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ABSTRACT 

We present a novel implementation of the pairwise DNA 

sequence alignment problem other than the Dynamic 

programming solution presented by Smith Waterman 

Algorithm. The proposed implementation uses CUDA; the 

parallel computing platform and programming model invented 

by NVIDIA. The main idea of the proposed implementation is 

assigning different nucleotide weights then merging the sub-

sequences of match using the GPU Architecture according to 

predefined rules to get the optimum local alignment. We 

parallelize the whole solution for the pairwise DNA sequence 

alignment using CUDA and compare the results against a 

similar semi-parallelized solution and a traditional Smith-

Waterman implementation on traditional processors; 

Experimental results demonstrate a considerable reduction in 

the running time. 
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1. INTRODUCTION 
Sequence comparison is a very basic and important operation 

in Bioinformatics. Sequence alignment algorithms detect 

similar or identical parts between two sequences called the 

query sequence and the reference sequence [1]. The global 

and local sequence alignment are the most prevalent kinds of 

sequence alignment. In global alignment problem finds the 

superior counterpart between the whole sequences. On the 

other hand, local alignment algorithms must find the superior 

counterpart between parts of the sequences.  

Genomic databases have an exponential growth rate. The 

growth of database size increases the time required for 

searching. Complexity of sequence comparison is 

proportional to query size and database size [2], [3]. 

The recent development of multi-core architectures provide an 

opportunity to accelerate sequence database searches using 

available and inexpensive hardware. 

CUDA is the architecture and developing platform of the 

NVIDIA GPU. It is a C like programming language.  CUDA 

programs contains code that run on both the CPU, or host, and 

the GPU or as called device. The Kernel is the code running 

on the GPU; it contains the computationally intensive parts of 

the program [4]. 

GPU is the computing device suitable for parallel data 

applications. GPU has its own device random access memory 

and may run a huge number of threads in parallel [5] as shown 

in Figure.1. Blocks consists of threads, and many blocks can 

run within a grid of blocks. This structured sets of threads 

could be launched on a kernel of code and process the data 

stored in the device memory. Figure.2  shows that threads of 

the same block share data through fast shared on chip memory 

and they can be synchronized through synchronization[6], [7]. 

The proposed implementation benefits from the CUDA 

architecture and the single instruction multiple thread SIMT 

model. 

 

Fig. 1 Heterogeneous programming [5] 

In the proposed implementation, the SIMT completes the 

DNA sequence comparison in three stages; the first stage 

finds matches and mismatches between each nucleotide from 

both the query and the target sequences. The second stage 

weights and highlights the subsequences of matches. The third 

stage merges the resulting subsequences of matches in order 

to find the optimum alignment between the two sequences. 

We organize the rest of the paper as follows: Section 2 

describes the related work. Section 3 describes the proposed 

framework. Section 4 provides the experimental results. 

Section 5 augments some concluding remarks. 
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Fig. 2 CUDA Memory Model [6][7] 

2. RELATED WORK 
There are many approaches used to solve sequence alignment 

problem. Dynamic programming, heuristic approach, and 

linear space alignment are of those approaches. Tools using 

the heuristic approach like FASTA [8] and BLAST [9] are 

practical as they find the near optimal solution; they are 

approximation algorithms that cannot give the optimal 

solution. Both Needleman-Wunsch algorithm [10] for global 

alignment and Smith-Waterman algorithm [11] for local 

alignment use dynamic programming approaches. However, 

the complexity of the dynamic programming approach is O 

(MN), where M and N represent the lengths of two DNA 

sequences been compared. 

The Smith-Waterman algorithm is a variant of the 

Needleman-Wunsch. It has the same maximization step with 

the added value of 0. Let X = (x1, x2.  . . xn) and Y = (y1, y2, 

. . , ym) be two sequences that are to be compared. Let d(x, y) 

be the substitution cost for changing x into y and g the cost of 

the insertion/deletion (gap) operation. H (i, j) is defined as the 

maximum similarity of two segments ending at xi and yj. The 

following recursion gives the Smith and Waterman algorithm. 

 

 

 

 

 

 

 

 

In Smith-Waterman algorithm for each cell in the dynamic 

programing matrix, we need to compute the upper, left and 

diagonal cells adjacent to that cell to find the best alignment 

between two DNA sequences. 

Parallel processing and architecture was a very good solution 

for solving the DNA sequence alignment problems. Many 

implementations was done using the Nvidia GPUs to 

accelerate the Smith-Waterman algorithm. 

Liu did the early implementation of Smith-Waterman using 

OpenGL-based implementation, reported in [12]. A 

parameterisable implementation on CUDA-compatible GPU’s 

[13], this implementation used the divide and conquer 

approach to compute the alignment matrix by dividing the 

entire matrix computation into sub matrices and allocating 

available amount of threads and memory to each sub-matrix. 

That approach could achieve 4.2 GCUPS against Swiss-Prot 

database on Geforce 8800GTX and it was 15 times faster than 

the CPU implementation. A new parallel method for Smith-

Waterman algorithm was introduced in [14]. The new method 

compute all the elements in the same column of the Smith-

waterman Dynamic programming matrix independent of each 

other in parallel rather than computing all elements in the 

same anti-diagonal independently of each other in parallel. It 

exploits parallelization of the columns. That approach 

achieved 37 times speed up over the OSEARCH, but it fixed 

the target sequence length to 361base pair and used 176469 

protein sequence.   

The previous solutions was among many proposed Smith-

Waterman solutions implemented for multiple sequence 

alignment. We present another novel implementation using 

the Nvidia CUDA capable GPUs but for the pairwise DNA 

sequence alignment. 

3. METHODS 
The proposed method for DNA sequence alignment using 

CUDA compatible GPUs consists of three main phases for the 

two DNA sequences S of length n, and T of length m to be 

alignment. The three phases are the initialization phase, the 

preprocessing phase and the alignment phase. 

The Initialize Phase works at the Host side (CPU). It allocates 

memory in both CPU and GPU for passing the two DNA 

sequences and storing the alignment results.  The initialization 

phase also reserves a number of CUDA blocks and threads per 

block to carry out the alignment operation; the number of 

activated blocks and threads depends on the size of the two 

DNA sequences. 

The second phase is the Pre-processing Phase carried out on 

the device GPU. It compares each DNA nucleotide in the two 

sequences and fill the initialization vector at the GPU with 

values for both DNA nucleotide match and mismatch. At the 

pre-processing phase, we activate a sufficient number of 

threads that can carry out n × m initialization operation. All 

the thread blocks perform an exact matching between the 

corresponding first sequence nucleotide and second sequence 

nucleotide simultaneously. Corresponding locations in the two 

sequences are compared such that a weight of 2 is granted to 

matched positions and 0 is granted to unmatched.  Figure. 3 

shows the pseudo code for both the initialization and 

preprocessing phases to align the two DNA sequences S and T 

of lengths n and  correspondingly. 

The third and final phase is the Alignment Phase executed on 

the device GPU; it works on the resulting output matrix of the 

pre-processing Phase. We divide the alignment phase to two 

main processes; the sequence matching process and the 

merging sub-sequences process. 

The main purpose of the sequence-matching process is to 

highlight the subsequence of match between the query and the 

subject sequences by weighting the match and the sub-

sequences of match. In the sequence matching process, a 

weight of 4 is granted to any position in the matrix having an 

initial weight of 2 if at least one of its adjacent upper diagonal 

left or lower diagonal right positions have a weight of 2.  If 

both of the mentioned adjacent positions have a weight of 2 

then, a weight of 6 is granted to the specific position.  This 

approach maximizes the score of continuous “subsequence 

matching” as shown in Fig4. The sequence-matching process 

then passes the resulting matrix to the CPU host memory to 

prepare it for merging. 

0 

H (i, j-1) – g 

H (i, j) = max H (i-1, j-1) + d (xi, yj) (1) 

H (i-1, j) - g 

                               H (i, 0) =H (0, j) =0. 
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The Merging sub-sequences process is concerned with the 

final step of the proposed system that gets the final alignment 

of the given two sequences. We clearly defined the resulting 

matrix from the previous process “sequence-matching” by 

representing the sub-sequences of match by filling an index 

table that contains a list of matched subsequences represented 

by both lead and trail represented by i and j coordinates” of 

each matched subsequence, its score, and Mismatch/gap.  

Using the index table located on the CPU host memory, we 

first apply a merge sort to sort all the index table entries 

ascending according to their score, and then discard the very 

small sub-sequences of score equals to 2 that represents “only 

one match” for being useless after getting all the huge sub-

sequences of match. The resulting index table is then passed 

to the device GPU for the last processing step in the merging 

process. 

The merging process tries to link the index table entries 

according to an input threshold given by the user until the 

optimum alignment could be found. Figure 5 represents how 

the Merging sub-sequences process operates. 

We input a merging threshold K “the longest common sub-

sequences between the two DNA sequences” that indicates 

how many subsequence to be merged with the whole entries 

in the table of indices. Given that the first sub-sequence is 

represented by its coordinates (       
    ,       

    ), (       
    ,        

    ) 

and its score is               and the second sub-sequence is 

represented by its coordinates (       
          

   ) and (        
   ,        

   ) 

and its score is              and the Gaps and/or Mismatches 

between the two sub-sequences is represented by equation (2). 

               
         

          
         

     (2) 

 

We perform the merging of the index table entries according 

to one of the following rules: 

Rule 1: If the first sub-sequence’s trail and the second sub-

sequence’s lead have the same i or j coordinate and the first 

sub-sequence proceeds the second one and the gab/mismatch 

between the two sub-sequences is less than the first sub-

sequence’s score, then the total score of the merge is shown in 

equation (3) 

/*****************Assumption***************/ 

Input: devMatrix from the pre-processing phase. 

Output: ResultMatrix containing the sequence matching 

process results. 

*********** Sequence Matching kernel ********** 

1- Invoke the sequence matching Kernel to hold a max. N= 

n*m     comparison. 

2- For All the threads Perform the sequence matching process 

and store results in the  ResultMatrix according to the 

following rules: 

tid= threadIdx.x+ blockIdx.x*blockDim.x; 

While ( tid<N) 

 Get neculidiede from S and T where 

 i=tid % n; //       i=1… n.  

 j=tid/ n; //  j=1… m. 

 updiag= tid - (n+1); 

 downdiag= tid + n +1; 

if(devMatrix [tid]==0)ResultMatrix[tid]=0; 

else if (devMatrix [tid]!=0) 
 if(((i==0) AND (j==m-1))OR((i==n-1) AND   

 (j==0))) //top left & bottom right 

  ResultMatrix [tid] = 2; 

 else if((i==0)OR(j==0)) // up & left 

  if(devMatrix[downdiag]==0) 

   ResultMatrix [tid]=2; 

  else  

   ResultMatrix [tid]=4; 

  end if 

   else if((i==n-1)OR (j==m-1))//down&right 

  if(devMatrix[updiag]==0) 

   ResultMatrix [tid]=2; 

  else  

   ResultMatrix [tid]=4; 

  end if 

 else 

  if((devMatrix[updiag]==0)AND  

  (devMatrix[downdiag]==0)) 

   ResultMatrix [tid]=2; 

  else if((devMatrix[updiag]!=0 AND 

  devMatrix [downdiag]==0) 

  OR(devMatrix [updiag]==0 AND 

  devMatrix [downdiag]!=0)) 

   ResultMatrix [tid]=4; 

  else if((devMatrix [updiag]!=0 AND

  devMatrix [downdiag]!=0)) 

   ResultMatrix [tid]=6; 

  end if 

 end if 

end if 

tid+=blockDim.x*gridDim.x; 

end While  

Fig. 4 Sequence Matching Process 

/*****************Assumption***************/ 

Query Sequence S of length-> n 

Subject Sequence T of length ->m  

Resulting matrix from the pre-processing ->  devMatrix 

****************************************** 

1- Allocate Device memory for n and m. 

2- Send S and T to the GPU. 

3- Invoke the pre-processing Kernel to hold a max. N= 

n*m     comparison. 

4- For All the threads Perform the pre-processing phase 

according to the following rules: 

  tid= threadIdx.x+ blockIdx.x*blockDim.x; 

While ( tid<N) 

    Get neculidiede from S and T where 

  i=tid % n; //       i=1… n.  

  j=tid/ n; //  j=1… m. 

 if(S[i]==T[j]) 

  devMatrix[tid]=2; 

 else 

  devMatrix [tid]=0; 

 end if 

  tid+=blockDim.x*gridDim.x; 

end while 

Fig. 3 Initialization and Pre-processing phases. 



International Journal of Computer Applications (0975 – 8887)  

Volume 84 – No 1, December 2013 

28 

 

IF (          
         

            
        

      

        
         

              
        

   ) 

       G                       G     

            ) 

Total score=                              
(3) 

 

Rule 2: If the first sub-sequence proceeds (up and left) the 

second sub-sequence and the gab/mismatch between the two 

sub-sequences is less than the first and the second sub 

sequences’ scores, then the total score of the merge is shown 

in equation (4). 

ELSE IF (         
        

               
        

     

       G                  

                         ) 

 

Total score=                                 
(4
) 

 

  

/****************** *************** CPU Side *************************************/ 

1- Convert the ResultMatrix from the GPU resulting from the Sequence Matching process to an index Table. 

2- Apply merge sort to the Index Table, and sorts the sub-sequences descending according to their score. 

3- Discard small sub-sequences of score equal 2.   

4- Pass the Index Table to the Merging Round Kernel. 

/********************************GPU Side*************************************/ 

Index Table Size ind_size. 

Threshold K k_size. 

Input: Index Table representing each sub-sequence with a lead and trail and each has i and j coordinates. 

Output: Modified Index Table with the new merged sub-sequences   Mod_Ind_table. 

/********************************  Merging Sub-sequences Kernel ********************************/ 

1- tid=  threadIdx.x+ blockIdx.x*blockDim.x; 

2- The maximum number of merging per round is M=  ind_size*k_size; 

while(tid<M) 

 i=tid/ ind_size; //the k index 

 j=tid % ind_size; //the size index 

 Sequence seq1 =Index_Table[i]; 

 Sequence seq2= Index_Table[j]; 

   if(i!=j) 

 Sequence seq3; 

 m_g = max(((seq2.lead.i)-(seq.trail.i)),((seq2.lead.j)-(seq.trail.j))); 

 if Rule (1) Applied 

  1- Fill sequence 3 so that its (i,j) lead is equal to Sequence1 and   its (i,j)trail is 

equal to Sequence2. 

  2- seq3.score = seq.score + seq2.score - m_g - 2; 

  3- seq3.m_g = seq.m_g + seq2.m_g + m_g; 

  4- Mod_Ind_table[tid]=seq3; 

 else if Rule (2) Applied 

  1- Fill sequence 3 so that its (i,j)lead is equal to Sequence1 and its   (i,j)trail is equal 

to Sequence2. 

  2- seq3.score =seq.score + seq2.score - (m_g - 1); 

  3- seq3.m_g = seq.m_g + seq2.m_g + m_g - 1; 

  4- Mod_Ind_table[tid]=seq3; 

 end if 

   end if 

tid+=blockDim.x*gridDim.x; 

end while 

3- After a round of merging and getting new sub-sequences, delete from the table of indices the first subsequence 

used in margining each new subsequence. 

4- Repeat the merging until there are no sequences to be merged. 

Fig. 5 Merging Sub-Sequences Process. 
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The above rules and equations show that there is no task 

dependency for merging the index table entries, so we could 

execute this part efficiently on the device GPU.  

We then add the new merged sub-sequences to the index table 

delete from the table of indices the first subsequence used in 

margining each new subsequence. We repeat the merging 

rules until there are no sequences to be merged. 

By completing the merging process, we can point to the 

alignment of maximum score and minimum gaps and 

mismatches. 

Increasing the DNA sequences’ size requires increasing the 

number of pre-processing and sequence-matching operation, 

also increasing the threshold K leads to an increase in the 

number of rounds required to get the optimum alignment. 

Using the CUDA architecture makes it obvious to scale the 

number of threads needed for pre-processing, sequence 

matching and merging sub-sequences kernels.The GPU 

implementation is scalable as we can activate different 

number of blocks and threads per block according to the given 

query and target sequence sizes and the threshold K. 

It is clear that there is no task dependency in any of the 

proposed three main phases the initialization, pre-processing 

and Merging Sub-sequences phases. Therefore, we 

implemented them using CUDA provided by NVidia GPU 

which can lead to a significant improvement in the speed 

without the need to deploy special purpose hardware as in 

[15]. 

1. RESULTS 
In this section, we present the experimental results of the 

proposed pairwise method for DNA sequence alignment 

implemented on GPU compared to another two similar 

approaches presented in both [15] and [16]. We implemented 

the proposed method using Microsoft Visual Studio 2010 and 

NVidia GPU Computing SDK 4.2. We used an Intel Core i5 

2430M 2.4GHZ, 4 GB DDR3 Memory and NVidia GeForce 

GT540M GPU with 96 CUDA Cores with 1GB device 

memory. All the implementations run on Windows7 with 

Display Driver285.86.  

Table 1 shows the total execution time for the three phases of 

the proposed method “Initialization, Pre-processing and 

Alignment phases” recorded at different input sequences’ size 

starting from  6 bp ‘Base pair’ to  024 bp and different 

thresholds K. It also shows the execution time of the similar 

Hybrid system [16] in which both the pre-processing and 

sequence alignment are executed on the GPU but all the 

merging rounds are done sequentially using the host CPU. 

The last section of Table 1 shows the execution time of the 

core functions in the proposed method but using special 

purpose hardware as in [15]. 

All the figures from Fig. 6 to Fig 11 emphasise on the big 

difference of the execution time for the proposed method, the 

Hybrid framework  [16] and the special purpose HW 

approach [15] at different sequence sizes starting from 16 bp 

‘Base pair’ to  024 bp and for different thresholds K from 1 to 

5. 

The proposed method focussed on the pairwise DNA 

sequence alignment not the multiple sequence alignment. For 

that reason, we could not compare the results to the related 

work done using the Nvidia GPUs for multiple sequence 

alignment. 

 

Table 1 The Proposed GPU Implementation, The Hybrid System and Special Purpose HW Execution Times for Different 

Sequence Sizes and Thresholds. 
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Fig. 6  Proposed method, the Hybrid framework and the 

special purpose HW approach execution times at S1=16 and 

S2=16 BP 

Fig. 7  Proposed method, the Hybrid framework and 

the special purpose HW approach execution times at 

S1=32 and S2=32 BP 

 
 

Fig. 8  Proposed method, the Hybrid framework and the 

special purpose HW approach execution times at S1=64 and 

S2=64 BP 

Fig. 9  Proposed method, the Hybrid framework and 

the special purpose HW approach execution times at 

S1=128 and S2=128 BP 

 

 

Fig. 10  Proposed method, the Hybrid framework and the 

special purpose HW approach execution times at S1=256 

and S2=256 BP 

Fig. 11  Proposed method, the Hybrid framework and 

the special purpose HW approach execution times at 

S1=512 and S2=512 BP 

 

 

Fig. 12  Proposed method, the Hybrid framework and the 

special purpose HW approach execution times at S1=1024 

and S2=1024 BP 
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2. CONCLUSION 
The proposed Method accelerates the pairwise DNA sequence 

alignment by making use of the GPGPUs architecture. We 

compared the proposed method with both Smith-Waterman 

algorithm and the Hybrid system presented by [16], the 

proposed method shows an alignment quality while 

consuming significantly less time. 

The proposed method compares the nucleotides of both the 

query and the target sequences simultaneously, it finds and 

weights the sub-sequences of match between the two 

sequences; it then merges the sub-sequences of match to get 

the final optimum alignment of the maximum score and 

minimum gap/mismatch.   

The three main phases of the proposed system run on the 

device GPU and we pass the intermediate results to the host 

CPU. 
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