Assessing Software Quality with Time Domain Pareto Type II using SPC

K.Sita Kumari Associate Professor VRSEC, IT Department Vijayawada R Satya Prasad, Ph.D Associate Professor Acharya Nagarjuna University Computer Science Department Guntur

ABSTRACT

As the usage of software is getting increased day by day, there is a need for software reliability and for this several software reliability growth models exist that are capable of finding the occurrence of errors. It is also possible to find the reliability of time domain models based on order statistics with Non-Homogeneous Poisson Process (NHPP). The conditional failure rate is an important factor for software and order statistics can be used in various applications like characterization of problems, detecting outliers, linear estimation, study of system reliability, life testing, survival analysis, data compression and many others. Using Statistical Process Control (SPC), we can monitor when the software failures occurs, that helps in improving the reliability of software. In this paper, we proposed a control mechanism Pareto Type II model with an on order statistics based on NHPP and the observations are considered for time domain failure data. The unknown parameters are estimated using a well-known estimation method known as Maximum Likelihood Estimation (MLE). The model is analyzed using live data sets.

Keywords

Order Statistics, Statistical Process Control, Pareto Type II,NHPP, MLE, Control charts.

1. INTRODUCTION

Software Reliability plays an important role in software quality. As more and more software is creeping into the embedded system, reliability has become an essential characteristic for the software. The probability that a given program will work as intended by the user without failures in a specified environment and for a specified duration can be termed as software reliability [13]. Software Reliability can prevent major faults that have the possibility of taking human life, money and time. For this a number of models have been developed for better predictions. A common approach for measuring software reliability is by using an analytical model whose parameters are generally estimated from available software failure data. Reliability quantities have been defined with respect to time, although it is possible to define them with respect to other variables. We have taken inter failures time data of Musa 1975) [10] and Michael [9]. In reliability study there are two characteristics of a random process: 1) the probability distribution of the random variables, i.e., Poisson and 2) the variation of the process with time. A random process whose probability distribution varies with time is called non homogeneous. The random process for time variation we can define two functions, the mean value function m(t), as the average cumulative failures associated with each time point and the failure intensity function as the rate of change of mean value function.

1.1 1.1 Statistical Process Control

Statistical Process Control (SPC) is an important tool with which we can monitor the reliability of developed software. For monitoring the software reliability, software failure data is very much essential that is available in two different types. The time domain data records the time of the failure occurrences and interval domain data records the number of failures in a given time interval. In this paper, we want to monitor the reliability of a software using SPC based on order statistics for time domain data. The main intention of this paper is to give a systematic procedure to show how SPC can be used to monitor the software reliability. In recent years, several authors have recommended the use of SPC for software process monitoring. A few others have highlighted the potential pitfalls in its use [1]. Over the years, SPC has come to be widely used among others, in manufacturing industries for the purpose of controlling and improving the quality of a product [11]. The SPC is applied in the development of software product with the intention to improve the reliability and quality of software [2]. It was proved that SPC can be applied successfully to various processes for development of software, including software reliability process. SPC is traditionally so well adopted in manufacturing industry. In general software development activities are more process centric than product centric which makes it difficult to apply SPC in a straight forward manner. The utilization of SPC for software reliability has been the subject of study of several researchers. A few of these studies are based on reliability process improvement models. They turn the search light on SPC as a means of accomplishing high process maturities. Some of the studies furnish guidelines in the use of SPC by modifying general SPC principles to suit the special requirements of software development [2](Burr and Owen[3]; Flora and Carleton[4]). It is especially noteworthy that Burr and Owen provide seminal guidelines by delineating the techniques currently in vogue for managing and controlling the reliability of software. Significantly, in doing so, their focus is on control charts as efficient and appropriate SPC tools. It is accepted on all hands that statistical process control acts as a powerful tool for bringing about improvement of quality as well as productivity of any manufacturing procedure and is particularly relevant to software development. SPC is a method of process management through application of statistical analysis, which involves and includes the defining, measuring, controlling, and improving of the processes [5].

2. ORDER STATISTICS

Order statistics are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, lifetesting, survival analysis, data compression and many other fields can be seen from the many books [6]. Order statistics deals with properties and applications of ordered random

variables and of functions of these variables. The use of order statistics is significant when failures are frequent or inter failure time is less. Let X denote a continuous random variable with probability density function f(x) and cumulative distribution function F(x), and let $(X_1\,,\,X_2\,,\,...,\,X_n)$ denote a random sample of size n drawn on X. The original sample observations may be unordered with respect to magnitude. A transformation is required to produce a corresponding ordered sample. Let $(X_{(1)}, X_{(2)}, ..., X_{(n)})$ denote the ordered random sample such that $X_{(1)} < X_{(2)} < ... < X_{(n)}$; then $(X_{(1)}, X_{(2)}, ..., X_{(n)})$ are collectively known as the order statistics derived from the parent X. The various distributional characteristics can be known from Balakrishnan and Cohen [7]. The interfailure time data represent the time lapse between every two consecutive failures. On the other hand if a reasonable waiting time for failures is not a serious problem, we can group the inter-failure time data into non overlapping successive sub groups of size 4 or 5 and add the failure times with in each sub group. For instance if a data of 100 inter-failure times are available we can group them into 20 disjoint subgroups of size 5. The sum total in each subgroup would devote the time lapse between every 5th order statistics in a sample of size 5. In general for inter-failure data of size 'n', if r (any natural no) less than 'n' and preferably a factor n, we can conveniently divide the data into 'k' disjoint subgroups (k=n/r) and the cumulative total in each subgroup indicate the time between every rth failure. The probability distribution of such a time lapse would be that of the r^{th} ordered statistics in a subgroup of size r, which would be equal to r^{th} power of the distribution function of the original variable (m(t)). The whole process involves the mathematical model of the mean value function and knowledge about its parameters. If the parameters are known they can be taken as they are for the further analysis, if the parameters are not known they have to be estimated using a sample data by any admissible, efficient method of estimation. This is essential because the control limits depend on mean value function, which in turn depends on the parameters. If software failures are quite frequent keeping track of inter-failure is tedious. If failures are more frequent order statistics are preferable [5].

3. MODEL DESCRIPTION

For calculating the parameters and the control limits using ordered Statistics approach, we consider here the Pareto Type II distribution [8].

The mean value of Pareto Type II distribution [8] representing the number of failures experienced by the time t is given by

$$m(t) = a \left(1 - \frac{c^b}{(t+c)^b} \right)$$
 3.1

In order to group the Time domain data into non overlapping successive sub groups of size r, we need to take m(t) to the power r

$$m(t) = \left(a\left(1 - \frac{c^b}{(t+c)^b}\right)\right)^r$$
 3.2

Differentiating with respect to t of equation 3.2

$$m'(t) = \frac{d}{dt} \left[a - \frac{ac^b}{(t+c)^b} \right]^r$$

$$= r \left[a - \frac{ac^b}{(t+c)^b} \right]^{r-1} * \left[abc^b * (t+c)^{-(b+1)} \right]$$

$$M'(t) = r \left[a - \frac{ac^b}{(t+c)^b} \right]^{r-1} * \left[\frac{abc^b}{(t+c)^{b+1}} \right] \quad 3.3$$

The Likelihood function L can be written as

$$L = e^{-m(t)} * \prod_{i=1}^{n} m'(t_i)$$
 3.4

Substituting equations 3.1 and 3.3 in 3.4 we get

$$=e^{-\left[a-\frac{ac^b}{(t+c)^b}\right]^r}*\prod_{i=1}^nr\left[a-\frac{ac^b}{(t_i+c)^b}\right]^{r-1}\left[\frac{abc^b}{(t_i+c)^{b+1}}\right]$$

Applying log on both sides:

$$\begin{aligned} & = -\left[a - \frac{ac^{b}}{(t+c)^{b}}\right]^{r} \\ & + \sum_{i=1}^{n} \log\left[r\left(a\frac{ac^{b}}{(t_{i}+c)^{b}}\right)^{r-1} \left(\frac{abc^{b}}{(t_{i}+c)^{b+1}}\right)\right] \\ & \log L = -a^{r}\left[1 - \frac{c^{b}}{(t+c)^{b}}\right]^{r} \\ & + \sum_{i=1}^{n} \log r + \sum_{i=1}^{n} (r-1)\log\left[a - \frac{ac^{b}}{(t+c)^{b}}\right] \end{aligned}$$

$$\sum_{i=1}^{n} \left[(\log a + \log b + \log c) - (b+1)\log (t_i + c) \right]$$
 3.5

Differentiating with respect to 'a

entiating with respect to a
$$\frac{\partial \log L}{\partial a} = -ra^{r-1} \left[1 - \frac{c^b}{(t+c)^b} \right]^r + 0$$

$$+ \sum_{i=1}^n (r-1) \frac{1}{\left(a - \frac{ac^b}{(t+c)^b}\right)}$$

$$\left[1 - \frac{c^b}{(t+c)^b} \right] + \frac{n}{a}$$

$$= -ra^{r-1} \left[1 - \frac{c^b}{(t+c)^b} \right]^r + \frac{n(r-1)}{a} + \frac{n}{a}$$

$$\frac{\partial \log L}{\partial a} = 0 \implies a^{r} = n * \left[\frac{(t+c)^{b}}{(t+c)^{b}-c^{b}} \right]^{r} \qquad 3.6$$

Differentiating with respect to 'b'

$$\begin{split} \frac{\partial \log L}{\partial b} &= a^r r \left(1 - \left(\frac{c}{t+c}\right)^b\right)^{r-1} \left(\frac{c}{t+c}\right)^b \log \left(\frac{c}{t+c}\right) \\ &+ \sum_{i=1}^n [(r-1)*\frac{(t+c)^b}{(t+c)^b-c^b} \\ &* - \left(\frac{c}{t+c}\right)^b \log \left(\frac{c}{t+c}\right)] + \sum_{i=1}^n [\frac{1}{b} + \log c - \log (t_i+c)] \\ &\frac{\partial \log L}{\partial b} &= nr \left[\frac{(t+c)^b}{(t+c)^b-c^b}\right] \left(\frac{c}{t+c}\right)^b \log \left(\frac{c}{t+c}\right) + \sum_{i=1}^n [(r-1)*\frac{(t+c)^b}{(t+c)^b-c^b} \\ &* - \left(\frac{c}{t+c}\right)^b \log \left(\frac{c}{t+c}\right)] + \sum_{i=1}^n [\frac{1}{b} + \log c - \log (t_i+c)] \end{split}$$
 Taking c=1,

$$= nr \left[\frac{1}{(t+1)^b - 1} \right] log \left(\frac{1}{t+1} \right) + \sum_{i=1}^{n} (r-1) log(t_i)$$

$$+ 1) \frac{1}{[(t_i+1)^b - 1]} + \frac{n}{b}$$

$$- \sum_{i=1}^{n} log(t_i+1)$$

$$\begin{split} g(b) = & \frac{nr}{(t+1)^b - 1} log \bigg(\frac{1}{t+1} \bigg) + \sum_{i=1}^n (r-1) log(t_i) \\ & + 1) \frac{1}{[(t_i+1)^b - 1]} \\ + \frac{n}{b} - \sum_{i=1}^n log(t_i+1) & 3.7 \end{split}$$

$$\begin{split} g'(b) &= n r log \bigg(\frac{1}{t+1}\bigg) (-1) * \frac{(t+1)^b \log(t+1)}{[(t+1)^b - 1]^2} - \\ \sum_{i=1}^n (r-1) \log(t_i+1) (t_i+1)^b log(t_i+1) \big[\big(t_i+1)^b - 1 \big]^{-2} \\ - \frac{n}{b^2} & 3.8 \end{split}$$

$$logL = -a^{r} \left[1 - \frac{c^{b}}{(t+c)^{b}} \right]^{r}$$

$$+ \sum_{i=1}^{n} logr + \sum_{i=1}^{n} (r-1) log \left[a - \frac{ac^{b}}{(t+c)^{b}} \right]$$

$$\sum_{i=1}^{n} [(\log a + \log b + \operatorname{blogc}) - (b+1)\log (t_i + c)]$$

Substitute ar value in this equation and Differentiate with respect to 'c',

$$\begin{split} \frac{\partial log L}{\partial c} \\ &= -nr \bigg[\frac{(t+c)^b}{(t+c)^b - c^b} \bigg]^r \bigg[\frac{(t+c)^b - c^b}{(t+c)^b} \bigg]^{r-1} \bigg[-b \Big(\frac{c}{t+c} \Big)^{b-1} \\ &* \frac{t}{(t+c)^2} \bigg] \\ &+ \sum_{i=1}^n (r-1) * \frac{(t+c)^b}{(t+c)^b - c^b} \bigg[-b \Big(\frac{c}{t+c} \Big)^{b-1} * \frac{t}{(t+c)^2} \bigg] + \frac{nb}{c} \\ &- \sum_{i=1}^n \Big(\frac{b+1}{t_i+c} \Big) \end{split}$$

Taking b=1

$$= \frac{\operatorname{nrct}}{(t+c)^{1} - c^{1}} * \frac{1}{c} * \frac{1}{t+c} - \sum_{i=1}^{n} t * \frac{(r-1)c}{(t+c)^{1} - c^{1}} * \frac{1}{c} * \frac{1}{t+c}$$

$$+ \frac{n}{c} - \sum_{i=1}^{n} \frac{2}{t_{i}+c}$$

$$g(c) = \frac{\operatorname{nr}}{t+c} - \sum_{i=1}^{n} \frac{(r-1)}{(t_{i}+c)} + \frac{n}{c} - \sum_{i=1}^{n} \left(\frac{2}{t_{i}+c}\right)$$
3.9

$$\begin{array}{l} g'(c) = \\ \frac{-nr}{(t+c)^2} + \sum_{i=1}^n \frac{(r-1)}{(t_i+c)^2} - \frac{n}{c^2} + \sum_{i=1}^n \frac{2}{(t_i+c)^2} \end{array} \qquad 3.10$$

4. MONITORING TIME BETWEEN FAILURES BY DEVELOPING CONTROL CHARTS

Several types of SPC charts are available that uses statistical techniques. It is very much important to select proper charts for implementing statistical process control based on given data, situation and need [9]. Advanced charts are also available that helps us to analyse the statistics very effectively. Variable control charts and Attribute control charts are the basic type of advanced charts that are available and can be used depending on the type of data and nature. Variable control chats are designed to control product or process parameters which are measured on a continuous measurement scale. X-bar, R charts are variable control charts. Attributes are characteristics of a process which are stated in terms of good are bad, accept or reject, etc. Attribute charts are not sensitive to variation in the process as variables charts. Forattribute data there are : p-charts, c-charts, npcharts, and u-charts. The control charts are named as Failure Control Charts that helps to assess the software failure phenomena on the basis of the given inter-failure time data.

5. ESTIMATION OF CONTROL LIMITS AND PARAMETERS

Parameter estimation is a statistical method trying to estimate parameters for time domain data based on ordered statistics. Given the data observations and sample size, using the equations 3.6, 3.7, 3.8, 3.9, & 3.10, the parameters 'a', 'b' and 'c' can be computed by using the popular Newton Rapson method. To compute the parameters a program is developed in C language. The equation for mean value function of Pareto Type II Distribution is given by

$$m(t) = a \left(1 - \frac{c^b}{(t+c)^b} \right)$$

The Control limits are obtained as follows: Delete the term 'a' from the mean value function. Equate the remaining function successively to 0.99865, 0.00135, 0.5 and solve the value of 't', for Pareto Type II Distribution, in order to get the usual Six sigma corresponding Upper Control limit, Lower Control limit, Central line.

$$F(t)=1 - \frac{c^{b}}{(t+c)^{b}} = 0.99865$$

$$\Rightarrow \frac{c^{b}}{(t+c)^{b}} = 1 - 0.99865$$

$$\Rightarrow \frac{c^{b}}{(t+c)^{b}} = 0.00135$$

$$\Rightarrow (t+c)^{b} = \frac{c^{b}}{0.00135}$$
Apply log on both sides
$$b \log(t+c) = b \log c - \log 0.00135$$

$$\log(t+c) = \log c - (1/b) * \log 0.00135$$

$$t+c = e^{\{\log c - (\frac{1}{b}) * \log 0.00135\}}$$

$$t = e^{\{\log c - \left(\frac{1}{b}\right) * \log 0.00135\}} - c = \ t_U \eqno{5.1}$$

$$t = e^{\{\log c - \left(\frac{1}{b}\right) * \log 0.99865\}} - c = t_L$$
 5.2

$$t = e^{\{\log c - \left(\frac{1}{b}\right) * \log 0.5\}} - c = t_{C}$$
 5.3

The control limits are defined in such a way that the point above the $m(t_U)$ (5.1) Upper Control Limit (UCL) is an alarm signal. A point below $m(t_L)$ (5.2) Lower Control Limit (LCL) is an indication specifying that the quality of software is

better. A point within the control limits indicates that the process is stable.

5.1 Developing Failure Charts

Given the n inter-failure data the values of m(t) at t_C , t_U , t_L and at the given n inter-failure times are calculated. Then successive differences of the m(t)'s are taken, which leads to n-1 values. The graph with the said inter-failure times 1 to n-1 on X-axis, the n-1 values of successive differences m(t)'s on Y-axis, and the 3 control lines parallel to X-axis at $m(t_L)$, $m(t_U)$, $m(t_C)$ respectively constitutes failures control chart to assess the software failure phenomena on the basis of the given inter-failures time data.

6. ILLUSTRATION

The procedure of generating the failures control charts for failure software process is illustrated considering the live data sets [9][10]. The results have given the +ve recommendations that software reliability can be assessed and the failures are detected at an early stage.

Table 1: Software failure data reported by Musa(1975)

[10]

Fault Time Fault Time Fault Time

Fault	Time	Fault	Time	Fault	Time
1	3	42	263	83	1800
2	30	43	452	84	865
3	113	44	255	85	1435
4	81	45	197	86	30
5	115	46	193	87	143
6	9	47	6	88	108
7	2	48	79	89	0
8	91	49	816	90	3110
9	112	50	1351	91	1247
10	15	51	148	92	943
11	138	52	21	93	700
12	50	53	233	94	875
13	77	54	134	95	245
14	24	55	357	96	729
15	108	56	193	97	1897
16	88	57	236	98	447
17	670	58	31	99	386
18	120	59	369	100	446
19	26	60	748	101	122
20	114	61	0	102	990
21	325	62	232	103	948
22	55	63	330	104	1082
23	242	64	365	105	22
24	68	65	1222	106	75
25	422	66	543	107	482
26	180	67	10	108	5509
27	10	68	16	109	100
28	1146	69	529	110	10

29	600	70	379	111	1071
30	15	71	44	112	371
31	36	72	129	113	790
32	4	73	810	114	6150
33	0	74	290	115	3321
34	8	75	300	116	1045
35	227	76	529	117	648
36	65	77	281	118	5485
37	176	78	160	119	1160
38	58	79	828	120	1864
39	457	80	1011	121	4116
40	300	81	445		
41	97	82	296		

Table: 2 Parameter estimates and their control limits of 4 and 5 order

Data	Or	a	b	c	$\mathbf{m}(t_U$	$\mathbf{m}(t_{\mathcal{C}}$	$m(t_L$
Set	der)))
	4	26.0	1.00	3.96	25.9	13.0	0.03
Mus		268	028	197	916	134	514
a	5	27.0	1.00	4.47	26.9	13.5	0.03
		071	011	055	707	036	646

Table: 3 Successive differences of 4th order m(t)'s of Table 1

Fa	4-	m(t)	Succes	Fa	4-	m(t)	Succes
ult	order		sive	ult	order		sive
	Cumul		Differ		Cumul		Differ
	atives		ence's		atives		ence's
	attives				attives		
			Of				Of
			m(t)'s				m(t)'s
1		25.5	0.2203	18		26.0	0.0006
	227	7502	41		16358	2049	64
2		25.7	0.0959	19		26.0	0.0006
	444	9536	39		18287	2116	24
3		25.8	0.0380	20		26.0	0.0007
	759	913	78		20567	2178	38
4		25.9	0.0455	21		26.0	0.0006
	1056	2937	99		24127	2252	49
5		25.9	0.0133	22		26.0	0.0004
	1986	7497	56		28460	2317	4
6		25.9	0.0152	23		26.0	0.0004
	2676	8833	45		32408	2361	42
7		26.0	0.0029	24		26.0	0.0002
	4434	0358	87		37654	2405	84
8		26.0	0.0011	25		26.0	1.63E-
	5089	0656	26		42015	2433	05
9		26.0	0.0029	26		26.0	0.0003
	5389	0769	66		42296	2435	02
10		26.0	0.0023	27		26.0	0.0001
	6380	1065	11		48296	2465	53

11		26.0	0.0008	28		26.0	5.18E-
	7447	1296	29		52042	248	05
12		26.0	0.0029	29		26.0	0.0001
	7922	1379	58		53443	2486	04
13		26.0	0.0008	30		26.0	0.0001
	10258	1675	23		56485	2496	79
14		26.0	0.0010	31		26.0	5.67E-
	11175	1757	15		62651	2514	05
15		26.0	0.0005	32		26.0	0.0002
	12559	1859	63		64893	252	33
16		26.0	0.0008	33		26.0	0.0001
	13486	1915	95		76057	2543	93
17		26.0	0.0004	34		26.0	
	15277	2005	45		88682	2562	

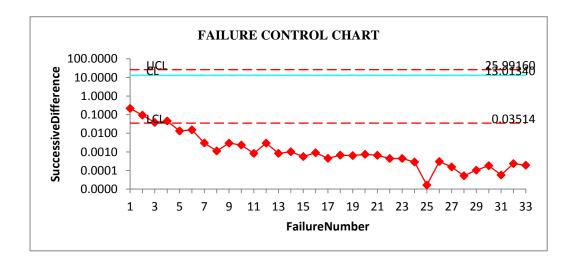


Fig 1: Failure Control chart of Table 3

Table 4: Successive differences of 5^{th} order m(t)'s of Table 1

Fa ult	5- order Cumul atives	m(t)	Succes sive Differ ence's Of m(t)'s	Fa ult	5- order Cumul atives	m(t)	Succes sive Differ ence's Of m(t)'s
1	342	26.6 5529	0.1408 7	18	29361	27.0 0302	0.0009 04
2	571	26.7 9616	0.0864 41	19	37642	27.0 0393	0.0003
3	968	26.8 826	0.0638 04	20	42015	27.0 0426	0.0002 14
4	1986	26.9 4641	0.0217 91	21	45406	27.0 0447	0.0002 16
5	3098	26.9 682	0.0150 42	22	49416	27.0 0469	0.0001 79
6	5049	26.9 8324	0.0012 34	23	53321	27.0 0487	0.0001 27

7		26.9	0.0037	24		27.0	0.0002
	5324	8447	5		56485	0499	1
8		26.9	0.0031	25		27.0	0.0003
	6380	8822	26		62661	0521	03
9		26.9	0.0038	26		27.0	0.0001
	7644	9135	24		74364	0551	96
10				27			-
		26.9	0.0009			27.0	0.0008
	10089	9517	72		84566	057	9
11		26.9	0.0013	28		27.0	6.08E-
	10982	9615	79		52042	0481	05
12		26.9	0.0014	29		27.0	0.0001
	12559	9753	03		53443	0487	22
13		26.9	0.0007	30		27.0	0.0002
	14708	9893	48		56485	0499	1
14		26.9	0.0006	31		27.0	6.65E-
	16185	9968	6		62651	052	05
15		27.0	0.0009	32		27.0	0.0002
	17758	0034	28		64893	0527	73
16		27.0	0.0012	33		27.0	0.0002
	20567	0127	09		76057	0554	26
17		27.0	0.0005	34		27.0	
	25910	0247	47		88682	0577	

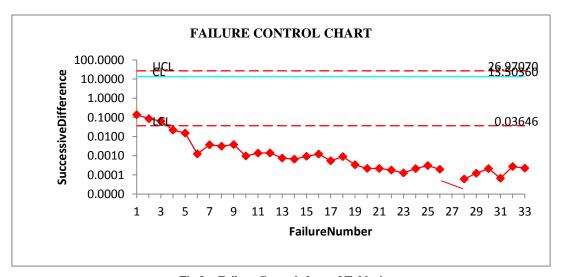


Fig 2: Failure Control chart of Table 4

7. CONCLUSION

The Failure control charts of Figure 1 and Figure 2 have shown out of control signals i.e., below LCL. . By observing Failure Control Charts, it is identified that failures are detected at early stages. The early detection of software failure will considerably improve the software reliability. Hence our method of estimation with order statistics and the control charts are giving a +ve recommendation for their use in monitoring the reliability of a software.

8. REFERENCES

- N. Boffoli, G. Bruno, D. Cavivano, G. Mastelloni; Statistical process control for Software: a systematic approach; 2008 ACM 978-1-595933-971-5/08/10.
- [2]. K. U. Sargut, O. Demirors; Utilization of statistical process control (SPC) in emergent software organizations: Pitfallsand suggestions; Springer Science + Business media Inc. 2006
- [3] Burr, A. and Owen ,M.1996. Statistical Methods for Software quality . Thomson publishing Company. ISBN 1-85032-171-X.
- [4] Carleton, A.D. and Florac, A.W. 1999. Statistically controlling the Software process. The 99 SEI Software Engineering Symposimn, Software Engineering Institute, Carnegie Mellon University
- [5]. K.Ramchand H Rao, R.Satya Prasad, R.R.L.Kantham; Assessing Software Reliability Using SPC – An Order Statistics Approach; IJCSEA Vol.1, No.4, August 2011

- [6] Arak M. Mathai ;Order Statistics from a Logistic Dstribution and Applications to Survival and Reliability Analysis;IEEE Transactions on Reliability, vol.52, No.2; 2003
- [7] Balakrishnan.N., Clifford Cohen; Order Statistics and Inference; Academic Press inc.;1991
- [8] R.Satya Prasad, K.Sita kumari, G.Sridevi; Assessing pareto software reliability using SPC, IJCSI, Vol 10, Issue 1, January 2013
- [9] Ronald P.Anjard;SPC CHART selection process;Pergaman 0026-27(1995)00119-0Elsevier science ltd.
- [10] R.SatyaPrasad, "Software Reliability with SPC"; International Journal of Computer Science and Emerging Technologies; Vol 2, issue 2, April 2011. 233-237
- [11] M.Xie, T.N. Goh, P. Rajan; Some effective control chart procedures for reliability monitoring; Elsevier science Ltd, Reliability Engineering and system safety 77(2002) 143-150
- [12]. R Satya Prasad, N Geetha Rani, "Pareto type II software reliability growth model", International Journal of Software Engineering, Vol. 2, Issue 4, 2011. pp. 81-86
- [13] Pham. H., 2003. "Handbook of Reliability Engineering", Springer

IJCATM: www.ijcaonline.org 52