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ABSTRACT   
The minimization of switching functions is important to reduce 

the original number of logic gates required to implement digital 

logic circuits. Quine-McCluskey algorithm is classical method 

for simplifying these functions which can handle any number of 

variables. This paper presents Quine-McCluskey algorithm for 

minimizing switching functions, with additional specific 

elements, such as starting part  (that is decoding DNF form) and 

cost of circuit. An example of implementation of the algorithm 

is given too.       
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1.   INTRODUCTION  
One of the aims of synthesis is to obtain a digital circuit which 

is optimal in relation to certain criteria. In other words, one of 

the steps of the synthesis consists of determining the simplest 

algebraic expression which can represents a switching function. 

In doing this the simplest expression is usually sought in the 

classes of disjunctive and conjunctive normal forms. The 

typical criteria which must have the least value in the simplest, 

so called minimal expression are:  

- Number of literals (total number of inputs to all logic gates in 

the circuit), 
 

-  Number of operations (number of logic gates). 

These two criteria minimize the cost of circuit. A great number 

of methods has been developed 

to simplify the function in order to obtain its minimal normal 

form. Among them are used algebraic, graphical and tabular 

methods. 

Algebraic method of minimization is slow and error-prone. For 

these reasons some others procedures have been developed. 

Karnaugh map provides the ordinary method for simplifying 

switching functions, although it is limited to the problems with 

five or less input variables.   

When the number of input variables is greater than 5, the 

tabular method for simplifying switching functions developed 

by Quine and McCluskey is used. This techniques is suitable 

also for problems with more than one output. Besides, the 

Quine-McCluskey method is easier to be implemented as a 

computer program.   

Quine (1952) and McCluskey (1956) have suggested the above 

method of simplification which is considered the most useful 

tabular procedure and described in most books for logical 

minimization. In recent years some modified (simplified) 

algorithms with higher speed of execution have been observed 

too.  

 

This paper first gives some basic terms for logical 

minimization, and then shows the Quine-McCluskey algorithm 

for simplifying switching functions. Since it starts from DNF 

form and not from 0-cubes, an algorithm has been developed 

for automatic decoding DNF. Besides, the costs are calculated 

for starting and minimal circuit. An example of application of 

the procedure developed is demonstrated. 

Literature has been used for basic terms [1], for Quine-

McCluskey algorithm [2] and for realization of the algorithm 

[2] and [3]. In relation to [3] a different denotation of cube 

elements has been suggested here.  

2.   SOME BASIC TERMS 

2.1 Prime Implicants 
A product term is implicant of a function if the function has the 

vaule 1 for all minterms of the product term. For function of n 

variables, implicants may contain n or less literals. The most 

basic implicants are the minterms. Each minterm of a switching 

function represents the implicant of that function which covers 

it on only one vector.   

For example, function of two variable BABZ .  is 

shown in the following truth table. 

A    B Z 

0    0 

0    1 

1    0 

1    1 

1 

1 

0 

1 

 
There are 5 possible implicants for that function. These are: 

three minterms, 
BABA ,

and AB, and two implicants, which 

correspond to all posible pairs of minterms that can be joined, 

that is,  A  and B. 

  
Prime implicant is the implicant which cannot be joined with 

another implicant to have less literals. In the previous example, 

A  and B are simple implicants. Other implicants are covered 

by one of the simple implicants. Essential prime implicant is 

prime implicant which covers the implicant not covered by 

another simple implicant. This means that A  and B essential 

simple implicants. 

A set of implicants which cover all the the values for which the 

given function equals 1 is called a cover of that function. 

Numerous different covers exist for most functions. The 

examples of covers for the given function are: 

- the set of all minterms, 

- the set of all prime implicants, 
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- all the essential prime implicants plus other prime 

implicants needed to include remaining minterms not 

included in the essential prime implicants. 

For the previous example, BAZ   is minimal cover since 

it leads to realization with minimum cost. 

2.2 Cost of a Circuit 
The cost of a logic circuit can be usually expressed as a number 

of gates plus the total number of inputs to all gates in the 

circuit. Here it is implied that input variables are available in 

the right and complementary form. For example, let us 

determine the cost of a logic circuit which realizes the 

following function:  

655421 xxxxxxxf  )(3  

According to the formula 

Cost of circuit = number of gates + total number of inputs to all 

gates in the circuit, function f is realized by using three AND 

gates, three OR gates and two NOT gates, with 14 inputs. 

Hence, cost of circuit is 3 + 3 + 2 + 14 = 22.  

Or, for example, let us determine the cost of logic circuit which 

realizes the following function:  

 

))(()( 43214332 xxxxxxxxg 
 

  
Function g is realized by using three OR gates, one AND gate 

and one NOT gate. Two of the OR gates have two inputs, and 

the third has four inputs; AND gate has three inputs. Therefore, 

cost of circuit is 3 +1 + 1 + 2 * 2 + 4 + 3 + 1 = 5 + 12 = 17.  

2.3 Cubical Representation 
Each logic function of n variables can be represeted as a subset 

of 2n vertices of a n-dimensional cube. Each vertex of cubes 

corresponds to a complete product. The vertices corresponding 

to complete products are called 0-cubes (null-cubes).  If the 

vertices at which the function has the value 0 or 1 by are 

separately denoted, for example, 0 by an empty little circle and 

1 by a full circle, then we have the possibility of setting the 

logic function geometrically. 

Two null-cubes form 1-cube (line) if they differ only by one 

variable (coordinate). In a similar manner, a set of four 0-cubes 

forms 2-cube (square) if its coordinates differ only in two 

variables, etc.   

For example, let us consider the switching function 

DCBADCBADCBADCBAY   

Through the set of cubes this function can be represented in the 

following way: 

Y(1) = {0000, 1000, 1101, 1111} 

  
The function can simplified as 

              Y(1) = {x000, 11x1} 

The cube x000 is corresponding for 
DCB

. Here 1 represents 

the variable, 0 the complement to the variable, and x the 

absence of the variable. The cube 11x1 corresponds to the 

member ABD, cube 1111 corresponds to the member ABCD, 

etc.  

So, the minimal solution is Y(1) = {x000, 11x1} that is 

ABDDCBY 
. 

This expression has less products and less literals than the 

starting expression. 

In this way the cubical representation of switching functions 

can be used for simplifying switching functions.        

3. QUINE-McCLUSKEY ALGORITHM  
The starting point for Quine-McCluskey method is truth table, 

or equivalently, the list of binary or decimal indexes of the 

function. If the function is given differently, it must be first 

transferred into the form required. For example, DNF 

expression   
ABCBADCBAf ),,,(

is transferred 

into its canonical form 

DCBADCBADCBA

DCBADCBADCBA

DDABCDDCCBADCBAf





 )())((),,,(

  

that is 

f(1) = {0000, 0001, 0010, 0011, 1110, 1111} 

Quine-McCluskey method is based on the procedure of 

grouping applied to every two minterms which differ only by 

the value of one variable. For example,  DABCABCD   

is reduced to ABC. Since ABCD and DABC are represented 

by 1111 and 1110, the simplified form can be represented by 

111*, where * denotes the missing variable. Thus, in this way 

the number of terms and number of variables are reduced.  

Two main parts in the Quine-McCluskey algorithm are: 

-   Finding all prime implicants of the function. 

- Use those prime implicants in a prime   

    implicant table to find the essential  

    prime implicants of the function and other  

    prime implicants that provide the  

    coverage of the function with minimum cost. 

More precisely, Quine-McCluskey algorithm has the following 

steps:  

I.  Input: 
Step 1:  Enter input of switching function as  

DNF form.  

Stop 2: Form table to enter 0-cubes for  

minterms from input data.    

Step 3: Calculate cost of starting circuit as number of gates plus 

the total number of inputs to all gates in the circuit.   

II. Finding the Prime Implicants: 
Step 1: Arrange 0-cubes in increasing sequence of number of 

units. Divide the table intro classes of cubes so that each class 

contains the cubes with the same number of units, and separate 

the classes by a horizontal line. 

Step 2: From the starting table form a new table by grouping 0-

cubes from adjacent classes differing only an one bit. In the 

new table the grouped cubes on the differing bit has the symbol 

“*”‘, and in the previous table the grouped cubes are denoted by 

the symbol  “ “. 



International Journal of Computer Applications (0975 – 8887) 

  Volume 82 – No4, November 2013 

14 
 

 

Step 3: Using step 2 form a new table and repeat the procedure 

as long as the pairing is possible. All non-paired cubes 

correspond to simple implicants. If in grouping the same 

reduced terms appear several times, they are entered into the 

new table only once.    

III. Finding the Essential Prime Implicants: 
Step 1: Form the coverage table where the simple implicants 

found enter the lines and the minterms enter the columns. Every 

minterm covered by a given simple implicant is denoted by a 

unit in the corresponding position.  

Step 2: Identify essential simple implicants in the table for the 

columns containing only one unit.  

Step 3: If after the previous step all the minterms are not 

covered, form a new coverage table from remaining simple 

implicants and minterms not covered yet. Choose such a simple 

implicant to cover most of the remaining minterms. 

Step 4:  Repeat step 3 until all the minterms are covered.   

IV.  Display: 
Step 1: Display all separated simple implicants in all iterations 

of the reduction. In doing this, a number of minimal sets of 

simple implicants can be formed, which depends on the way of 

coverage and then one of them is accepted as a solution. 

Step 2: Calculate the cost of minimum circuit. 

4.   IMPLEMENTATION 
The algorithm is realized by using Fortran PowerStation 

language. With an adequate program, it is possible to achieve 

minimization of switching functions with maximum 10 input 

variables and maximum 50 product terms. 

In order to check it for exact operation, the program has been 

tested on minimization of several switching functions, each 

including a different number of input variables. The results 

tested were then checked by hand. In all cases good results were 

obtained.  

The program requires a textual file which defines DNF for 

function. The sign in the first column denotes the type of data:  

“c“ - comments, “y” – switching function in algebraic form and 

“e” – end of program.   

Independent variables are denoted form by a, b, ... , j. Operators 

are conjunction (), disjunction (+) and negation (^). 

In addition to the above cited correct symbols for independent 

variables and operators, the following table shows some other 

correct symbols for input records.  

correct special symbol       meaning 

          

            ,                              end of record 
            

           ,,                              continuation for the  

                                           next record 
 

       blank                        not to be considered 
 
DNF expression is read in and decoded, and cube table 

determined for the vectors at which  y = 1. 

Each term in the DNF expression is represented by cube. The 

cube of n variables (n is up to 10) is represented by data 

structure with n elements, each of them having three possible 

values:  

1    non-complementary variable 

 

  0       complementary variable 

 

 *       variable does not occur 

 
DNF expression being decoded consists of symbols of which 

each can be a variable, operator or special symbol. The 

algorithm for decoding DNF expression consists of the 

following steps: 

1. Set I = 3. 

2. Test Ith symbol. 

3. If disjunction, check if the product term number is greater 

than 50, if it is not go on to the new symbol. If it is yes, 

algorithm is stopped. 

4. If conjunction, go on to the new symbol.  

5. If complement, then IZN = ’0’ and go on to the new 

symbol.   

6. If comma, go on to the new record.  

7. If the variable is incorrect, call subprogram POGR to enter 

into it the correct variable and then test the symbol entered.  

8. If the variable is correct, then IMATR(I, J) = IZN, IZN = 

‘1’ and go on the new symbol. 

9. If Ith symbol = ‘,’, algorithm is finished;  

            if not, then I=I+1 and go to step 2.  

Before beginning step 1, the matrix is deleted, that is, 

IMATR(I, J) = ‘*’ and IZN = ‘1’. The algorithm given does not 

consider continuation for the next record.   

Figure 1 shows input data for DNF expression for the example 

from Section 5. Figure 2 shows the corresponding cube tables.  

c 

y = ^a^c.d+^a.b.c^d+^a.b.c.d+a^b.c.d 

      +a.b^c^d+a.b.d,  
end 

 

Figure 1.  Input data for the given example 

 

 CUBE TABLE 

 a    b    c     d    

 0    *    0     1 

 0    1    1     0 

 0    1    1     1 

 1    0    1     1 

 1    1    0     0 

 1    1    *     1   

 

Figure 2. Cube table for the given switching function 

 

0-CUBE TABLE  

 a    b    c    d 

 0    0    0    1 

 0    1    0    1 

 0    1    1    0 

 0    1    1    1 

 1    0    1    1 

 1    1    0    0 

 1    1    0    1   

 1    1    1    1   
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Figure  2. 0-cube table for the given switching function 

(continuation) 

5.   EXAMPLE 
A simple example with four variables will be considered here. It 

can be written in SDNF form as follows: 

Y = ^a^b^c.d+^a.b^c.d+^a.b.c^d+^a.b.c.d+a^b.c.d+ 

a.b^c^d+a.b^c.d  +a.b.c.d 

Applying Quine-McCluskey algorithm the following results are 

obtained: 

I. Input 
1.  Enter input in the form of given expression. 

2. Binary indexes (0-cubes) which correspond  

     to minterms are 0001, 0101, 0110,  

     0111, 1011, 1100, 1101, and 1111.  

3.  Cost of circuit is:  

     eight AND gates + one OR gate + (8 x 4)  

      inputs in AND gates + eight inputs in  

     OR gate = 9 gates + 40 inputs in gates = 49  

 

II. 

 
1. Arranged 0-cubes in increasing sequence of number of units 

are shown in table 1. 
Table 1 

  

 

 
2. 1-cubes obtained by pairing the cubes of 0th  

    order are shown in table 2. In the  

    starting table all 0-cubes are denoted as  

    paired, which means that there are no  

    simple implicants among them.  

 

Table 2 

 

 

 

 

 

 

    

 

 

 

 

 
3. 2-cubes obtained by pairing the cubes of 1th  

     order are shown in the table 3.   

 

Table 3 

  

 

 

 

 

 
There is no possibility of further pairing. All non-paired 

implicants (here denoted by E, A, B, C and D) form a set of 

simple implicants. So, the simple implicants are *1*1, 0*01, 

011*, 110* and 1*11.  

III. 
1.  Coverage table is shown in table 4. 

 
Table 4 

 0 0 0 1 0 1 1 1 

0 1 1 1 1 0 1 1 

0 0 1 0 1 1 0 1 

1 1 0 0 1 1 1 1 

E 

A 

B 

C 

D 

0 1 0 0 1 0 1 1  

1 1 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 

0 0 0 1 0 0 1 0 

0 0 0 0 0 1 0 1 

2. In this step are found essential prime  

      implicants (here denoted only by a single  

      unit in the column). These are simple  

      implicants which are not covered by other  

     simple implicants In this example, the  

     essential simple implicants are A, B, C  

     and D, that is, 0*01, 011*, 110* and 1*11. 

3. After the previous step here are no minterms  

    which are not covered.  

 

IV. 
In the beginning, the given switching function had the form  

0001 + 0101 + 0110 + 1100 + 0111 + 1011 + 1101 + 1111 

which is equivalent to the given expression.   

After applying the procedure, a simpler form is obtained: 

0*01 + 011* + 110* +1*11 

or  

f =^a^c.d+^a.b.c+a.b^c+a.c.d 

Cost of circuit = four AND gates + one OR gate + (4 x 3) inputs 

in AND gates + four inputs in OR gate = 5 gates + 16 inputs in 

gates = 21  

Note that the same result was obtained by applying Karnaugh 

map method.    

5.   CONCLUSION AND FUTURE WORK 
In the paper, the Quine-McCluskey algorithm for logic gate 

minimisation is described. The experience so far has shown that 

the program developed is reliable and fast.  

This program minimizes switching functions with maximum 10 

variables. The code can easily be widened to correspond to the 

functions whose number of variables is restricted by memory of 

the computer. Development and incorporation of user interface 

is also suggested for future work.   

 i Pi  

1 0001  

5 

6 

12 

0101 

0110 

1100 

 

 

 

7 

11 

13 

0111 

1011 

1101 

 

 

 

15 1111  

I,j Pi,j  

1,5 0*01 A 

5,7 

5,13 

6,7 

12,13 

01*1 

*101 

011* 

110* 

 

 
B 

C 

7,15 

11,15 

13,15 

*111 

1*11 

11*1 

 
D 

 

 i,j,k,l Pi,j,k,l  

5,7,13,15 *1*1 E 

5,13,7,15 *1*1 F 
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