
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

13

Feature-based Comparison of iSCSI Target

Implementations

Nitin Gode
MIT College of
Engineering,

Survey No. 124, Paud
Road,

Pune 411038, India

Rhushida Kashalkar
MIT College of
Engineering,

Survey No. 124, Paud
Road,

Pune 411038, India

Deepika Kale
MIT College of
Engineering,

Survey No. 124, Paud
Road,

Pune 411038, India

Sukhada Bhingarkar
MIT College of
Engineering,

Survey No. 124, Paud
Road,

Pune 411038, India

ABSTRACT
Small Computer System Interface (SCSI) is a set of protocols

used for communication and data transfer between I/O devices

like computers and storage devices. SCSI standards include

various commands, interfaces and protocols that are required to

communicate with devices such as hard disks, DVD and

printers. iSCSI is a storage standard for exposing and utilizing

data storage devices over network using TCP/IP protocol. iSCSI

provides remote data operations by performing SCSI commands

over TCP/IP networks. This paper explains the features of

various iSCSI Target Frameworks currently in use, such as

SCSI Target Framework (STGT), Generic SCSI Target

Subsystems for Linux (SCST), Linux I/O Target (LIO), iSCSI

Enterprise Target (IET). The paper also presents a comparison

of the features of these implementations.

Keywords
Storage/Repositories, Distributed File Systems

1. INTRODUCTION
Small Computer System Interface (SCSI) is a set of protocols

used for communication and data transfer between I/O devices

like computers and storage devices. SCSI standards include

various commands, interfaces and protocols that are required to

communicate with devices, mostly hard disks. SCSI is a peer-

to-peer interface capable of handling 16 devices on a single bus.

iSCSI is an IP based storage networking standard for linking

data storage facilities. iSCSI provides location independent data

storage and retrieval by carrying out standard Small Computer

System Interface (SCSI) commands over IP networks. Two

iSCSI hosts can thus be connected over an IP network. SCSI

commands are exchanged over this network for exchanging of

data. These hosts are classified as initiators and targets. An

iSCSI target functions as the endpoint that waits for and

services requests from a client machine (initiator). It may be a

network-connected storage device, array, or an emulated target.

[1, 2, 3]

Section 2 presents several works related to the paper. Section 3

contains a detailed study of the target implementations covered

in the paper, namely iSCSI Target Framework (STGT), Generic

SCSI Target Subsystems for Linux (SCST), Linux I/O Target

(LIO), iSCSI Enterprise Target (IET). Section 4 presents a

comparison table of the iSCSI Target implementations and its

analysis. Section 5 presents the conclusion and future scope for

the paper.

2. RELATED WORK
Related papers in which the performance of iSCSI target

software is discussed include [4], [5], [6], [7] and [8]. The

performance of the Ardis target framework (on which IET is

based) with several legacy target frameworks not covered by

this paper, including variants of the UNH target and the Ardis

target is compared in [8]. In [4], Y. Lu et al compare the

performance between iSCSI target and a NAS scheme. The

overheads that the iSCSI subsystem introduces as compared to

direct file storage systems are discussed in [5]. The

performance of iSCSI protocol in various scenarios, such as in a

WAN and when having virtualized disks is evaluated in [6].

Khosravi et al discuss performance of iSCSI in server

environments in [7].

While there exist a number of papers that discuss the

performance of iSCSI Targets, none discuss the feature set of

the current target frameworks.

3. CURRENTLY AVAILABLE TARGET

FRAMEWORKS
This section explores the features of several popular iSCSI

target frameworks, including STGT, SCST, LIO (TCM) and

IET. The following section provides the comparison between

the features of these frameworks.

3.1 STGT
STGT (SCSI Target Framework) was the standard

multiprotocol SCSI target in Linux. It was an alternative

implementation of SCSI target framework for Linux [9, 10].

The main purpose of STGT was to simplify SCSI Target

creation. In STGT, the target was implemented in userspace

rather than the kernelspace. STGT was merged in earlier

versions of Linux kernel as it was considered to be correctly

implemented. However, STGT was replaced by LIO (from

Linux kernel 2.6.38) as LIO had several advantages over STGT.

STGT’s goal was to integrate into SCSI layers in user space

rather than kernel space. Bidirectional commands could be used

in STGT. However it had several performance and complexity

problems, making it unsuitable for use in a production

environment.

3.2 SCST
The Generic SCSI Target Subsystem for Linux (SCST) allows

creation of sophisticated storage devices from any Linux

device. [10] SCST devices provide extended functionality like

replication, device add/remove notification, thin provisioning,

support for AEN, etc. Links that support SCSI commands like

iSCSI, FCoE, SAS, Wide SCSI, etc. can be efficiently used by

SCST implementation.

SCST project consists of a set of subprojects: generic SCSI

target mid-layer itself (SCST core) with a set of device handlers

as well as target drivers and user space utilities. [10] For

communication between the target drivers and the kernel, SCST

implements interfaces. These interfaces are used for connecting

the backend handlers with the target drivers. The SCST core

processes any requests received by the target and checks them

http://linux-iscsi.org/wiki/SCSI

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

14

for errors. It also solves most execution problems, thus making

implementation and functioning easier in the kernel.

SCST core emulates necessary functionality of SCSI host

adapter, as from the perspective of a remote initiator, a SCSI

target acts as a SCSI host with its own devices. [10] This is

important in cases where multiple initiators are connected.
Particularly, incoming requests can be processed in the caller's

context or in one of the internal SCST core's tasklets without

any extra context switches. [10] For example, pass-through

device handlers allow exporting real SCSI hardware and vdisk

device handler allows exporting files as virtual disks. [10]

3.3 LIO

LIO target is an open-source implementation of an iSCSI target

framework which is included in the upstream Linux kernel

(since Linux 2.6.38). It supports a large number of fabrics,

including FCoE, Fiber Channel, iSCSI and vHost. Its advanced

feature set has made it possible for it to achieve VMware

vSphere 4 Ready Certification and vSphere 5 Ready

Certification [11].

The target engine is based on a high performance SCSI engine

which implements the semantics of SCSI Architecture Model 2

(SAM 2) and the SCSI Primary Commands specification (SPC-

3 and SPC-4) [11]. It supports Memory Copy RAMDISK,

which provides comprehensive SCSI emulation and separate

memory mapping per initiator [11]. It also supports specialized

functionality, such as MC/S (Multiple Connections/Session),

Asymmetric Logical Unit Assignment (ALUA) and Error

Recovery Levels (ERL 0, 1, 2).

LIO supports a large number of backstores, including FILEIO

(buffered and non-buffered), IBLOCK (any block device), Pass-

through SCSI (PSCSI) devices and Ramdisk. It has in-built

support for virtualization, including native support for libvirt,

OpenStack (beginning with Release 2013.1) and KVM.

LIO has a fully kernel-based architecture, with several user-

space configuration tools including IOCTLs, ProcFS, ConfigFS,

rtslib (Python based API), targetcli (command line interface)

and configshell.

3.4 IET
iSCSI Enterprise Target (IET) is a kernel based target driver

based on Ardis target implementation created by Ardis

Technology. It was created with the goal of creating an

enterprise ready iSCSI target which is scalable enough and

versatile enough to meet the rapidly changing requirements of

SAN storage technology. It includes several features not present

in the original Ardis implementation, such as SMP support,

Linux 2.6 support, dynamic configuration and iSNS

support.[11]

IET consists of a kernel-based target driver and user-space

configuration tools. The kernel driver can be configured using

IOCTLs, Netlink and ProcFS interfaces [12]. IET includes a

configuration tool ietadm, which allows dynamic configuration.

The basic configuration of IET is stored in /etc/ietd.conf

IET supports various features over Ardis implementation.

Dynamic addition and deletion of targets, volumes and

authentication accounts is supported. It supports FILEIO and

BLOCKIO backstores, with zero copy read/write support for

BLOCKIO devices. It supports failover clusters, and Multipath

IO (MPIO), a method by which data can take multiple

redundant paths between server and storage. It also supports

SCSI-2 RESERVE/RELEASE and SCSI-3 PR [11]. It also

supports I/O context grouping between I/O threads, which can

improve performance to a large scale in kernels using CFQ I/O

Scheduler. Similarly it supports iSCSI redirects and Internet

Storage Name Service (iSNS) protocol.

IET however does not support any transport fabrics other than

iSCSI. IET has an unsafe implementation of Task Management

Commands – it processes ORDERED commands in the same

way as SIMPLE commands, which may lead to data corruption.

It has been replaced by other target implementations in several

popular Linux distributions, because of lack of support and of

modern feature.

4. COMPARISON OF LINUX SCSI

TARGETS
From the study of the target, it is possible to draw several

conclusions.

Of the above discussed frameworks, LIO requires minimum

effort to use, as it is already merged with the mainstream kernel.

All implementations have a generic target engine, except IET,

which has support only for iSCSI. LIO and SCST have kernel-

space architecture, while IET has a split architecture (data

transfer is kernel-space, while management is user-space) and

STGT has completely user-space architecture.

In the target frameworks, both LIO and SCST support target

drivers in user-space as well as kernel space (SCST via

scst_local, LIO via tcm_loop), whereas IET does not. In

addition, SCST and LIO support kernel-space backstore

handlers. LIO also supports Memory Copy RAMDISK.

SCST in particular provides an extended set of functionality not

supported by any other initiators, including automatic session

reassignments (changes in access control immediately seen by

all initiators), support for AENs (asynchronous event

notifications) and notifications for device add/remove/resize

(through AENs/Unit Attentions). It also supports bidirectional

SCSI commands. All the target frameworks satisfy SCSI safe

RESERVE/RELEASE requirements; though only SCST has a

fully safe implementation of task management commands (LIO

has safe implementation only for LUN RESET).

With respect to the iSCSI target, most implementations support

only zero-copy data send. SCST does not support MC/S

(supported by LIO and IET), a feature which allows several

connections per session, making failover recovery faster.

However, SCST allows a more fine-grained control over

visibility of targets, such as per-portal and per-initiator target

visibility control. In addition, both SCST and LIO support use

of hardware instructions for digest calculations.

Table 1 summarizes the comparison of the iSCSI Target

Implementations.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

15

Table 1 Feature based comparison of iSCSI Target Implementations [10]

 SCST STGT IET LIO/TCM

Generic Target Engine Yes Yes iSCSI only Yes

Architecture Kernel only User space only Split Kernel only

Target drivers in kernel space Yes No No Yes

Backstorage handlers in kernel

space

Yes No No Yes

Backstorage handlers in user

space

Yes Yes No No

Automatic sessions reassignment Yes No No No

Support for Asynchronous Event

Notifications (AEN)

Yes No No No

Notifications for devices

added/removed or resized

through AENs or Unit Attentions

Yes No No No

Bidirectional Commands Yes Yes No Yes

Extended CDB (size >16 bytes) Yes Yes No Yes

According to SCSI requirements

safe RESERVE/RELEASE

implementation

Safe Safe Safe Not safe

Implementation of Task

Management commands

Safe Not safe Not safe LUN RESET - safe. Other

TM commands not

implemented.

Supported Transport and

Hardware

iSCSI, SRP iSCSI, iSER iSCSI iSCSI, SRP (Preliminary),

iSER (Preliminary)

Supported Backstore FILEIO (Kernel and

User), BLOCKIO

FILEIO (User) FILEIO

(Kernel),

BLOCKIO

FILEIO (Kernel), BLOCKIO,

Ramdisk

Interface with user space IOCTL/Netlink/SysFS

(or obsolete ProcFS)

Not Applicable IOCTL/ProcFS/

Netlink

IOCTL/ProcFS/ConfigFS

Zero-copy data send/receive Send only In some cases,

send only

Send only Send only

Multiple connections per session

(MS/C)

No No Yes Yes

Max Error Recovery Level (ERL) 0 0 0 2

Support for limiting number of

initiators allowed to connect to a

target

Yes No Yes No

Per-portal targets visibility

control

Yes No Yes No

Per-initiators targets visibility

control

Yes Yes Yes No

Support for AHS Yes Yes No No

Support for iSCSI redirects Yes Yes Yes No

Support for iSNS Yes Yes Yes No

Implementation of connections

and sessions reinstatement

Safe Not safe Not safe Not safe

For digest calculations, Usage of

hardware instructions

Yes No No Yes

http://scst.sourceforge.net/
http://stgt.berlios.de/
http://iscsitarget.sourceforge.net/
http://scst.sourceforge.net/scstvslio.html
http://scst.sourceforge.net/mc_s.html
http://scst.sourceforge.net/mc_s.html

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 16, January 2014

16

5. CONCLUSION AND FUTURE SCOPE
This paper has described the functionality of the various Linux

iSCSI Targets available currently and their comparison with

respect to various functionality that they offer. From this it can be

concluded that LIO requires least efforts to use in a server

environment, as it is already present in the Linux kernel. LIO and

SCST support target drivers in both user space and kernel space,

while IET does not. Both SCST and LIO offer a varied and

greater functionality as compared to IET and STGT, and may be

considered as mature enterprise-ready target implementations.

The scope of this paper is limited to the functionality of the

targets. In future works, this scope may be extended to include

several other parameters, such as performance, specifically

performance of IO operations considering the type of backstores

used, network delays introduced (if any) and difference in

execution time of IO operations and an analysis of the overheads

introduced by each framework.

6. ACKNOWLEDGEMENTS
We would like to thank our mentors, Vishal Tripathi (Calsoft

Inc.), Sumeet Gandhare (Calsoft Inc.), Zubraj Singha (Calsoft

Inc.) for their help and guidance in our project and the subject.

7. REFERENCES
[1] RFC 3720 - Internet Small Computer Systems Interface

http://www.ietf.org/rfc/rfc3720.txt

[2] iSCSI: The Universal Storage Connection – John L. Hufferd

ISBN: 978-0201784190

[3] IP SANS: A Guide to iSCSI, iFCP, and FCIP Protocols for

Storage Area Networks – Tom Clark

ISBN: 978-0201752779

[4] Yingpin Lu. “Performance study of iSCSI-based storage

subsystems.” Communications Magazine, IEEE Volume:41

, Issue: 8

[5] Bianco, A., Dip. di Elettron. et al. “Distributed storage on

networks of Linux PCs using the iSCSI protocol.” High

Performance Switching and Routing, 2008. HSPR 2008.

International Conference

[6] Xinidis D., Bilas A. et al, “Performance evaluation of

commodity iSCSI-based storage systems.” Mass Storage

Systems and Technologies, 2005. Proceedings of 22nd IEEE

/ 13th NASA Goddard Conference

[7] Khosravi, H.M., Abhijeet Joglekar, Iyer, R. “Performance

characterization of iSCSI processing in a server platform.”

Performance, Computing, and Communications Conference,

2005, IPCCC 2005. 24th IEEE International

[8] Fujita Tomonori, Ogawara Masanori. “Analysis of iSCSI

target software.” Proc. of. SNAPI '04 Proceedings of the

international workshop on Storage network architecture and

parallel I/Os

[9] Linux SCSI target framework (tgt) project

stgt.sourceforge.net/

[10] SCST: A Generic SCSI Target Subsystem for Linux

scst.sourceforge.net/

[11] Linux SCSI Target, http://linux-iscsi.org/

[12] Debian Wiki - iscsitarget,

https://wiki.debian.org/SAN/iSCSI/iscsitarget.

IJCATM : www.ijcaonline.org

