Fig. 3: Parallel implementation of ANN training algorithm
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