
International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

7

Experimental Evaluation of the Performance of

Processing Stealing Technique: A Scalable Load

Balancing Technique for a Dynamic Multiprocessor

System

O. O Olakanmi
Electrical and Electronic Engineering

 University of Ibadan, Nigeria

O.A Fakolujo (Ph.D)

Electrical and Electronic Engineering University of Ibadan,
Nigeria

ABSTRACT

This paper reports preliminary experimental evaluation of a

Processing Elements Stealing (PE-S) technique which was

targeted as efficient and scalable load balancing technique for

dynamically structured multiprocessor systems. The

multiprocessor system is imagined as a dynamic cluster based

multiprocessor. Each cluster of the multiprocessor system is a

node in symmetric multiprocessor architecture and the number

of Processing Element (PE) in each cluster is dynamically

determined at runtime. The PE-S technique dynamically

computes the configuration ratio using the number of threads in

the dynamically assigned tasks to generate the new number of

PE for each cluster. This new configuration ratio is thereafter

used to balance the additional computational work generated by

runtime instantiation of current workloads for each cluster.

In this work, the efficiency of the PE-S was evaluated using

memory traces of some tightly parallel applications where the

amount of parallelism is parameterized. These traces were used

as workloads on two different simulation setups; the first is a

dynamic multiprocessor with PE-S while the other was also a

dynamic multiprocessor but without PE-S. This is to evaluate

the performance of the PE-S load balancing technique on the

targeted multiprocessor. Also the efficiency of PE-S

reconfigurations was compared with other possible

reconfiguration ratios. The experimental results showed that the

load balancing algorithm is efficient and scalable for balancing

at least 100,000 instructions tasks and PE-S generated ratios are

averagely better than any other reconfiguration ratios.

General Terms

Parallel computing, Load balancing, multiprocessor

Keywords

Load balancing, multiprocessor, parallel application, work

stealing and sharing, processing element stealing

1. INTRODUCTION
The rapid developmental trends in hardware and software

technologies have led to increased interest in the use of

multiprocessor systems for online database, real-time, defence

strategy systems, and power intensive commercial applications.

One of the major problems of multiprocessor systems is how to

evenly distribute (or schedule) the processes among processing

elements to achieve some performance goal(s), such as

minimizing execution time, minimizing communication delays,

and/or maximizing resource utilization. Therefore, load balance

has become integral factor in maximising the speed up of

parallel and distributed environments. In recent time,

multiprocessor systems have been a subject of interest. Present

researches had shown that uniprocessor technology can hardly

be subjected to reasonable improvement thereby could no longer

meet up with processing power requirement of the current

applications. This is due to insatiable demand for computing

power by users which is generated from development of

powerful applications in order to meet up with the users’

demand. Parallel and Distributed processing has proffered

solution to this by combining many processing elements

together to behave as a single processor.

Research works are still on-going on how to perfect some of the

performance bottlenecks in multiprocessor systems through the

adoption of some of the computer network speedup metrics to

multiprocessor architecture. For example, different network

topologies had been modelled, evaluated and implemented in

multiprocessor systems which have brought variant

multiprocessor architectures. Apart from this, concept of

memory hierarchy and optimum scheduling techniques had been

introduced just to achieve efficient multiprocessor systems. In

spite of all these improvement metrics, multiprocessor systems

performance is still marred with inefficiency in job distribution

during execution which affects overall throughput of the

systems. A few researches had been done, and many are still on-

going on how to get a perfect load balancing technique;

however, a perfect technique has become elusive. One of the

biggest performance issues in the current load balance

techniques is that they are system specific and some of the loads

have more affinity for certain processing elements than the

others. This mars the performance gain of most of the available

load balance techniques. Many techniques for load balancing in

multiprocessor systems had been proposed. The prominent

among them are work stealing and work sharing. Recently,

another technique was proposed in [15], called Processing

Elements or worker stealing technique. This paper performed

experimental evaluation of this technique and evaluates its

performance in terms of its performance influences on the

speed-up, when the technique is implemented on a dynamic

multiprocessor.

The rest of the paper is organized as follows; Section 2 presents

the reviews on the related research works on load balancing in

multiprocessor architecture. In Section 3, background work on

PE-S technique is described. The experimental evaluation of PE-

S technique is described in Section 4, and the discussion as

related to the obtained simulation results is presented in Section

5.

2. RELATED WORKS
Many load balancing algorithms have been proposed for parallel

and cloud computing to prevent load imbalance

[3][5][8][12][15][18]. Each of these algorithms uses different

techniques to achieve load balancing among the processing

elements. Work stealing and work sharing technique gained

tremendous popularity due not only to their provable efficiency

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

8

but their practicability which could be easily explained within

the circle of multiprocessor designers. However, it has been

shown and proved from different experimental results performed

that work stealing or sharing techniques are susceptible to so

much overheads incurred from some computational tasks having

affinity for certain set of processor and some other

computational resources[15]. For example, there are some

communication costs involved in transferring the job which

come from, both the extra contention for the system bus and the

latency of the transfer. Besides, some jobs have some affinity for

the queue where they are assigned. This affinity emanates from

the fact that the applications we are considering have a spatial

breakdown of the computations. It follows that a large amount

of the data needed by computations will be cached. However,

when processor steals or shares a task from another processor it

can no longer take advantage of cached computation. These

inherently show that although work stealing may be popular and

common however it is not a perfect technique for load balancing

in parallel and distributed system [1][3][4].

In work sharing busy processors voluntarily redistribute their

excess workload in their respective queue amongst the less busy

or idle processors. Most times, a dedicated processor does the

monitoring of the queues of all the processors in the system,

detects the busy or idle processors and performs the distribution

amongst them. This not only incurs communication cost but also

eliminates the dedicated processor from computational work.

More so, the issue of job affinity or processor affinity still

explicitly affects the system. It is likely that in the presence of

extreme communication costs or very strong affinity of jobs for

the processors they are assigned to, work sharing will mar the

optimal performance as a result of the fact that shared works

will be transported from its initial processing element to the new

processing element. In that case, any attempt to share or steal

works will disrupt the scheduling affinity. In [6] work stealing

was proposed as better alternative to work sharing if this holds,

it suggests a very interesting question that can multiprocessor

architecture ease the burden on the parallel programmer by

allowing work stealing? In other words, is work stealing a

substitute for affinity scheduling? Specifically, if the

architecture performs work stealing and the programmer does a

reasonable, but not optimal job of balancing the load, how will

the system performance compare to the performance of a

perfectly balanced system? The answer to these is that the work

stealing technique cannot proffer perfect solution to load

imbalance in most multiprocessor architecture especially

architectures that exhibit scheduling affinity. Also, as mentioned

earlier, work stealing introduces communication overhead which

reduces the performance efficiency of the architecture. This was

substantiated with the analog given [15] that; “work stealing and

sharing can be analogized to getting job that one’s lacks the

tools or acquiring problem without having all the require

problem-solving-tools”. This is in reality amounts to waste of

time and scarce resources.

A work stealing algorithm which uses locality information was

used in [1]; this outperforms the standard work stealing

algorithm benchmarks. In this algorithm, each processor

maintains a queue of pointer to threads that have an affinity for

such processor and during stealing priority is given to queues

which have an affinity for such processor. In [6], an algorithm

was proposed which implements work stealing to prevent load

imbalance in a multiprocessor system. The algorithm has one

dequeue processor and the algorithm assumes that processors on

the architecture can work independently but can still steal from

any of the processors which have empty dequeue. The results

show that work stealing has lower communication cost than

work sharing. Also in [11], differential equation was used to

model work stealing technique. In [12], work stealing

architectural technique was proposed to prevent load imbalance

in homogenous shared-memory multiprocessor architecture.

The evaluation results in [19] corroborate some of the

aforementioned demerits of work stealing. In their work, the

limitation of work stealing scheduler was explored and

evaluated with another load balancing technique which is based

on graph partitioning. The experimental results obtained on a

multi-core workstation machine showed that the main cause of

performance degradation of work stealing is when works of very

little processing time are involved. Meanwhile this is the type of

workload in which graph partitioning approach has the potential

to achieve better performance than work-stealing. This was

further strengthened in [5] where design and preliminary

evaluation of an integrated load distribution-load balancing

algorithm which was targeted to be both efficient and scalable

for dynamically structured computations was reported. In their

work computation was represented as a dynamic hierarchical

dependence graph. Each node of the graph might be a sub graph

or a computation and the number of instances of each node is

dynamically determined at runtime. The algorithm combines an

initial partitioning of the graph with application of randomized

work stealing on the basis of sub graphs to refine imbalances in

the initial partitioning and balance the additional computational

work generated by runtime instantiation of sub graphs and

nodes. Dynamic computations are modeled by an artificial

program (k-nary) where the amount of parallelism was

parameterized. The experimental results carried out on IBM

SP2s suggested that the load balancing algorithm is efficient and

scalable for parallelism up to 10,000 parallel threads for closely

coupled distributed memory architectures.

A simple algorithm to distribute loads evenly on multiprocessor

computers with hypercube interconnection networks was

proposed in [10]. This algorithm was developed based upon the

well-known dimension exchange method. However, the error

accumulation suffered by other algorithms based on the

dimension exchange method is avoided by exploiting the notion

of regular distributions, which are commonly deployed for data

distributions in parallel programming. This algorithm achieves a

perfect load balance over P processors with an error of 1 and the

worst-case time complexity of O(M log2 P), where M is the

maximum number of tasks initially assigned to each processor

[10]. Furthermore, perfect load balance is achieved over

subcubes as well—once a hypercube is balanced, if the cube is

decomposed into two subcubes by the lowest bit of node

addresses, then the difference between the numbers of the total

tasks of these subcubes is at most 1. However, this algorithm

was tailored towards a particular multiprocessor system

architectural network.

3. PROCESSING ELEMENT STEALING

(PE-S) TECHNIQUE
In view of the importance of load balancing to performance of

multiprocessor architecture and the deficiencies of the existing

load balancing techniques, an alternative technique was

proposed in [15] which exploits the possibility of stealing

workers instead of stealing work. Worker stealing involves

stealing the processing elements with all the resources of such

elements. This apparently removes affinity for either job or

processor. PEs-stealing technique not only solves the problem of

load imbalance but does not affect queue affinity schedule and

with little or no communication cost. PE-S provides some

benefits as a result of the fact that it balances the load on a more

instantaneous level than work stealing especially for

interdependent sub problems which initially brought about

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

9

affinity schedule. Whenever a cluster is over loaded, the PE-

stealing heuristic senses this and reconfigures the architecture by

reassigning more processing element(s) to that cluster. The

technique concurrently monitors over-loading and under loading

in each cluster by releasing some of idle clusters’ processing

elements to its neighboring clusters that are overloaded using the

reconfiguration ratio. The practicability of this technique was

done in [15] by implementing the technique in a heuristic called

PE-S heuristic which uses the number of threads in the assign

computational tasks to determine the current reconfiguration

ratio of the multiprocessor. However, the efficiency of the

heuristic with provable laboratory or simulated experimental

results was not done.

The heuristic as shown in fig.1 calculates the total number of

threads in each workload assigned to the modularized unit of the

multiprocessor system. This is used to dynamically get the

current reconfiguration ratio of the architecture as shown

in equation 1.The is compared with previous

configuration ratio and the processing elements are

joggled (stolen or released) until the
 The

heuristic is highlighted below:

1. Reset the multiprocessor to default.

2. Accept the parallel tasks (t1 ….tn) where n <= 4

3. Span through the tasks (t1…tn) determine number of

processes in each parallel task

4. Initialize n to 1

5. Start from task n and cluster n

6. For task n and cluster n calculated current configuration

ratio

while (current_configuration_ratio >

previous_configuration_ratio)

1. Remove one node from next cluster

and change the status of the node’s.

2. index = (index of last node in the

cluster + 1)

3. Increment

Pprevious_configuration_ratio by 1

7 Increment n by 1 and Go to 5

8. Store the status of all the reconfigured nodes

9. Assign all the input parallel tasks to the clusters in the

HMPM

10. Stop

This can be mathematically represented as follows:

Assuming

Then, the PE-S says;

)

For all the clusters i (where i<=4) the architecture performs

these:

while (
)

{

 i.e. borrow processing element from the

next cluster

 i.e change the status of the borrowed

processing element

 n = n+1

else

 i.e released processing element from the

next cluster

 = i.e change the status of the released

processing element

 n = n-1

 }

4. EXPERIMENTAL EVALUATION OF

PE-S LOAD BALANCING TECHNIQUE
All the experimental workloads used during simulation are the

traces of a wide variety of real application programs. These

traces represent real parallel applications as shown in table 1a-b.

Twenty three experimental simulations were carried out, using

combination of four parallel applications traces with different

number of parallelism, to evaluate the performance of PE-S.

Nineteen experimental workloads shown in table 1a were used

to evaluate the performance of PE-S technique in a dynamic

multiprocessor mode, and four workloads, as shown in table 1b,

were used to compare PE-S and manually generated

configuration ratios. The multiprocessor model used is a

Hybridised Macro Pipeline Multiprocessor (HMPM) with 64KB

main memory. The replacement policy used for the two level

4KB caches was Least Frequently Used (LFU) with fully

associative mapping. .

An experimental setup which represents a multiprocessor model

with PE-S and another multiprocessor model without PE-S was

used as controls in order to perform the evaluation of PE-S

technique. The first experimental setup represents the

reconfigurable multiprocessor setup while the latter stands for

non reconfigurable multiprocessor setup. The performance was

measured in terms of the execution time (in second) of each

cluster when parallel workloads were mapped into the clusters.

The simulation results obtained from the two experimental

setups are analysed and discussed in the next section.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

10

Start

Accept the

four parallel

tasks

Determine numbers of

processes in each task

assigned to each cluster

Initialise counter ← 0

Calculate the

configuration ratio for

clustercounter

(PE’counter)

This will be used to generate

the configuration ratio

This predefined procedure

will generate the new

configuration ratio for the

current cluster

At this point four parallel

tasks will be assigned to the

four parallel clusters of the

HMPM i.e t1-t4↔c1-c4

where t and c represent

tasks and clusters

Is

PE’counter > PEcounter

Remove one processing

element from next cluster and

change its status to status of

current cluster and index to

index of the last node +1

PEcounter = PEcounter+1

counter = counter + 1

Counter = counter + 1

Store the status of all the

reconfigured nodes

Is counter > 4

Assign all the

four parallel

tasks to

HMPM

Stop

Yes

No

No

Yes

Reconfigure the cluster

processing capability to meet

up with assigned task

Fig. 1: Flowchart of Processing Element Stealing technique

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

11

Fig. 2: Comparison of Execution times of Multiprocessor model with and without PE-S for nineteen different workloads

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total Execution Time (s) of
Model without PE-S

Total Execution Time (s) of
Model with PE-S

Load No.

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Table 1a: Randomly Generated workloads used in the

evaluation of PE-S Technique

Load No.

Cluster 1 Cluster 2

Cluster 3

Cluster 4

1 HY5 SIMPLE4 WEATHER 4 SPEECH3

2 FFT4 SIMPLE3 SIMPLE3 SPEECH6

3 SPEECH3 FFT5 SPEECH4 WEATHER 4

4 SIMPLE5 FFT6 - SPEECH5

5 HY2 WAVE4 SPEECH4 FFT6

6 WAVE4 SPEECH3 FFT5 HY4

7 SPEECH3 FFT4 HY5 WAVE4

8 FFT3 HY4 SPEECH3 WAVE6

9 FFT4 SIMPLE3 WEATHER5 SPEECH4

10 FFT4 SIMPLE6 WEATHER3 SPEECH3

11 FFT6 SIMPLE4 WEATHER4 SPEECH2

12 FFT4 SIMPLE3 WEATHER4 SPEECH5

13 FFT3 SIMPLE5 SIMPLE5 HY4

14 FFT4 SIMPLE5 SIMPLE4 SPEECH3

15 SPEECH3 FFT6 SPEECH4 WEATHER3

16 SIMPLE4 FFT6 - SPEECH6

17 SIMPLE5 FFT5 - FFT6

18 SIMPLE6 FFT5 - SPEECH5

19 SIMPLE3 FFT4 HY6 SPEECH3

Table 1b: Randomly generated workloads used in

performance evaluation of PE-S and manually

generated configuration ratios

Load

No.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

20 FFT6 SIMPLE4 WEATHER3 SPEECH2

21 FFT4 SIMPLE3 SIMPLE3 SPEECH6

22 SPEECH2 FFT5 SPEECH4 WEATHER4

23 SIMPLE5 FFT6 - SPEECH5

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

12

Fig. 3. : Comparison of PE-S generated reconfiguration ratio and possible manually generated ratios

5. RESULTS AND DISCUSSION
The results of the experimental simulation are described and

analysed in this section. Multiprocessor model with and without

PE-S simulation setups were used to evaluate the performance

contribution of the PE-S load balancing technique using the

nineteen randomly generated workloads shown in table 1a The

results obtained were statistically analysed. The mean execution

times obtained for model with and without PE-S were 1726.8 ±

421.5 seconds and 1742.0 ± 386.63 seconds respectively. This

indicates that the use of PE-S technique improves the speed of

the multiprocessor model with PE-S. This is further illustrated

with fig. 2, where the execution times obtained for the model

with and without PE-S for nineteen different workloads are

graphically represented.

Also the possibility that the PE-S generated configuration ratios

might not be perfect was experimented and evaluated. That is,

the possibility of some other possible reconfiguration ratios to

be more efficient in terms of reduced execution time than the

one generated by PE-S. Four different workload instances in

table 1b were assigned to the simulated multiprocessor model

with PE-S. The PE-S reacted to these workloads by generating

configuration ratios 6:4:3:2, 4:3:3:6, 2:5:4:4, and 5:6:9:5 for the

four workload instances respectively. Each was used by the PE-

S to reconfigure the multiprocessor model which then executed

the corresponding workload instance in table 1b. Also, as a

control, a few possible configuration ratios were manually

generated for each of the workload instances and were used to

reconfigure the multiprocessor model. The results are shown in

fig.3.

The results obtained for the load number 20 show that only 4 out

of fifteen manually generated reconfiguration ratios were better

than PE-S generated ratio in term of execution time. This

implied that with workload number 20, PE-S generated

reconfigure ratio is 75% closer to the best reconfiguration. For

workload number 21, the execution times of the eighteen

manually generated reconfiguration ratios and the execution

time of PE-S generated reconfiguration ratio were compared. It

was observed that only 6 out of the 18 possible reconfiguration

ratios have execution time better that PE-S generated

reconfiguration ratio’s execution time. This indicated that for the

workload number 21, PE-S reconfiguration ratio is 77% closer

to the best reconfiguration ratio. Based on workload number 22,

another eighteen possible manually generated reconfiguration

ratios were manually generated. The execution time of the PE-S

generated reconfiguration ratio was compared with execution

times of the eighteen manually generated reconfiguration ratios.

It was observed that only 1 out of the 18 possible

reconfiguration ratios is better than PE-S generated ratio. This

shows that the PE-S reconfigured HMPM is almost the best

reconfiguration ratio. The results of the manually generated

reconfiguration ratios and PE-S generated ratio for workload

number 23 (SIMPLE, FFT, -, SPEECH) were also evaluated.

Only 5 reconfiguration ratios were possible for workload 23. It

was noted that none of the total execution time of the 5

reconfiguration ratios is better than PE-S generated

configuration ratio’s execution time. This implied that the PE-S

reconfiguration ratio is the best possible reconfiguration ratio for

this workload instance.

0

500

1000

1500

2000

2500

3000

3500

4000

Manually
Generated

Configuration
ratios for Load

20

PE-S Generated
ratio

Manually
Generated

Configuration
ratios

PE-S Generated
ratio

Manually
Generated

Configuration
ratios

PE-S Generated
ratio

Manually
Generated

Configuration
ratios

PE-S ratio

Load 20 Load 21 Load 22 Load 23

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

13

6. CONCLUSION & RECOMMENDATION
In this paper the performance evaluation of PE-S load balancing

technique for dynamic multiprocessor was carried out. This was

done not only to ascertain the performance contribution of PE-S

but to show that PE-S generated reconfiguration ratios are more

efficient than manually generated reconfiguration ratios. It was

observed from the results of the simulation that the proposed

PE-S technique obviously reduced the effect of load imbalance

in the multiprocessor by increasing the performance of

multiprocessor. For few cases of better manually generated

ratios the overheads incur through the manual generation will

not only nullify the gain but worsen the performance. The

proposed load balancing algorithm could be adapted to some

other functional unit based optimisation problems.

7. ACKNOWLEDGMENTS
This work was supported in part by a scholarship grant from

Petroleum Development Trust Fund (PTDF) Nigeria.

REFERENCES
[1] Acar, U., Blelloch, G., & Blumofe, R. (2000). The Data

Locality of Work stealing. Proceedings 12th ACM

Symposium on Parallel Algorithms and Architecture (pp.

Pp. 1-12). ACM.

[2] Alexandra, F., Margo, S., & Michael, S. (2007). Improving

Performance Isolation on Chip Multiprocessors via an

Operating System Scheduler. Proceeding of 16th of

International Conference on Parallel Architecture and

Compilation Technique (PACT 2007). Brasov, Romania.

[3] Amir, M. R., & Mohammad, A. V. (2008). A novel task

scheduling in Multiprocessor Systems with Genetic

Algorithm by Using Elitism stepping method.

[4] Belady, L. (1966). A study of replacement algorithms for

virtual-storage computer. IBM Systems Journal , 78-101.

[5] Berger, J., & Browne, J. (1999). Scalable Load Distribution

and Load Balancing for Dynamic Parallel Programs.

International Workshop on Cluster-Based Computing.

[6] Blumofe, R., & Leiserson, C. (1994). Scheduling

Multithreaded Computations by Work Stealing.

Proceedings 35th IEEE Conference on Foundations of

Computer Science, (pp. 356-368).

[7] Chou, T. C., & Abraham, A. J. (1983). Load redistribution

under failure in distributed systems. IEEE Trans.

Computing , C-32 (9), 799-808.

[8] Chow, C., & Kohler, W. (1979). Models for dynamic load

balancing in a heterogenous multiple processor system.

IEEE Trans. Computing , C-28 (5), 354-361.

[9] Gautam, G., & Soo-Young, L. (1998). Dynamic

Reconfiguration of a PMMLA for High Throughput

Applications. Parallel and Distributed Processing

Workshops Held in Conjunction with the 12th International

Parallel Processing Symposium and 9th Symposium on

Parallel and Distributed Processing, 10IPPS/SPDP'98 (pp.

Pp 1-6). Florida: Springer.

[10] Gene, E. J., & Hwang, Y. S. (2003). An Efficient

Algorithm for Perfect Load Balancing on Hypercube

Multiprocessors. The Journal of Supercomputing , 25 (1),

5-15.

[11] Mitzenmatcher, M. (1998). Analysis of Load Stealing

Models Based on Differential Equations. Proceedings of

10th ACM Symposium on Parallel Algorithms and

Architectures (pp. 212-221). ACM.

[12] Neil, D., & Wierman, A. (2011). On the Benefits of Work

Stealing in Shared Memory Multiprocessors. Carnegie

Mellon University.

[13] Nozar, T., Nader, B., Amir, H. K., & Haitao, D. (2004).

MaRS: A Macro-pipelined Reconfigurable System. ACM .

[14] Olakanmi, O., & Fakolujo, O. (2012(a)). Design and

Performance Analysis of Reconfigurable Hybridized Macro

Pipeline Multiprocessor. International Journal of

Ubiquitous Computing and Communication , 7, Pp. 17-24.

[15] Olakanmi, O., & Fakolujo, O. (2012(b)). Load Balancing in

the Macro Pipeline Multiprocessor System using

Processing Element Stealing Technique. International

Journal of Ubiquitous Computing and Communication , 7,

Pp. 25-31.

[16] R, D., & et, a. (2002). A Dynamically Reconfigurable

Architecture Dealing with Future Mobile

Telecommunications Constraints. Proceeding of Parallel

and Distributed Processing Symposium, IPDPS, (pp. 156-

163).

[17] Wall, D. W. (1993). Limits of Instruction-Level

Parallelism. Digital Western Research Laboratory 93/6.

[18] Yi-Hsuan, L., & Cheng, C. (n.d.). A Modified Genetic

Algorithm for Task Scheduling in Multiprocessor Systems.

[19] Zeljko, V., Havard, E., Palm, H., & Carsten, G. (2009).

Limits of Work-Stealing Scheduling. In E. Frachtenberg

(Ed.), 14th International WorkshopJSSPP, (pp. 280-300).

AUTHOR’S PROFILE

O.O Olakanmi received the B.Tech in Computer

Engineering from Ladoke Akintola University of Technology,

Ogbomosho 2000 and M.sc in Computer Science from

University of Ibadan, Ibadan. He is a lecturer and PhD student in

the Department of Electrical & Electronic Engineering,

University of Ibadan and major in Parallel & Distributed

Computing..

O.A Fakolujo received the B.Sc in Electronic and Electrical

Engineering from University of Ife now Obafemi Awolowo

University 1980. He received the PhD in Electrical Materials

from University of London in 1988. He is currently a reader in

the Department of Electrical & Electronic Engineering,

University of Ibadan.

