
International Journal of Computer Applications (0975 – 8887)  

Volume 85 – No 18, January 2014 

32 

Aspect Interaction Analysis using Slicing and Graph 

based Semantics 

Rishabh Shukla  

Infosys Research Labs 
Infosys Ltd. 

Hyderabad, India 

 Subrahmanyam 
Kuntamukkala 

Infosys Research Labs 
Infosys Ltd. 

Hyderabad, India 

 

ABSTRACT 

Aspect Oriented language aims to make cross-cutting 

concerns clearly identifiable with special linguistic construct 

called aspects. In order to analyze the properties of an aspect 

one should consider the aspect itself and the part of the system 

it affects. This part is just a slice of the entire system and can 

be extracted by exploiting program slicing algorithms. 

However they will behave correctly in isolation, but when 

interaction changes an aspect’s behavior or disables and 

aspect, we will term it as aspect interference. We will propose 

an approach to detect aspect interference, Aspect composition 

are modeled by using graph production system for modelling 

aspect-language semantics. This graph is transformed into 

runtime-state representation. Combined with the production 

system (also with proper tool) the execution of the aspect is 

simulated. This simulation results in LTS(labelled transition 

system) that can be used to analyze verify different behavior 

at join points. 

General Terms 

Aspect Oriented Programming (AOP), Program Dependence 

Graph (PDG), Verification 

Keywords 

Program slicing, Static slicing, Dynamic slicing, Aspect 

Interference, cross cutting concerns 

1. INTRODUCTION 
Aspect-oriented programming(AOP) is a widely accepted 

language concept to improve separation of concerns on the 

implementation level. Before or during the execution of the 

program the behavior of the aspects is imposed on to the base 

.One of the major advantage of this is that is allow separate 

development of base program and the aspects. In Section 2 

We will discuss the method of slice extraction,In this we have 

taken a sample code and generated its corresponding Control 

Dependence Graph and Flow Dependence Graph. Finally we 

have extracted backward slice of the sample code. In Section 

3 We have discussed issues of analyzing interaction of aspect. 

In Section 4 we have discussed Conclusion where we discuss 

interaction of slice and aspect and a way to avoid any 

interference. In Section 5 We suggested the tool that will be 

used in out proposed scheme. We propose the usage of 

GROOVE for implementation of this approach.  

2. STUDY OF SLICE EXTRACTION 
Program Slicing[1] is a technique aimed at extracting program 

elements related to particular computation. A slice of program 

is a set of statements which affect a given point in a 

executable program. There are basically two types of slicing 

in which one can compute statically the set of statements that 

potentially affect the slicing criterion for every possible 

program execution. The other technique consider the 

information about a particular execution of program and 

derive a dynamic slice[2] of a program.There are three type of 

slice, Thefirst one is Backward Slice which is at point p is the 

program point p is the program subset that may affect p. The 

second one Forward Slice at point p is the program subset that 

may be affected by p. The program subset between program 

points p and q that may be affected by p and that may affect q 

is called chop. 

Slicing can be done with the help of Program Dependence 

Graph(PDG) in which Nodes are statements and Edge 

represent either Control Dependence or Data dependence. 

Backward slice can be computed from point p, by computing 

backward reachability in the PDG from node p. Forward slice 

can be computed from point p by computing forward 

reachability. To compute chop between p and q identify all 

paths between p and q. 

We will explain slice extraction with a example code. Firstly 

we will develop Control Dependence Graph for that sample 

code as shown in Fig 1. The edge from one node to another 

node will be there if edge from first node branches one way, 

another node will be eventually reached and if edge from first 

node branches another way than second node may not be 

reached. 

The second is the Flow Dependence Graph as shown in Fig 2 

which will together form Program Dependence Graph. For 

Flow dependence graph edge from one node to another node 

will be there if values of variable assigned at first node may 

be used at second node. For our sample code the Flow 

Dependence graph is shown below. 

 

 
Figure 1: Control Dependence Graph 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 85 – No 18, January 2014 

33 

 
Figure 2: Flow Dependence Graph 

 
To find Backward Slice we will find the backward 

reachability. The node “output(index)” has incoming edge 

from three nodes and don’t have any outgoing edge this 

corresponds to line 1 , 3 ,6 and last line. Similarly we will 

continue and finally reach to node involving the loop 

condition this will correspond to 4 line of the sample program 

.The final extracted slice shown in Fig 3.  In the figure the 

bold line corresponds to that of flow dependence graph and 

simple line is of control dependence graph.  

 
 

Figure 3: Slice Extraction 

 

3. ANALYSIS OF ASPECT 

INTERACTION 
This section deals with analysis of interaction among aspects.  

An aspect oriented program is composed by weaving aspect 

and class together. The newly formed aspect is weaved with 

and it add it as new cross-cutting concern functionality 

without breaking the rules.Let a code unit be an aspect  or a 

class of a system. We say that an aspect SampleAspect does 

not interfere with code unit SampleClass if and only if every 

interesting predicate on the state manipulated by SampleClass 

is not changed by the application of SampleAspect. For 

instance if an object sampleObject manipulated by 

SampleClass exist such that the predicate sampleObject<= 0 

must hold for the correctness of the system, SampleAspect 

does not interfere with SampleClass only if SampleClass 

woven with SampleAspect preserves sampleObject<= 0. 

Let SampleAspect1 and SampleAspect2 be two aspect and 

SampleSlice1 and SampleSlice2  the corresponding backward 

and forward slices obtained by using pointcuts declarations 

defined in SampleAspect1 and SampleAspect2 as slicing 

criteria. Now we need to identify interference between 

SampleAspect1 and SampleAspect2.  

3.1 Composition Filter Model 
It is extension of conventional object-based model, where 

objects are enhanced with filters for the manipulation of 

incoming and outgoing messages.Filters are grouped into 

components called filter models shown in Fig 4. These units 

of reuse provide execution context for the filters. 

 
Figure 4: Composition Filter Model 

 

Composition Filters concept can be mapped to those of 

regular AOP-language. Superimposition specification pointcut 

designator. We present a sample code of SampleAspect in Fig 

5, it consist of filter module named SampleModule, which 

contain one input-filter. This filter is evaluated when a 

message is received by an object enhanced with this filter-

module. The input-filter declaration contains the name of the 

Sample filter and a matching pattern which matches the 

selector send. A substitution part(*.*) will pass the matched 

target and selector to the action performed by the filter. The 

superimposition selects class Server using query on the static 

structure of the base program, and superimposes the 

SampleModule filter module on this class, Thus, whenever a 

method named send is called on an instance of class Server. 

 
Figure 5: Sample Aspect Code 

 

Now we have defined composition filter model we have to 

check the interference for the following condition. We should 

ensure that. 

SampleAspect1  ∩SampleSlice2 = NULL 

AND 

SampleAspect2  ∩SampleSlice1 = NULL 

Now with aspects and slice we will generate a transition 

system of execution using graph transformation based 

operational semantics. We will then identify the occurrence of 

above two cases from this transition system. For a 

Composition Filters program we will generate a graph of 

Abstract Syntax Tree.  

3.2 Production Rules 
In order to carry out transformation and generate state spaces 

we propose to use GROOVE as a tool. GROOVE notation 

shown in Fig 6 contain nodes and edges, the labels in nodes 



International Journal of Computer Applications (0975 – 8887)  

Volume 85 – No 18, January 2014 

34 

are in fact self-edges connected to those nodes Different line 

style have different significance.  

The first figure shows a normal line is called as Reader 

element and used for matching, the second with dashed 

elements are eraser elements which will be removed and thus 

also are required for matching the rule, the third figure which 

represent thick lines represent creator elements which will be 

added to the graph when the rule applied. The fourth is thick 

dashed line represent embargoes, it is negative application 

conditions which when matched prevent the rule from being 

applicable. 

From the AST,we will generate Abstract Syntax Graph, By 

the time the graph is generated the complier has already 

resolved the superimposition part and the filtertype(which is 

replaced by the accept and reject action.)  

3.3 Generation of Control Flow Graph 
Then next step is to add control flow information and we will 

get Control Flow Graph. It consists of flow and branch edges; 

the latter lead to dedicated Branch nodes, which in turn 

identify the value under which a particular control flow is 

taken. Then we use production system for simulation of 

execution where ever rule specified the runtime semantics of a 

single flow element.  

 

Figure 6: GROOVE Notation 

 

4. SECTIONS 
In our proposed approach allows to abstractly specify the 

behavior of advice actions, such that only relevant behavior is 

in-corporated. Even though it doesn’t guarantee that a 

composition of aspect is free of interference, there will be a 

warning for interference in case of non-confluent result. We 

propose that when advices are commutative for every 

combination of condition value the shared join points is 

highly likely free of interference. In Labeled Transition 

System the visual nature helped in getting the knowledge of 

composition of advices, even as simply as seeing different 

shapes under difficult condition values. This will help in 

decision for debugging purpose.  

5. TOOL SUPOORT 
In our proposed method the graph generator will be 

implemented as s Compose complier module which will be 

compile time and run time implementation of Composition 

Filter language. Compose is available both in Java and .Net 

platform.  

After graph have been generated run-time simulation is 

started. The final Labeled Transition System can be opened in 

GROOVE viewer. Analysis of the state space to give 

understandable feedback to the user can only be obtained by 

visual aid, automatic capability is still not there.  

6. REFERENCES 
[1] Weiser, M., “Program Slicing”, IEEE Transactions on 

software engineering, Vol. 10, Issue 4, 1984, 352-357.  

[2] Korel, B. and Laski, J., “Dynamic Program Slicing”, 

Information Processing Letters, Vol. 29, Issue 3, 

doi>10.1016/0020-0190(88)90054-3, 26 October 

1988,155-163.  

[3] Mehmet Aksit ,ArendRensink, and Tom Stajien “A 

graph-transformation-based simulation approach for 

analysing aspect interference on shared join 

points”AOSD’09 March 2-6, 2009, Charlottesville, 

Virginia, USA. 

[4] DavideBalzarotti, MattiaMonga “Using Program Slicing 

to Analyze Aspect Oriented Composition” Foundation of 

Aspect Oriented Language2004.  

[5] Tom Staijen, ArendRensink “A Graph Transformation-

Based Semantics for Analysing Aspect Interference” . 

[6] Kim Mens, Tom Tourwe “Evolution Issues in Aspect-

Oriented Programming”. 

 

IJCATM : www.ijcaonline.org 


