
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

25

Accelerating Pairwise DNA Sequence Alignment using

the CUDA Compatible GPU

H. Khaled

Faculty of Computer
& Information

Science, Ain Shams
University,

Cairo, Egypt

 R. El Gohary
Faculty of Computer

& Information
Science, Ain Shams

University,
Cairo, Egypt

N.L. Badr
Faculty of Computer

& Information
Science, Ain Shams

University,
Cairo, Egypt

H. M. Faheem
Faculty of Computer

& Information
Science, Ain Shams

University,
Cairo, Egypt

ABSTRACT

We present a novel implementation of the pairwise DNA

sequence alignment problem other than the Dynamic

programming solution presented by Smith Waterman

Algorithm. The proposed implementation uses CUDA; the

parallel computing platform and programming model invented

by NVIDIA. The main idea of the proposed implementation is

assigning different nucleotide weights then merging the sub-

sequences of match using the GPU Architecture according to

predefined rules to get the optimum local alignment. We

parallelize the whole solution for the pairwise DNA sequence

alignment using CUDA and compare the results against a

similar semi-parallelized solution and a traditional Smith-

Waterman implementation on traditional processors;

Experimental results demonstrate a considerable reduction in

the running time.

General Terms

Bioinformatics, HPC, Parallel Processing.

Keywords

GPU, GPGPU, CUDA, sequence alignment algorithms,

molecular biology.

1. INTRODUCTION
Sequence comparison is a very basic and important operation

in Bioinformatics. Sequence alignment algorithms detect

similar or identical parts between two sequences called the

query sequence and the reference sequence [1]. The global

and local sequence alignment are the most prevalent kinds of

sequence alignment. In global alignment problem finds the

superior counterpart between the whole sequences. On the

other hand, local alignment algorithms must find the superior

counterpart between parts of the sequences.

Genomic databases have an exponential growth rate. The

growth of database size increases the time required for

searching. Complexity of sequence comparison is

proportional to query size and database size [2], [3].

The recent development of multi-core architectures provide an

opportunity to accelerate sequence database searches using

available and inexpensive hardware.

CUDA is the architecture and developing platform of the

NVIDIA GPU. It is a C like programming language. CUDA

programs contains code that run on both the CPU, or host, and

the GPU or as called device. The Kernel is the code running

on the GPU; it contains the computationally intensive parts of

the program [4].

GPU is the computing device suitable for parallel data

applications. GPU has its own device random access memory

and may run a huge number of threads in parallel [5] as shown

in Figure.1. Blocks consists of threads, and many blocks can

run within a grid of blocks. This structured sets of threads

could be launched on a kernel of code and process the data

stored in the device memory. Figure.2 shows that threads of

the same block share data through fast shared on chip memory

and they can be synchronized through synchronization[6], [7].

The proposed implementation benefits from the CUDA

architecture and the single instruction multiple thread SIMT

model.

Fig. 1 Heterogeneous programming [5]

In the proposed implementation, the SIMT completes the

DNA sequence comparison in three stages; the first stage

finds matches and mismatches between each nucleotide from

both the query and the target sequences. The second stage

weights and highlights the subsequences of matches. The third

stage merges the resulting subsequences of matches in order

to find the optimum alignment between the two sequences.

We organize the rest of the paper as follows: Section 2

describes the related work. Section 3 describes the proposed

framework. Section 4 provides the experimental results.

Section 5 augments some concluding remarks.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

26

Fig. 2 CUDA Memory Model [6][7]

2. RELATED WORK
There are many approaches used to solve sequence alignment

problem. Dynamic programming, heuristic approach, and

linear space alignment are of those approaches. Tools using

the heuristic approach like FASTA [8] and BLAST [9] are

practical as they find the near optimal solution; they are

approximation algorithms that cannot give the optimal

solution. Both Needleman-Wunsch algorithm [10] for global

alignment and Smith-Waterman algorithm [11] for local

alignment use dynamic programming approaches. However,

the complexity of the dynamic programming approach is O

(MN), where M and N represent the lengths of two DNA

sequences been compared.

The Smith-Waterman algorithm is a variant of the

Needleman-Wunsch. It has the same maximization step with

the added value of 0. Let X = (x1, x2. . . xn) and Y = (y1, y2,

. . , ym) be two sequences that are to be compared. Let d(x, y)

be the substitution cost for changing x into y and g the cost of

the insertion/deletion (gap) operation. H (i, j) is defined as the

maximum similarity of two segments ending at xi and yj. The

following recursion gives the Smith and Waterman algorithm.

In Smith-Waterman algorithm for each cell in the dynamic

programing matrix, we need to compute the upper, left and

diagonal cells adjacent to that cell to find the best alignment

between two DNA sequences.

Parallel processing and architecture was a very good solution

for solving the DNA sequence alignment problems. Many

implementations was done using the Nvidia GPUs to

accelerate the Smith-Waterman algorithm.

Liu did the early implementation of Smith-Waterman using

OpenGL-based implementation, reported in [12]. A

parameterisable implementation on CUDA-compatible GPU’s

[13], this implementation used the divide and conquer

approach to compute the alignment matrix by dividing the

entire matrix computation into sub matrices and allocating

available amount of threads and memory to each sub-matrix.

That approach could achieve 4.2 GCUPS against Swiss-Prot

database on Geforce 8800GTX and it was 15 times faster than

the CPU implementation. A new parallel method for Smith-

Waterman algorithm was introduced in [14]. The new method

compute all the elements in the same column of the Smith-

waterman Dynamic programming matrix independent of each

other in parallel rather than computing all elements in the

same anti-diagonal independently of each other in parallel. It

exploits parallelization of the columns. That approach

achieved 37 times speed up over the OSEARCH, but it fixed

the target sequence length to 361base pair and used 176469

protein sequence.

The previous solutions was among many proposed Smith-

Waterman solutions implemented for multiple sequence

alignment. We present another novel implementation using

the Nvidia CUDA capable GPUs but for the pairwise DNA

sequence alignment.

3. METHODS
The proposed method for DNA sequence alignment using

CUDA compatible GPUs consists of three main phases for the

two DNA sequences S of length n, and T of length m to be

alignment. The three phases are the initialization phase, the

preprocessing phase and the alignment phase.

The Initialize Phase works at the Host side (CPU). It allocates

memory in both CPU and GPU for passing the two DNA

sequences and storing the alignment results. The initialization

phase also reserves a number of CUDA blocks and threads per

block to carry out the alignment operation; the number of

activated blocks and threads depends on the size of the two

DNA sequences.

The second phase is the Pre-processing Phase carried out on

the device GPU. It compares each DNA nucleotide in the two

sequences and fill the initialization vector at the GPU with

values for both DNA nucleotide match and mismatch. At the

pre-processing phase, we activate a sufficient number of

threads that can carry out n × m initialization operation. All

the thread blocks perform an exact matching between the

corresponding first sequence nucleotide and second sequence

nucleotide simultaneously. Corresponding locations in the two

sequences are compared such that a weight of 2 is granted to

matched positions and 0 is granted to unmatched. Figure. 3

shows the pseudo code for both the initialization and

preprocessing phases to align the two DNA sequences S and T

of lengths n and correspondingly.

The third and final phase is the Alignment Phase executed on

the device GPU; it works on the resulting output matrix of the

pre-processing Phase. We divide the alignment phase to two

main processes; the sequence matching process and the

merging sub-sequences process.

The main purpose of the sequence-matching process is to

highlight the subsequence of match between the query and the

subject sequences by weighting the match and the sub-

sequences of match. In the sequence matching process, a

weight of 4 is granted to any position in the matrix having an

initial weight of 2 if at least one of its adjacent upper diagonal

left or lower diagonal right positions have a weight of 2. If

both of the mentioned adjacent positions have a weight of 2

then, a weight of 6 is granted to the specific position. This

approach maximizes the score of continuous “subsequence

matching” as shown in Fig4. The sequence-matching process

then passes the resulting matrix to the CPU host memory to

prepare it for merging.

0

H (i, j-1) – g

H (i, j) = max H (i-1, j-1) + d (xi, yj) (1)

H (i-1, j) - g

 H (i, 0) =H (0, j) =0.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

27

The Merging sub-sequences process is concerned with the

final step of the proposed system that gets the final alignment

of the given two sequences. We clearly defined the resulting

matrix from the previous process “sequence-matching” by

representing the sub-sequences of match by filling an index

table that contains a list of matched subsequences represented

by both lead and trail represented by i and j coordinates” of

each matched subsequence, its score, and Mismatch/gap.

Using the index table located on the CPU host memory, we

first apply a merge sort to sort all the index table entries

ascending according to their score, and then discard the very

small sub-sequences of score equals to 2 that represents “only

one match” for being useless after getting all the huge sub-

sequences of match. The resulting index table is then passed

to the device GPU for the last processing step in the merging

process.

The merging process tries to link the index table entries

according to an input threshold given by the user until the

optimum alignment could be found. Figure 5 represents how

the Merging sub-sequences process operates.

We input a merging threshold K “the longest common sub-

sequences between the two DNA sequences” that indicates

how many subsequence to be merged with the whole entries

in the table of indices. Given that the first sub-sequence is

represented by its coordinates (
 ,

), (
 ,

)

and its score is and the second sub-sequence is

represented by its coordinates (

) and (
 ,

)

and its score is and the Gaps and/or Mismatches

between the two sub-sequences is represented by equation (2).

 (2)

We perform the merging of the index table entries according

to one of the following rules:

Rule 1: If the first sub-sequence’s trail and the second sub-

sequence’s lead have the same i or j coordinate and the first

sub-sequence proceeds the second one and the gab/mismatch

between the two sub-sequences is less than the first sub-

sequence’s score, then the total score of the merge is shown in

equation (3)

/*****************Assumption***************/

Input: devMatrix from the pre-processing phase.

Output: ResultMatrix containing the sequence matching

process results.

*********** Sequence Matching kernel **********

1- Invoke the sequence matching Kernel to hold a max. N=

n*m comparison.

2- For All the threads Perform the sequence matching process

and store results in the ResultMatrix according to the

following rules:

tid= threadIdx.x+ blockIdx.x*blockDim.x;

While (tid<N)

 Get neculidiede from S and T where

 i=tid % n; // i=1… n.

 j=tid/ n; // j=1… m.

 updiag= tid - (n+1);

 downdiag= tid + n +1;

if(devMatrix [tid]==0)ResultMatrix[tid]=0;

else if (devMatrix [tid]!=0)
 if(((i==0) AND (j==m-1))OR((i==n-1) AND

 (j==0))) //top left & bottom right

 ResultMatrix [tid] = 2;

 else if((i==0)OR(j==0)) // up & left

 if(devMatrix[downdiag]==0)

 ResultMatrix [tid]=2;

 else

 ResultMatrix [tid]=4;

 end if

 else if((i==n-1)OR (j==m-1))//down&right

 if(devMatrix[updiag]==0)

 ResultMatrix [tid]=2;

 else

 ResultMatrix [tid]=4;

 end if

 else

 if((devMatrix[updiag]==0)AND

 (devMatrix[downdiag]==0))

 ResultMatrix [tid]=2;

 else if((devMatrix[updiag]!=0 AND

 devMatrix [downdiag]==0)

 OR(devMatrix [updiag]==0 AND

 devMatrix [downdiag]!=0))

 ResultMatrix [tid]=4;

 else if((devMatrix [updiag]!=0 AND

 devMatrix [downdiag]!=0))

 ResultMatrix [tid]=6;

 end if

 end if

end if

tid+=blockDim.x*gridDim.x;

end While

Fig. 4 Sequence Matching Process

/*****************Assumption***************/

Query Sequence S of length-> n

Subject Sequence T of length ->m

Resulting matrix from the pre-processing -> devMatrix

**

1- Allocate Device memory for n and m.

2- Send S and T to the GPU.

3- Invoke the pre-processing Kernel to hold a max. N=

n*m comparison.

4- For All the threads Perform the pre-processing phase

according to the following rules:

 tid= threadIdx.x+ blockIdx.x*blockDim.x;

While (tid<N)

 Get neculidiede from S and T where

 i=tid % n; // i=1… n.

 j=tid/ n; // j=1… m.

 if(S[i]==T[j])

 devMatrix[tid]=2;

 else

 devMatrix [tid]=0;

 end if

 tid+=blockDim.x*gridDim.x;

end while

Fig. 3 Initialization and Pre-processing phases.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

28

IF (

)

 G G

)

Total score=
(3)

Rule 2: If the first sub-sequence proceeds (up and left) the

second sub-sequence and the gab/mismatch between the two

sub-sequences is less than the first and the second sub

sequences’ scores, then the total score of the merge is shown

in equation (4).

ELSE IF (

 G

)

Total score=
(4
)

/****************** *************** CPU Side *************************************/

1- Convert the ResultMatrix from the GPU resulting from the Sequence Matching process to an index Table.

2- Apply merge sort to the Index Table, and sorts the sub-sequences descending according to their score.

3- Discard small sub-sequences of score equal 2.

4- Pass the Index Table to the Merging Round Kernel.

/********************************GPU Side*************************************/

Index Table Size ind_size.

Threshold K k_size.

Input: Index Table representing each sub-sequence with a lead and trail and each has i and j coordinates.

Output: Modified Index Table with the new merged sub-sequences  Mod_Ind_table.

/******************************** Merging Sub-sequences Kernel ********************************/

1- tid= threadIdx.x+ blockIdx.x*blockDim.x;

2- The maximum number of merging per round is M= ind_size*k_size;

while(tid<M)

 i=tid/ ind_size; //the k index

 j=tid % ind_size; //the size index

 Sequence seq1 =Index_Table[i];

 Sequence seq2= Index_Table[j];

 if(i!=j)

 Sequence seq3;

 m_g = max(((seq2.lead.i)-(seq.trail.i)),((seq2.lead.j)-(seq.trail.j)));

 if Rule (1) Applied

 1- Fill sequence 3 so that its (i,j) lead is equal to Sequence1 and its (i,j)trail is

equal to Sequence2.

 2- seq3.score = seq.score + seq2.score - m_g - 2;

 3- seq3.m_g = seq.m_g + seq2.m_g + m_g;

 4- Mod_Ind_table[tid]=seq3;

 else if Rule (2) Applied

 1- Fill sequence 3 so that its (i,j)lead is equal to Sequence1 and its (i,j)trail is equal

to Sequence2.

 2- seq3.score =seq.score + seq2.score - (m_g - 1);

 3- seq3.m_g = seq.m_g + seq2.m_g + m_g - 1;

 4- Mod_Ind_table[tid]=seq3;

 end if

 end if

tid+=blockDim.x*gridDim.x;

end while

3- After a round of merging and getting new sub-sequences, delete from the table of indices the first subsequence

used in margining each new subsequence.

4- Repeat the merging until there are no sequences to be merged.

Fig. 5 Merging Sub-Sequences Process.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

29

The above rules and equations show that there is no task

dependency for merging the index table entries, so we could

execute this part efficiently on the device GPU.

We then add the new merged sub-sequences to the index table

delete from the table of indices the first subsequence used in

margining each new subsequence. We repeat the merging

rules until there are no sequences to be merged.

By completing the merging process, we can point to the

alignment of maximum score and minimum gaps and

mismatches.

Increasing the DNA sequences’ size requires increasing the

number of pre-processing and sequence-matching operation,

also increasing the threshold K leads to an increase in the

number of rounds required to get the optimum alignment.

Using the CUDA architecture makes it obvious to scale the

number of threads needed for pre-processing, sequence

matching and merging sub-sequences kernels.The GPU

implementation is scalable as we can activate different

number of blocks and threads per block according to the given

query and target sequence sizes and the threshold K.

It is clear that there is no task dependency in any of the

proposed three main phases the initialization, pre-processing

and Merging Sub-sequences phases. Therefore, we

implemented them using CUDA provided by NVidia GPU

which can lead to a significant improvement in the speed

without the need to deploy special purpose hardware as in

[15].

1. RESULTS
In this section, we present the experimental results of the

proposed pairwise method for DNA sequence alignment

implemented on GPU compared to another two similar

approaches presented in both [15] and [16]. We implemented

the proposed method using Microsoft Visual Studio 2010 and

NVidia GPU Computing SDK 4.2. We used an Intel Core i5

2430M 2.4GHZ, 4 GB DDR3 Memory and NVidia GeForce

GT540M GPU with 96 CUDA Cores with 1GB device

memory. All the implementations run on Windows7 with

Display Driver285.86.

Table 1 shows the total execution time for the three phases of

the proposed method “Initialization, Pre-processing and

Alignment phases” recorded at different input sequences’ size

starting from 6 bp ‘Base pair’ to 024 bp and different

thresholds K. It also shows the execution time of the similar

Hybrid system [16] in which both the pre-processing and

sequence alignment are executed on the GPU but all the

merging rounds are done sequentially using the host CPU.

The last section of Table 1 shows the execution time of the

core functions in the proposed method but using special

purpose hardware as in [15].

All the figures from Fig. 6 to Fig 11 emphasise on the big

difference of the execution time for the proposed method, the

Hybrid framework [16] and the special purpose HW

approach [15] at different sequence sizes starting from 16 bp

‘Base pair’ to 024 bp and for different thresholds K from 1 to

5.

The proposed method focussed on the pairwise DNA

sequence alignment not the multiple sequence alignment. For

that reason, we could not compare the results to the related

work done using the Nvidia GPUs for multiple sequence

alignment.

Table 1 The Proposed GPU Implementation, The Hybrid System and Special Purpose HW Execution Times for Different

Sequence Sizes and Thresholds.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

30

Fig. 6 Proposed method, the Hybrid framework and the

special purpose HW approach execution times at S1=16 and

S2=16 BP

Fig. 7 Proposed method, the Hybrid framework and

the special purpose HW approach execution times at

S1=32 and S2=32 BP

Fig. 8 Proposed method, the Hybrid framework and the

special purpose HW approach execution times at S1=64 and

S2=64 BP

Fig. 9 Proposed method, the Hybrid framework and

the special purpose HW approach execution times at

S1=128 and S2=128 BP

Fig. 10 Proposed method, the Hybrid framework and the

special purpose HW approach execution times at S1=256

and S2=256 BP

Fig. 11 Proposed method, the Hybrid framework and

the special purpose HW approach execution times at

S1=512 and S2=512 BP

Fig. 12 Proposed method, the Hybrid framework and the

special purpose HW approach execution times at S1=1024

and S2=1024 BP

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 1, December 2013

31

2. CONCLUSION
The proposed Method accelerates the pairwise DNA sequence

alignment by making use of the GPGPUs architecture. We

compared the proposed method with both Smith-Waterman

algorithm and the Hybrid system presented by [16], the

proposed method shows an alignment quality while

consuming significantly less time.

The proposed method compares the nucleotides of both the

query and the target sequences simultaneously, it finds and

weights the sub-sequences of match between the two

sequences; it then merges the sub-sequences of match to get

the final optimum alignment of the maximum score and

minimum gap/mismatch.

The three main phases of the proposed system run on the

device GPU and we pass the intermediate results to the host

CPU.

3. REFERENCES
[1] Michael Schatz, Cole Trapnell, Arthur

Delcher, Amitabh Varshney, 2007. High-throughput

sequence alignment using Graphics Processing Units,

BMC Bioinformatics, Vol. 8, No. 1.

[2] J. Setubal and J. Meidanis, 1997. Introduction to

Computational Molecular Biology, PWS Publishing

Company.

[3] Terence Hwa and Michael Lässig, 1995. Similarity

Detection and Localization, Physical Review

Letters Volume: 76, Issue: 2.

[4] Jun Sung Yoon and Won-Hyong Chung, 2011. A

GPU-accelerated bioinformatics application for large-

scale protein interaction networks, Asia Pacific

Bioinformatics Conference.

[5] Rafia Inam, 2011. An Introduction to GPGPU

Programming - CUDA Architecture, Mälardalen

University, Mälardalen Real-Time Research Centre.

[6] NVIDIA CORPORATION, CUDA Programming

Guide,

http://developer.nvidia.com/category/zone/cuda-zone

[7] Svetlin A anavski and Giorgio Valle , “CUDA

compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence

alignment,” B C Bioinformatics 2008.

[8] Pearson, W.R. 1991. Searching protein sequence

libraries: comparison of the sensitivity and selectivity

of the Smith and Waterman and FASTA algorithms,

Genomics 11, 635–650.

[9] Altschul, S.F., Gish, W., Miller, W., Myers, E.W.,

Lipman, D.J., 1990. Basic local alignment search

tool,” J. ol. Biol. 2 5, 403–410.

[10] S. Needleman and C.Wunsch, 1970 . A general method

applicable to the search for similarities in the amino

acid sequence of two proteins, J. Mol. Bio., (48):443–

453.

[11] T. Smith and M. Waterman, 1981. Identification of

common molecular subsequences, J. Mol. Bio.,

(147):195–197.

[12] W. Liu, B. Schmidt, G. Voss, A. Schroder and W.

Muller-Wittig, 2006. Bio-Sequence Database Scanning

on GPU, In proceeding of 20th IEEE International

parallel & distributed processing symposium,

HICOMB workshop Rhode Island, Greece.

[13] Cheng Ling, Khaled Benkrid and Tsuyoshi Hamada,

2009. A Parameterisable and Scalable Smith-

Waterman Algorithm Implementation on CUDA-

compatible GPUs IEEE 7th Symposium on

Application Specific Processors (SASP).

[14] Bo Chen, Yun Xu, Jiaoyun Yang, and Haitao Jiang,

2010. A New Parallel Method of Smith-Waterman

Algorithm on a Heterogeneous Platform, Lecture

Notes in Computer Science Volume 6081, pp 79-90,

Springer-Verlag Berlin Heidelberg.

[15] Heba Khaled , Hossam M Faheem , Tayseer Hasan ,

Saeed Ghoneimy,”Design of a Hybrid System for

DNA Sequence Alignment, Proceedings of The

International MultiConference of Engineers and

Computer Scientists 2008 , pp162-167.

[16] H. Khaled, R. El Gohary, N.L. Badr and H. M.

Faheem, 2013. Hybrid Framework for pairwise DNA

Sequence Alignment Using the CUDA compatible

GPU, Proceeding of the BIOCO P’ 3.

[17]

IJCATM : www.ijcaonline.org

http://www.citeulike.org/user/scole/author/Schatz:M
http://www.citeulike.org/user/scole/author/Trapnell:C
http://www.citeulike.org/user/scole/author/Delcher:A
http://www.citeulike.org/user/scole/author/Delcher:A
http://www.citeulike.org/user/scole/author/Varshney:A
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://lib.bioinfo.pl/auth:Khaled,H
http://lib.bioinfo.pl/auth:Faheem,HM
http://lib.bioinfo.pl/auth:Hasan,T
http://lib.bioinfo.pl/auth:Ghoneimy,S

