
International Journal of Computer Applications (0975 – 8887)

 Volume 82 – No4, November 2013

12

Minimization of Switching Functions

using Quine-McCluskey Method

Vladislav Manojlović
Faculty of Technical Sciences, Kneza Miloša 7,

 38220 Kosovska Mitrovica, Serbia

ABSTRACT
The minimization of switching functions is important to reduce

the original number of logic gates required to implement digital

logic circuits. Quine-McCluskey algorithm is classical method

for simplifying these functions which can handle any number of

variables. This paper presents Quine-McCluskey algorithm for

minimizing switching functions, with additional specific

elements, such as starting part (that is decoding DNF form) and

cost of circuit. An example of implementation of the algorithm

is given too.

Keywords
switching functions, DNF form, cubes, minimization, Quine-

McCluskey algorithm

1. INTRODUCTION
One of the aims of synthesis is to obtain a digital circuit which

is optimal in relation to certain criteria. In other words, one of

the steps of the synthesis consists of determining the simplest

algebraic expression which can represents a switching function.

In doing this the simplest expression is usually sought in the

classes of disjunctive and conjunctive normal forms. The

typical criteria which must have the least value in the simplest,

so called minimal expression are:

- Number of literals (total number of inputs to all logic gates in

the circuit),

- Number of operations (number of logic gates).

These two criteria minimize the cost of circuit. A great number

of methods has been developed

to simplify the function in order to obtain its minimal normal

form. Among them are used algebraic, graphical and tabular

methods.

Algebraic method of minimization is slow and error-prone. For

these reasons some others procedures have been developed.

Karnaugh map provides the ordinary method for simplifying

switching functions, although it is limited to the problems with

five or less input variables.

When the number of input variables is greater than 5, the

tabular method for simplifying switching functions developed

by Quine and McCluskey is used. This techniques is suitable

also for problems with more than one output. Besides, the

Quine-McCluskey method is easier to be implemented as a

computer program.

Quine (1952) and McCluskey (1956) have suggested the above

method of simplification which is considered the most useful

tabular procedure and described in most books for logical

minimization. In recent years some modified (simplified)

algorithms with higher speed of execution have been observed

too.

This paper first gives some basic terms for logical

minimization, and then shows the Quine-McCluskey algorithm

for simplifying switching functions. Since it starts from DNF

form and not from 0-cubes, an algorithm has been developed

for automatic decoding DNF. Besides, the costs are calculated

for starting and minimal circuit. An example of application of

the procedure developed is demonstrated.

Literature has been used for basic terms [1], for Quine-

McCluskey algorithm [2] and for realization of the algorithm

[2] and [3]. In relation to [3] a different denotation of cube

elements has been suggested here.

2. SOME BASIC TERMS

2.1 Prime Implicants
A product term is implicant of a function if the function has the

vaule 1 for all minterms of the product term. For function of n

variables, implicants may contain n or less literals. The most

basic implicants are the minterms. Each minterm of a switching

function represents the implicant of that function which covers

it on only one vector.

For example, function of two variable BABZ . is

shown in the following truth table.

A B Z

0 0

0 1

1 0

1 1

1

1

0

1

There are 5 possible implicants for that function. These are:

three minterms,
BABA ,

and AB, and two implicants, which

correspond to all posible pairs of minterms that can be joined,

that is, A and B.

Prime implicant is the implicant which cannot be joined with

another implicant to have less literals. In the previous example,

A and B are simple implicants. Other implicants are covered

by one of the simple implicants. Essential prime implicant is

prime implicant which covers the implicant not covered by

another simple implicant. This means that A and B essential

simple implicants.

A set of implicants which cover all the the values for which the

given function equals 1 is called a cover of that function.

Numerous different covers exist for most functions. The

examples of covers for the given function are:

- the set of all minterms,

- the set of all prime implicants,

International Journal of Computer Applications (0975 – 8887)

 Volume 82 – No4, November 2013

13

- all the essential prime implicants plus other prime

implicants needed to include remaining minterms not

included in the essential prime implicants.

For the previous example, BAZ  is minimal cover since

it leads to realization with minimum cost.

2.2 Cost of a Circuit
The cost of a logic circuit can be usually expressed as a number

of gates plus the total number of inputs to all gates in the

circuit. Here it is implied that input variables are available in

the right and complementary form. For example, let us

determine the cost of a logic circuit which realizes the

following function:

655421 xxxxxxxf )(3

According to the formula

Cost of circuit = number of gates + total number of inputs to all

gates in the circuit, function f is realized by using three AND

gates, three OR gates and two NOT gates, with 14 inputs.

Hence, cost of circuit is 3 + 3 + 2 + 14 = 22.

Or, for example, let us determine the cost of logic circuit which

realizes the following function:

))(()(43214332 xxxxxxxxg 

Function g is realized by using three OR gates, one AND gate

and one NOT gate. Two of the OR gates have two inputs, and

the third has four inputs; AND gate has three inputs. Therefore,

cost of circuit is 3 +1 + 1 + 2 * 2 + 4 + 3 + 1 = 5 + 12 = 17.

2.3 Cubical Representation
Each logic function of n variables can be represeted as a subset

of 2n vertices of a n-dimensional cube. Each vertex of cubes

corresponds to a complete product. The vertices corresponding

to complete products are called 0-cubes (null-cubes). If the

vertices at which the function has the value 0 or 1 by are

separately denoted, for example, 0 by an empty little circle and

1 by a full circle, then we have the possibility of setting the

logic function geometrically.

Two null-cubes form 1-cube (line) if they differ only by one

variable (coordinate). In a similar manner, a set of four 0-cubes

forms 2-cube (square) if its coordinates differ only in two

variables, etc.

For example, let us consider the switching function

DCBADCBADCBADCBAY 

Through the set of cubes this function can be represented in the

following way:

Y(1) = {0000, 1000, 1101, 1111}

The function can simplified as

 Y(1) = {x000, 11x1}

The cube x000 is corresponding for
DCB

. Here 1 represents

the variable, 0 the complement to the variable, and x the

absence of the variable. The cube 11x1 corresponds to the

member ABD, cube 1111 corresponds to the member ABCD,

etc.

So, the minimal solution is Y(1) = {x000, 11x1} that is

ABDDCBY 
.

This expression has less products and less literals than the

starting expression.

In this way the cubical representation of switching functions

can be used for simplifying switching functions.

3. QUINE-McCLUSKEY ALGORITHM
The starting point for Quine-McCluskey method is truth table,

or equivalently, the list of binary or decimal indexes of the

function. If the function is given differently, it must be first

transferred into the form required. For example, DNF

expression
ABCBADCBAf ),,,(

is transferred

into its canonical form

DCBADCBADCBA

DCBADCBADCBA

DDABCDDCCBADCBAf





)())((),,,(

that is

f(1) = {0000, 0001, 0010, 0011, 1110, 1111}

Quine-McCluskey method is based on the procedure of

grouping applied to every two minterms which differ only by

the value of one variable. For example, DABCABCD 

is reduced to ABC. Since ABCD and DABC are represented

by 1111 and 1110, the simplified form can be represented by

111*, where * denotes the missing variable. Thus, in this way

the number of terms and number of variables are reduced.

Two main parts in the Quine-McCluskey algorithm are:

- Finding all prime implicants of the function.

- Use those prime implicants in a prime

 implicant table to find the essential

 prime implicants of the function and other

 prime implicants that provide the

 coverage of the function with minimum cost.

More precisely, Quine-McCluskey algorithm has the following

steps:

I. Input:
Step 1: Enter input of switching function as

DNF form.

Stop 2: Form table to enter 0-cubes for

minterms from input data.

Step 3: Calculate cost of starting circuit as number of gates plus

the total number of inputs to all gates in the circuit.

II. Finding the Prime Implicants:
Step 1: Arrange 0-cubes in increasing sequence of number of

units. Divide the table intro classes of cubes so that each class

contains the cubes with the same number of units, and separate

the classes by a horizontal line.

Step 2: From the starting table form a new table by grouping 0-

cubes from adjacent classes differing only an one bit. In the

new table the grouped cubes on the differing bit has the symbol

“*”‘, and in the previous table the grouped cubes are denoted by

the symbol “ “.

International Journal of Computer Applications (0975 – 8887)

 Volume 82 – No4, November 2013

14

Step 3: Using step 2 form a new table and repeat the procedure

as long as the pairing is possible. All non-paired cubes

correspond to simple implicants. If in grouping the same

reduced terms appear several times, they are entered into the

new table only once.

III. Finding the Essential Prime Implicants:
Step 1: Form the coverage table where the simple implicants

found enter the lines and the minterms enter the columns. Every

minterm covered by a given simple implicant is denoted by a

unit in the corresponding position.

Step 2: Identify essential simple implicants in the table for the

columns containing only one unit.

Step 3: If after the previous step all the minterms are not

covered, form a new coverage table from remaining simple

implicants and minterms not covered yet. Choose such a simple

implicant to cover most of the remaining minterms.

Step 4: Repeat step 3 until all the minterms are covered.

IV. Display:
Step 1: Display all separated simple implicants in all iterations

of the reduction. In doing this, a number of minimal sets of

simple implicants can be formed, which depends on the way of

coverage and then one of them is accepted as a solution.

Step 2: Calculate the cost of minimum circuit.

4. IMPLEMENTATION
The algorithm is realized by using Fortran PowerStation

language. With an adequate program, it is possible to achieve

minimization of switching functions with maximum 10 input

variables and maximum 50 product terms.

In order to check it for exact operation, the program has been

tested on minimization of several switching functions, each

including a different number of input variables. The results

tested were then checked by hand. In all cases good results were

obtained.

The program requires a textual file which defines DNF for

function. The sign in the first column denotes the type of data:

“c“ - comments, “y” – switching function in algebraic form and

“e” – end of program.

Independent variables are denoted form by a, b, ... , j. Operators

are conjunction (), disjunction (+) and negation (^).

In addition to the above cited correct symbols for independent

variables and operators, the following table shows some other

correct symbols for input records.

correct special symbol meaning

 , end of record

 ,, continuation for the

 next record

 blank not to be considered

DNF expression is read in and decoded, and cube table

determined for the vectors at which y = 1.

Each term in the DNF expression is represented by cube. The

cube of n variables (n is up to 10) is represented by data

structure with n elements, each of them having three possible

values:

1 non-complementary variable

 0 complementary variable

 * variable does not occur

DNF expression being decoded consists of symbols of which

each can be a variable, operator or special symbol. The

algorithm for decoding DNF expression consists of the

following steps:

1. Set I = 3.

2. Test Ith symbol.

3. If disjunction, check if the product term number is greater

than 50, if it is not go on to the new symbol. If it is yes,

algorithm is stopped.

4. If conjunction, go on to the new symbol.

5. If complement, then IZN = ’0’ and go on to the new

symbol.

6. If comma, go on to the new record.

7. If the variable is incorrect, call subprogram POGR to enter

into it the correct variable and then test the symbol entered.

8. If the variable is correct, then IMATR(I, J) = IZN, IZN =

‘1’ and go on the new symbol.

9. If Ith symbol = ‘,’, algorithm is finished;

 if not, then I=I+1 and go to step 2.

Before beginning step 1, the matrix is deleted, that is,

IMATR(I, J) = ‘*’ and IZN = ‘1’. The algorithm given does not

consider continuation for the next record.

Figure 1 shows input data for DNF expression for the example

from Section 5. Figure 2 shows the corresponding cube tables.

c

y = ^a^c.d+^a.b.c^d+^a.b.c.d+a^b.c.d

 +a.b^c^d+a.b.d,
end

Figure 1. Input data for the given example

 CUBE TABLE

 a b c d

 0 * 0 1

 0 1 1 0

 0 1 1 1

 1 0 1 1

 1 1 0 0

 1 1 * 1

Figure 2. Cube table for the given switching function

0-CUBE TABLE

 a b c d

 0 0 0 1

 0 1 0 1

 0 1 1 0

 0 1 1 1

 1 0 1 1

 1 1 0 0

 1 1 0 1

 1 1 1 1

International Journal of Computer Applications (0975 – 8887)

 Volume 82 – No4, November 2013

15

Figure 2. 0-cube table for the given switching function

(continuation)

5. EXAMPLE
A simple example with four variables will be considered here. It

can be written in SDNF form as follows:

Y = ^a^b^c.d+^a.b^c.d+^a.b.c^d+^a.b.c.d+a^b.c.d+

a.b^c^d+a.b^c.d +a.b.c.d

Applying Quine-McCluskey algorithm the following results are

obtained:

I. Input
1. Enter input in the form of given expression.

2. Binary indexes (0-cubes) which correspond

 to minterms are 0001, 0101, 0110,

 0111, 1011, 1100, 1101, and 1111.

3. Cost of circuit is:

 eight AND gates + one OR gate + (8 x 4)

 inputs in AND gates + eight inputs in

 OR gate = 9 gates + 40 inputs in gates = 49

II.

1. Arranged 0-cubes in increasing sequence of number of units

are shown in table 1.
Table 1

2. 1-cubes obtained by pairing the cubes of 0th

 order are shown in table 2. In the

 starting table all 0-cubes are denoted as

 paired, which means that there are no

 simple implicants among them.

Table 2

3. 2-cubes obtained by pairing the cubes of 1th

 order are shown in the table 3.

Table 3

There is no possibility of further pairing. All non-paired

implicants (here denoted by E, A, B, C and D) form a set of

simple implicants. So, the simple implicants are *1*1, 0*01,

011*, 110* and 1*11.

III.
1. Coverage table is shown in table 4.

Table 4

 0 0 0 1 0 1 1 1

0 1 1 1 1 0 1 1

0 0 1 0 1 1 0 1

1 1 0 0 1 1 1 1

E

A

B

C

D

0 1 0 0 1 0 1 1

1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 1

2. In this step are found essential prime

 implicants (here denoted only by a single

 unit in the column). These are simple

 implicants which are not covered by other

 simple implicants In this example, the

 essential simple implicants are A, B, C

 and D, that is, 0*01, 011*, 110* and 1*11.

3. After the previous step here are no minterms

 which are not covered.

IV.
In the beginning, the given switching function had the form

0001 + 0101 + 0110 + 1100 + 0111 + 1011 + 1101 + 1111

which is equivalent to the given expression.

After applying the procedure, a simpler form is obtained:

0*01 + 011* + 110* +1*11

or

f =^a^c.d+^a.b.c+a.b^c+a.c.d

Cost of circuit = four AND gates + one OR gate + (4 x 3) inputs

in AND gates + four inputs in OR gate = 5 gates + 16 inputs in

gates = 21

Note that the same result was obtained by applying Karnaugh

map method.

5. CONCLUSION AND FUTURE WORK
In the paper, the Quine-McCluskey algorithm for logic gate

minimisation is described. The experience so far has shown that

the program developed is reliable and fast.

This program minimizes switching functions with maximum 10

variables. The code can easily be widened to correspond to the

functions whose number of variables is restricted by memory of

the computer. Development and incorporation of user interface

is also suggested for future work.

 i Pi

1 0001 

5

6

12

0101

0110

1100







7

11

13

0111

1011

1101







15 1111 

I,j Pi,j

1,5 0*01 A

5,7

5,13

6,7

12,13

01*1

*101

011*

110*




B

C

7,15

11,15

13,15

*111

1*11

11*1


D



 i,j,k,l Pi,j,k,l

5,7,13,15 *1*1 E

5,13,7,15 *1*1 F

International Journal of Computer Applications (0975 – 8887)

 Volume 82 – No4, November 2013

16

REFERENCES
[1] Brown, S. and Vranesic, Z. 2000. Fundamentals

 of Digital Logic with VHDL Design, McGraw-

 Hill.

[2] Tomaszewski, S., Celik, I., Antoniqu, G. 2003.

 WWW-based Boolean function minimization,

 Int. J. Appl. Math. Comput. Sci., Vol. 13, No.

 4, 577-583.

[3] Manojlovic, V. 2013. Cubical Representation of

 Switching Functions, Simposium YU-INFO

 2013, Kopaonik.

IJCATM: www.ijcaonline.org

