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ABSTRACT 

This paper reports preliminary experimental evaluation of a 

Processing Elements Stealing (PE-S) technique which was 

targeted as efficient and scalable load balancing technique for 

dynamically structured multiprocessor systems. The 

multiprocessor system is imagined as a dynamic cluster based 

multiprocessor. Each cluster of the multiprocessor system is a 

node in symmetric multiprocessor architecture and the number 

of Processing Element (PE) in each cluster is dynamically 

determined at runtime. The PE-S technique dynamically 

computes the configuration ratio using the number of threads in 

the dynamically assigned tasks to generate the new number of 

PE for each cluster. This new configuration ratio is thereafter 

used to balance the additional computational work generated by 

runtime instantiation of current workloads for each cluster. 

In this work, the efficiency of the PE-S was evaluated using 

memory traces of some tightly parallel applications where the 

amount of parallelism is parameterized. These traces were used 

as workloads on two different simulation setups; the first is a 

dynamic multiprocessor with PE-S while the other was also a 

dynamic multiprocessor but without PE-S. This is to evaluate 

the performance of the PE-S load balancing technique on the 

targeted multiprocessor. Also the efficiency of PE-S 

reconfigurations was compared with other possible 

reconfiguration ratios. The experimental results showed that the 

load balancing algorithm is efficient and scalable for balancing 

at least 100,000 instructions tasks and PE-S generated ratios are 

averagely better than any other reconfiguration ratios. 
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1. INTRODUCTION 
The rapid developmental trends in hardware and software 

technologies have led to increased interest in the use of 

multiprocessor systems for online database, real-time, defence 

strategy systems, and power intensive commercial applications. 

One of the  major  problems of multiprocessor systems is how to  

evenly distribute (or schedule) the processes among processing 

elements to achieve some performance goal(s), such as 

minimizing execution time, minimizing communication delays, 

and/or maximizing resource utilization. Therefore, load balance 

has become integral factor in maximising the speed up of 

parallel and distributed environments. In recent time, 

multiprocessor systems have been a subject of interest. Present 

researches had shown that uniprocessor technology can hardly 

be subjected to reasonable improvement thereby could no longer 

meet up with processing power requirement of the current 

applications. This is due to insatiable demand for computing 

power by users which is generated from development of 

powerful applications in order to meet up with the users’ 

demand. Parallel and Distributed processing has proffered 

solution to this by combining many processing elements 

together to behave as a single processor.  

Research works are still on-going on how to perfect some of the 

performance bottlenecks in multiprocessor systems through the 

adoption of some of the computer network speedup metrics to 

multiprocessor architecture. For example, different network 

topologies had been modelled, evaluated and implemented in 

multiprocessor systems which have brought variant 

multiprocessor architectures. Apart from this, concept of 

memory hierarchy and optimum scheduling techniques had been 

introduced just to achieve efficient multiprocessor systems. In 

spite of all these improvement metrics, multiprocessor systems 

performance is still marred with inefficiency in job distribution 

during execution which affects overall throughput of the 

systems. A few researches had been done, and many are still on-

going on how to get a perfect load balancing technique; 

however, a perfect technique has become elusive. One of the 

biggest performance issues in the current load balance 

techniques is that they are system specific and some of the loads 

have more affinity for certain processing elements than the 

others. This mars the performance gain of most of the available 

load balance techniques. Many techniques for load balancing in 

multiprocessor systems had been proposed. The prominent 

among them are work stealing and work sharing. Recently, 

another technique was proposed in [15], called Processing 

Elements or worker stealing technique. This paper performed 

experimental evaluation of this technique and evaluates its 

performance in terms of its performance influences on the 

speed-up, when the technique is implemented on a dynamic 

multiprocessor.  

The rest of the paper is organized as follows; Section 2 presents 

the reviews on the related research works on load balancing in 

multiprocessor architecture. In Section 3, background work on 

PE-S technique is described. The experimental evaluation of PE-

S technique is described in Section 4, and the discussion as 

related to the obtained simulation results is presented in Section 

5.  

2. RELATED WORKS 
Many load balancing algorithms have been proposed for parallel 

and cloud computing to prevent load imbalance 

[3][5][8][12][15][18]. Each of these algorithms uses different 

techniques to achieve load balancing among the processing 

elements. Work stealing and work sharing technique gained 

tremendous popularity due not only to their provable efficiency 
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but their practicability which could be easily explained within 

the circle of multiprocessor designers.  However, it has been 

shown and proved from different experimental results performed 

that work stealing or sharing techniques are susceptible to so 

much overheads incurred from some computational tasks having 

affinity for certain set of processor and some other 

computational resources[15]. For example, there are some 

communication costs involved in transferring the job which 

come from, both the extra contention for the system bus and the 

latency of the transfer. Besides, some jobs have some affinity for 

the queue where they are assigned. This affinity emanates from 

the fact that the applications we are considering have a spatial 

breakdown of the computations. It follows that a large amount 

of the data needed by computations will be cached. However, 

when processor steals or shares a task from another processor it 

can no longer take advantage of cached computation. These 

inherently show that although work stealing may be popular and 

common however it is not a perfect technique for load balancing 

in parallel and distributed system [1][3][4]. 

In work sharing busy processors voluntarily redistribute their 

excess workload in their respective queue amongst the less busy 

or idle processors. Most times, a dedicated processor does the 

monitoring of the queues of all the processors in the system, 

detects the busy or idle processors and performs the distribution 

amongst them. This not only incurs communication cost but also 

eliminates the dedicated processor from computational work. 

More so, the issue of job affinity or processor affinity still 

explicitly affects the system. It is likely that in the presence of 

extreme communication costs or very strong affinity of jobs for 

the processors they are assigned to, work sharing will mar the 

optimal performance as a result of the fact that shared works 

will be transported from its initial processing element to the new 

processing element. In that case, any attempt to share or steal 

works will disrupt the scheduling affinity. In [6] work stealing 

was proposed as better alternative to work sharing if this holds, 

it suggests a very interesting question that can multiprocessor 

architecture ease the burden on the parallel programmer by 

allowing work stealing?  In other words, is work stealing a 

substitute for affinity scheduling? Specifically, if the 

architecture performs work stealing and the programmer does a 

reasonable, but not optimal job of balancing the load, how will 

the system performance compare to the performance of a 

perfectly balanced system? The answer to these is that the work 

stealing technique cannot proffer perfect solution to load 

imbalance in most multiprocessor architecture especially 

architectures that exhibit scheduling affinity. Also, as mentioned 

earlier, work stealing introduces communication overhead which 

reduces the performance efficiency of the architecture. This was 

substantiated with the analog given [15] that; “work stealing and 

sharing can be analogized to getting job that one’s lacks the 

tools or acquiring problem without having all the require 

problem-solving-tools”. This is in reality amounts to waste of 

time and scarce resources. 

A work stealing algorithm which uses locality information was 

used in [1]; this outperforms the standard work stealing 

algorithm benchmarks. In this algorithm, each processor 

maintains a queue of pointer to threads that have an affinity for 

such processor and during stealing priority is given to queues 

which have an affinity for such processor. In [6], an algorithm 

was proposed which implements work stealing to prevent load 

imbalance in a multiprocessor system. The algorithm has one 

dequeue processor and the algorithm assumes that processors on 

the architecture can work independently but can still steal from 

any of the processors which have empty dequeue. The results 

show that work stealing has lower communication cost than 

work sharing.  Also in [11], differential equation was used to 

model work stealing technique. In [12], work stealing 

architectural technique was proposed to prevent load imbalance 

in homogenous shared-memory multiprocessor architecture.  

The evaluation results in [19] corroborate some of the 

aforementioned demerits of work stealing. In their work, the 

limitation of work stealing scheduler was explored and 

evaluated with another load balancing technique which is based 

on graph partitioning. The experimental results obtained on a 

multi-core workstation machine showed that the main cause of 

performance degradation of work stealing is when works of very 

little processing time are involved. Meanwhile this is the type of 

workload in which graph partitioning approach has the potential 

to achieve better performance than work-stealing. This was 

further strengthened in [5] where design and preliminary 

evaluation of an integrated load distribution-load balancing 

algorithm which was targeted to be both efficient and scalable 

for dynamically structured computations was reported. In their 

work computation was represented as a dynamic hierarchical 

dependence graph. Each node of the graph might be a sub graph 

or a computation and the number of instances of each node is 

dynamically determined at runtime. The algorithm combines an 

initial partitioning of the graph with application of randomized 

work stealing on the basis of sub graphs to refine imbalances in 

the initial partitioning and balance the additional computational 

work generated by runtime instantiation of sub graphs and 

nodes. Dynamic computations are modeled by an artificial 

program (k-nary) where the amount of parallelism was 

parameterized. The experimental results carried out on IBM 

SP2s suggested that the load balancing algorithm is efficient and 

scalable for parallelism up to 10,000 parallel threads for closely 

coupled distributed memory architectures. 

A simple algorithm to distribute loads evenly on multiprocessor 

computers with hypercube interconnection networks was 

proposed in [10]. This algorithm was developed based upon the 

well-known dimension exchange method. However, the error 

accumulation suffered by other algorithms based on the 

dimension exchange method is avoided by exploiting the notion 

of regular distributions, which are commonly deployed for data 

distributions in parallel programming. This algorithm achieves a 

perfect load balance over P processors with an error of 1 and the 

worst-case time complexity of O(M log2 P), where M is the 

maximum number of tasks initially assigned to each processor 

[10]. Furthermore, perfect load balance is achieved over 

subcubes as well—once a hypercube is balanced, if the cube is 

decomposed into two subcubes by the lowest bit of node 

addresses, then the difference between the numbers of the total 

tasks of these subcubes is at most 1. However, this algorithm 

was tailored towards a particular multiprocessor system 

architectural network. 

3. PROCESSING ELEMENT STEALING 

(PE-S) TECHNIQUE 
In view of the importance of load balancing to performance of 

multiprocessor architecture and the deficiencies of the existing 

load balancing techniques, an alternative technique was 

proposed in [15] which exploits the possibility of stealing 

workers instead of stealing work. Worker stealing involves 

stealing the processing elements with all the resources of such 

elements. This apparently removes affinity for either job or 

processor. PEs-stealing technique not only solves the problem of 

load imbalance but does not affect queue affinity schedule and 

with little or no communication cost.  PE-S provides some 

benefits as a result of the fact that it balances the load on a more 

instantaneous level than work stealing especially for 

interdependent sub problems which initially brought about 
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affinity schedule. Whenever a cluster is over loaded, the PE-

stealing heuristic senses this and reconfigures the architecture by 

reassigning more processing element(s) to that cluster. The 

technique concurrently monitors over-loading and under loading 

in each cluster by releasing some of idle clusters’ processing 

elements to its neighboring clusters that are overloaded using the 

reconfiguration ratio.  The practicability of this technique was 

done in [15] by implementing the technique in a heuristic called 

PE-S heuristic which uses the number of threads in the assign 

computational tasks to determine the current reconfiguration 

ratio of the multiprocessor. However, the efficiency of the 

heuristic with provable laboratory or simulated experimental 

results was not done.  

The heuristic as shown in fig.1 calculates the total number of 

threads in each workload assigned to the modularized unit of the 

multiprocessor system. This is used to dynamically get the 

current reconfiguration ratio        of the architecture as shown 

in equation 1.The        is compared with previous 

configuration ratio        and the processing elements are 

joggled (stolen or released) until the       
            The 

heuristic is highlighted below: 

1. Reset the multiprocessor to default. 

2. Accept the parallel tasks (t1 ….tn) where n <= 4 

3. Span through the tasks (t1…tn) determine number of 

processes in each parallel task 

4. Initialize n  to 1 

5. Start from task n and cluster n 

6. For task n and cluster n calculated current configuration 

ratio  

while (current_configuration_ratio  > 

previous_configuration_ratio) 

1. Remove one node from next cluster 

and change the status of the node’s. 

2. index = ( index of last node in the 

cluster + 1) 

3. Increment 

Pprevious_configuration_ratio by 1 

7   Increment n by 1 and Go to 5 

8.  Store the status of all the reconfigured nodes  

9. Assign all the input parallel tasks to the clusters in the 

HMPM 

10. Stop 

 

This can be mathematically represented as follows: 

Assuming 

     

                                                        

                           

      
                                                               

                   

Then, the PE-S says; 

   
 

 
 

      
                                                  

                                                     
      ) 

For all the clusters i (where i<=4) the architecture performs 

these:  

while  (     
        ) 

{ 

          
               

                  i.e. borrow processing element from the 

next    cluster 

                   i.e change the status of the borrowed 

processing   element  

 n = n+1 

else 

                  i.e released processing element from the 

next     cluster 

       =     i.e change the status of the released 

processing   element  

 n = n-1     

 } 

 

4. EXPERIMENTAL EVALUATION OF 

PE-S LOAD BALANCING TECHNIQUE  
All the experimental workloads used during simulation are the 

traces of a wide variety of real application programs. These 

traces represent real parallel applications as shown in table 1a-b. 

Twenty three experimental simulations were carried out, using 

combination of four parallel applications traces with different 

number of parallelism, to evaluate the performance of PE-S. 

Nineteen experimental workloads shown in table 1a were used 

to evaluate the performance of PE-S technique in a dynamic 

multiprocessor mode, and four workloads, as shown in table 1b, 

were used to compare PE-S and manually generated 

configuration ratios. The multiprocessor model used is a 

Hybridised Macro Pipeline Multiprocessor (HMPM) with 64KB 

main memory. The replacement policy used for the two level 

4KB caches was Least Frequently Used (LFU) with fully 

associative mapping. . 

An experimental setup which represents a multiprocessor model 

with PE-S and another multiprocessor model without PE-S was 

used as controls in order to perform the evaluation of PE-S 

technique. The first experimental setup represents the 

reconfigurable multiprocessor setup while the latter stands for 

non reconfigurable multiprocessor setup. The performance was 

measured in terms of the execution time (in second) of each 

cluster when parallel workloads were mapped into the clusters.  

The simulation results obtained from the two experimental 

setups are analysed and discussed in the next section. 
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Start

Accept the 

four parallel 

tasks

Determine numbers of 

processes in each task 

assigned to  each cluster

Initialise counter ← 0

Calculate the 

configuration ratio for  

clustercounter 

(PE’counter )

This will be used to generate 

the configuration ratio

This predefined procedure 

will generate the new 

configuration ratio for the 

current cluster

At this point four parallel 

tasks will be assigned to the 

four parallel clusters of the 

HMPM i.e t1-t4↔c1-c4 

where t and c represent 

tasks and clusters

Is 

PE’counter > PEcounter

Remove one processing 

element from next cluster and 

change its status to status of 

current cluster and index to 

index of the last node +1

PEcounter = PEcounter+1

counter = counter + 1

Counter = counter + 1

Store the status of all the 

reconfigured nodes

Is counter > 4

Assign all the 

four parallel 

tasks to 

HMPM

Stop

Yes

No

No

Yes

Reconfigure the cluster 

processing capability to meet 

up with assigned task

 

Fig. 1: Flowchart of Processing Element Stealing technique 
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Fig. 2: Comparison of Execution times of Multiprocessor model with and without PE-S for nineteen different workloads 
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Table 1a: Randomly Generated workloads used in the 

evaluation of PE-S Technique 

Load No.  

 

Cluster 1 Cluster 2 

 

Cluster 3 

 

Cluster  4 

1 HY5 SIMPLE4 WEATHER 4 SPEECH3 

2 FFT4 SIMPLE3 SIMPLE3 SPEECH6 

3 SPEECH3 FFT5 SPEECH4 WEATHER 4 

4 SIMPLE5 FFT6 - SPEECH5 

5 HY2 WAVE4 SPEECH4 FFT6 

6 WAVE4 SPEECH3 FFT5 HY4 

7 SPEECH3 FFT4 HY5 WAVE4 

8 FFT3 HY4 SPEECH3 WAVE6 

9 FFT4 SIMPLE3 WEATHER5 SPEECH4 

10 FFT4 SIMPLE6 WEATHER3 SPEECH3 

11 FFT6 SIMPLE4 WEATHER4 SPEECH2 

12 FFT4 SIMPLE3 WEATHER4 SPEECH5 

13 FFT3 SIMPLE5 SIMPLE5 HY4 

14 FFT4 SIMPLE5 SIMPLE4 SPEECH3 

15 SPEECH3 FFT6 SPEECH4 WEATHER3 

16 SIMPLE4 FFT6 - SPEECH6 

17 SIMPLE5 FFT5 - FFT6 

18 SIMPLE6 FFT5 - SPEECH5 

19 SIMPLE3 FFT4 HY6 SPEECH3 

Table 1b: Randomly generated workloads used in 

performance  evaluation of PE-S  and manually 

generated configuration ratios 

Load 

No. 

 

Cluster 1 

 

Cluster 2 

 

Cluster 3 

 

Cluster 4 

 
20 FFT6 SIMPLE4 WEATHER3 SPEECH2 

21 FFT4 SIMPLE3 SIMPLE3 SPEECH6 

22 SPEECH2 FFT5 SPEECH4 WEATHER4 

23 SIMPLE5 FFT6 - SPEECH5 
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Fig. 3. : Comparison of PE-S generated reconfiguration ratio and possible manually generated ratios 

5.  RESULTS AND DISCUSSION  
The results of the experimental simulation are described and 

analysed in this section. Multiprocessor model with and without 

PE-S simulation setups were used to evaluate the performance 

contribution of the PE-S load balancing technique using the 

nineteen randomly generated workloads shown in table 1a The 

results obtained  were statistically analysed. The mean execution 

times obtained for model with and without PE-S were 1726.8 ± 

421.5 seconds and 1742.0 ± 386.63 seconds respectively. This 

indicates that the use of PE-S technique improves the speed of 

the multiprocessor model with PE-S. This is further illustrated 

with fig. 2, where the execution times obtained for the model 

with and without PE-S for nineteen different workloads are 

graphically represented. 

Also the possibility that the PE-S generated configuration ratios 

might not be perfect was experimented and evaluated. That is, 

the possibility of some other possible reconfiguration ratios to 

be more efficient in terms of reduced execution time than the 

one generated by PE-S. Four different workload instances in 

table 1b were assigned to the simulated multiprocessor model 

with PE-S. The PE-S reacted to these workloads by generating 

configuration ratios 6:4:3:2, 4:3:3:6, 2:5:4:4, and 5:6:9:5 for the 

four workload instances respectively. Each was used by the PE-

S to reconfigure the multiprocessor model which then executed 

the corresponding workload instance in table 1b. Also, as a 

control, a few possible configuration ratios were manually 

generated for each of the workload instances and were used to 

reconfigure the multiprocessor model. The results are shown in 

fig.3. 

The results obtained for the load number 20 show that only 4 out 

of fifteen manually generated reconfiguration ratios were better 

than PE-S generated ratio in term of execution time. This 

implied that with workload number 20, PE-S generated 

reconfigure ratio is 75% closer to the best reconfiguration. For 

workload number 21, the execution times of the eighteen 

manually generated reconfiguration ratios and the execution 

time of PE-S generated reconfiguration ratio were compared. It 

was observed that only 6 out of the 18 possible reconfiguration 

ratios have execution time better that PE-S generated 

reconfiguration ratio’s execution time. This indicated that for the 

workload number 21, PE-S reconfiguration ratio is 77% closer 

to the best reconfiguration ratio.  Based on workload number 22, 

another eighteen possible manually generated reconfiguration 

ratios were manually generated. The execution time of the PE-S 

generated reconfiguration ratio was compared with execution 

times of the eighteen manually generated reconfiguration ratios. 

It was observed that only 1 out of the 18 possible 

reconfiguration ratios is better than PE-S generated ratio. This 

shows that the PE-S reconfigured HMPM is almost the best 

reconfiguration ratio. The results of the manually generated 

reconfiguration ratios and PE-S generated ratio for workload 

number 23 (SIMPLE, FFT, -, SPEECH) were also evaluated. 

Only 5 reconfiguration ratios were possible for workload 23. It 

was noted that none of the total execution time of the 5 

reconfiguration ratios is better than PE-S generated 

configuration ratio’s execution time. This implied that the PE-S 

reconfiguration ratio is the best possible reconfiguration ratio for 

this workload instance. 
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6. CONCLUSION & RECOMMENDATION 
In this paper the performance evaluation of PE-S load balancing 

technique for dynamic multiprocessor was carried out. This was 

done not only to ascertain the performance contribution of PE-S 

but to show that PE-S generated reconfiguration ratios are more 

efficient than manually generated reconfiguration ratios. It was 

observed from the results of the simulation that the proposed 

PE-S technique obviously reduced the effect of load imbalance 

in the multiprocessor by increasing the performance of 

multiprocessor. For few cases of better manually generated 

ratios the overheads incur through the manual generation will 

not only nullify the gain but worsen the performance. The 

proposed load balancing algorithm could be adapted to some 

other functional unit based optimisation problems. 

7. ACKNOWLEDGMENTS 
This work was supported in part by a scholarship grant from 

Petroleum Development Trust Fund (PTDF) Nigeria. 

REFERENCES 
[1] Acar, U., Blelloch, G., & Blumofe, R. (2000). The Data 

Locality of Work stealing. Proceedings 12th ACM 

Symposium on Parallel Algorithms and Architecture (pp. 

Pp. 1-12). ACM. 

[2] Alexandra, F., Margo, S., & Michael, S. (2007). Improving 

Performance Isolation on Chip Multiprocessors via an 

Operating System Scheduler. Proceeding of 16th of 

International Conference on Parallel Architecture and 

Compilation Technique (PACT 2007). Brasov, Romania. 

[3] Amir, M. R., & Mohammad, A. V. (2008). A novel task 

scheduling in Multiprocessor Systems with Genetic 

Algorithm by Using Elitism stepping method. 

[4] Belady, L. (1966). A study of replacement algorithms for 

virtual-storage computer. IBM Systems Journal , 78-101. 

[5] Berger, J., & Browne, J. (1999). Scalable Load Distribution 

and Load Balancing for Dynamic Parallel Programs. 

International Workshop on Cluster-Based Computing.  

[6] Blumofe, R., & Leiserson, C. (1994). Scheduling 

Multithreaded Computations by Work Stealing. 

Proceedings 35th IEEE Conference on Foundations of 

Computer Science, (pp. 356-368). 

[7] Chou, T. C., & Abraham, A. J. (1983). Load redistribution 

under failure in distributed systems. IEEE Trans. 

Computing , C-32 (9), 799-808. 

[8] Chow, C., & Kohler, W. (1979). Models for dynamic load 

balancing in a heterogenous multiple processor system. 

IEEE Trans. Computing , C-28 (5), 354-361. 

[9] Gautam, G., & Soo-Young, L. (1998). Dynamic 

Reconfiguration of a PMMLA for High Throughput 

Applications. Parallel and Distributed Processing 

Workshops Held in Conjunction with the 12th International 

Parallel Processing Symposium and 9th Symposium on 

Parallel and Distributed Processing, 10IPPS/SPDP'98 (pp. 

Pp 1-6). Florida: Springer. 

[10] Gene, E. J., & Hwang, Y. S. (2003). An Efficient 

Algorithm for Perfect Load Balancing on Hypercube 

Multiprocessors. The Journal of Supercomputing , 25 (1), 

5-15. 

[11] Mitzenmatcher, M. (1998). Analysis of Load Stealing 

Models Based on Differential Equations. Proceedings of 

10th ACM Symposium on Parallel Algorithms and 

Architectures (pp. 212-221). ACM. 

[12] Neil, D., & Wierman, A. (2011). On the Benefits of Work 

Stealing in Shared Memory Multiprocessors. Carnegie 

Mellon University. 

[13] Nozar, T., Nader, B., Amir, H. K., & Haitao, D. (2004). 

MaRS: A Macro-pipelined Reconfigurable System. ACM . 

[14] Olakanmi, O., & Fakolujo, O. (2012(a)). Design and 

Performance Analysis of Reconfigurable Hybridized Macro 

Pipeline Multiprocessor. International Journal of 

Ubiquitous Computing and Communication , 7, Pp. 17-24. 

[15] Olakanmi, O., & Fakolujo, O. (2012(b)). Load Balancing in 

the Macro Pipeline Multiprocessor System using 

Processing Element Stealing Technique. International 

Journal of Ubiquitous Computing and Communication , 7, 

Pp. 25-31. 

[16] R, D., & et, a. (2002). A Dynamically Reconfigurable 

Architecture Dealing with Future Mobile 

Telecommunications Constraints. Proceeding of Parallel 

and Distributed Processing Symposium, IPDPS, (pp. 156-

163). 

[17] Wall, D. W. (1993). Limits of Instruction-Level 

Parallelism. Digital Western Research Laboratory 93/6. 

[18] Yi-Hsuan, L., & Cheng, C. (n.d.). A Modified Genetic 

Algorithm for Task Scheduling in Multiprocessor Systems. 

[19] Zeljko, V., Havard, E., Palm, H., & Carsten, G. (2009). 

Limits of Work-Stealing Scheduling. In E. Frachtenberg 

(Ed.), 14th International WorkshopJSSPP, (pp. 280-300). 

AUTHOR’S PROFILE 

O.O Olakanmi received the B.Tech in Computer 

Engineering from Ladoke Akintola University of Technology, 

Ogbomosho 2000 and M.sc in Computer Science from 

University of Ibadan, Ibadan. He is a lecturer and PhD student in 

the Department of Electrical & Electronic Engineering, 

University of Ibadan and major in Parallel & Distributed 

Computing..  

O.A Fakolujo received the B.Sc in Electronic and Electrical 

Engineering from University of Ife now Obafemi Awolowo 

University 1980. He received the PhD in Electrical Materials 

from University of London in 1988. He is currently a reader in 

the Department of Electrical & Electronic Engineering, 

University of Ibadan. 

 


