
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 3, January 2014

8

Parallel Implementation of a Neural Network Learning

Algorithm

S. Volokitin
Dept. of Computer Science
Southwest State University

Russia

ABSTRACT

This paper describes parallel implementation of an artificial

neural network training algorithm and its effectiveness when

applied to performing cryptographic functions. As a

cryptographic function a permutations have been used

because of its prevalence in complex cryptographic functions

such as block ciphers. In order to enhance performance of

artificial neural network training algorithm a method of

backward propagation of errors has been parallelized.

General Terms

Computer Science, Algorithms

Keywords

Neural network; training algorithm; parallelism; cryptography

1. INTRODUCTION
As a result of widespread demand to transmit confidential

data safely via computer networks, cryptography began to

play key role in modern information technology, presenting

an opportunity to protect sensitive data.

Therefore research and development of cryptographic

algorithms and its optimization is impotent. In this work,

artificial neural networks (ANNs) have been used to perform

cryptographic functions, because ANNs are able to implement

different operations after being trained [1].

Functionality of artificial neural networks is determined by its

structure, connections between nodes, training algorithm and

characteristics of neurons making up a neural network.

Artificial neural networks possess a processing power because

of their distributed structure and ability to learn.

2. CRYPTOGRAPHIC FUNCTION
The goal of this research is to find an efficient, parallel ANN

training algorithm which could be used to train ANN to

perform permutations of an input block of bits according to a

training program. Transformation implementing by this

network could be described by following expression:

 niii ...,, 21 (1)

In expression (1), i1 is a place of a first input bit in an output

vector of bits, while i2 is a place of second input bit, etc.

Depending on the number of input bits, the overall number of

different permutations is !n .

The benefit of using ANN to perform cryptographic functions

is related to the capability of changing implemented

algorithms without changing network itself, just applying

different training set. ANN could be trained to perform a

reliable algorithm instead of a vulnerable one, in the same

way as the SSL protocol allows to change compromised

cryptographic algorithm to another reliable algorithm [2].

Such an approach is especially useful for cryptographic

hardware, which cannot be modified after releasing. In

addition to the above, there are papers which describe

implementing cryptographic algorithms using programmable

logic devices, emphasizing the significance of using flexible

methods for developing hardware cryptographic systems [3 -

5].

3. ANN DESIGN

3.1 Structure of ANN
On abstraction level ANN performing permutation of bits is

presented in Figure 1.

Fig. 1: ANN implementing primitive permutation

ANN depicted in Figure 1 has two inputs and two outputs, and

it’s capable to perform 2! different permutations. To train this

artificial neural network,
n2 training pairs is required, which

are presented in Table 1.

Table 1. Training set for primitive permutation

Input vector Target vector

(0,0) (0,0)

(0,1) (1,0)

(1,0) (0,1)

(1,1) (1,1)

Since an amount of training pairs depends exponentially on a

number of ANN inputs, there are a limited number of input

bits. In this research, to estimate efficiency of parallelization

of an ANN training algorithm, neural network consisting of 3

neuron layers with 16 neurons in each layer has been trained.

The designed ANN is a fully connected feedforward neural

network; its topology is presented in Figure 2.

As an activation function for all neurons in ANN, a sigmoid

function has been used. It’s presented in Formula 2.

1
1

2
)*tanh(

2





 xse
xsy (2)

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 3, January 2014

9

Fig. 2: Topology of designed ANN.

The activation function (Formula 2) is a hyperbolic tangent,

where x is a weighted total of all input signals and s is a

coefficient of steepness of activation function. A derivative of

the activation function is presented in Formula 3.

)1(yysy  (3)

3.2 Training algorithm
As a training algorithm, a method of backward propagation of

errors has been chosen [6]. This method is an iterative

gradient descent algorithm often used for training ANN. The

key idea of this algorithm is a backward propagation of errors

from output neurons to input ones.

To train ANN for each vector of input set, the following steps

are implemented:

1. The vector of signals is given to artificial neurons of

input.

2. The results of all outputs of neurons in layer Li are

calculated layer by layer.

3. The signal values of output neurons are compared

with objective vector.

4. In case an error is more than an allowable error,

value δij is calculated from Formula 4 for each

neuron in layer Li starting from output layer.

5. For each neuron connection, a weight change Δwij is

calculated from Formula 6.

6. The weights of all neuron connections are changed

by value Δwij.

Calculating of weight change of neurons in output layer is

computed from Formula 4, where
ir is an output value of

neuron and
it is a desired value.

))(1(iiiii rtrr  (4)

Amending of neuron connections weights in layers other than

the output layer is presented in Formula 5, where kiw , is the

weight of connection between ith and kth neurons and K is the

set of all neurons connected to ith neuron.

 


Kj kikiii wrr ,)1( (5)

A change in weight is computed according to Formula 6.

ijji rw  , (6)

The above described algorithm is executed until ANN outputs

for all 65536 training pairs does not be differ from a desired

output of more than an allowable error. An output error is

computed as a Euclidean distance in n-dimensional space

according to Formula 7, where yi is an output value of neuron

and ti is a desired output.





16

1

2)(
i

ii tyR (7)

To avoid an endless training of an ANN, there are a limited

number of epochs of training a network, and after executing

this number of epochs the algorithm finishes.

In Figure 3, a parallel implementation of ANN training

algorithm is depicted. After initializing connection weights

with a small random numbers, the outer loop is executed until

the ANN is trained or a number k is achieved, where k is a

maximum number of epochs.

4. CONCLUSION
There are a number of papers describing performance

enhancing of ANN training algorithm as applied to different

architectures (CPU [7], GPU [8, 9] and FPGA[10]) and

various types of training algorithms. Acceleration of parallel

implementation may range within fairly broad limits because

of differences in architecture and specification of hardware.

A developed parallel application ran on 2 cores has 25%

better performance compared to sequential application.

Increasing the number of cores does not increase performance

due to rising overhead expenses.

Rising of overheads is caused by the fact that ANN training

algorithm is not parallel and requires synchronizations after

each ANN layer is trained. Increasing the number of neurons

in each layer should decrease the influence of overheads and

lead to achieving a better performance of parallel application.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 3, January 2014

10

Fig. 3: Parallel implementation of ANN training algorithm

5. REFERENCES
[1] Kotlars P., Kotulski Z. On application of neural networks

for S-box design, in: P.S. Szczepaniak, J.Kacprzyk,

A.Niewiadomski, ed.Advances in Web Intelligence,

AWIC 2005, LNCS 3528. Р. 243-248. Berlin 2005.

[2] John Viega Network Security with OpenSSL. — 1-st. —

O'Reilly Media, USA, June 15, 2002.

[3] L. Bossuet, G. Gogniat, and W. Burleson. Dynamically

configurable Security for SRAM FPGA Bitstreams.

International Journal of Embedded Systems, 2(1-2):73–

85, 2006.

[4] T. Blum and C. Paar. High Radix Montgomery Modular

Exponentiation on Reconfigurable Hardware. IEEE

Transactions on Computers, 50(7):759–764, 2001.

[5] P. Bulens, F.X. Standaert, J.-J. Quisquater, P. Pellegrin,

and G. Rouvroy. Implementation of the AES-128 on

Virtex-5 FPGAs. In S. Vaudenay, editor, Proceedings of

First International Conference on Cryptology in Africa –

AFRICACRYPT 2008, volume 5023 of LNCS Series,

pages 16–26. Springer-Verlag, 2008.

[6] Rumelhart D.E., Hinton G.E., Williams R.J., Learning

Internal Representations by Error Propagation. In:

Start

Initializing of

weights

To perform

5 times

For each

pair in set

Input signals

For each

ANN layer

Compute result of

neuron n1

Compute result of

neuron n2

Compute result of

neuron nm

Compute an error

An error is less

than allowable

yes

End

Training

complete

no

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 3, January 2014

11

Parallel Distributed Processing, vol. 1, pp. 318—362.

Cambridge, MA, MIT Press. 1986.

[7] Veselý, Karel, Burget, Lukas and Grézl, Frantisek.

Parallel training of neural networks for speech

recognition. ISCA, page 2934-2937, 2010.

[8] Jang, H., Park, A. & Jung, K.. Neural Network

Implementation Using CUDA and OpenMP. DICTA,

page 155-161. IEEE Computer Society, 2008.

[9] X. Sierra-Canto, F. Madera-Ramirez, V. Uc-Cetina.

Parallel Training of a Back-Propagation Neural Network

Using CUDA. ICMLA, page 307-312. IEEE Computer

Society, 2010.

[10] S.T. Brassai, L. Bako, G. Pana, S. Dan. Neural control

based on RBF network implemented on FPGA. OPTIM

2008, page 41-46, 2008.

IJCATM : www.ijcaonline.org

