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ABSTRACT 

Graphics Processing Units (GPUs) is currently a common 

feature of high performance computing. Languages such as 

CUDA and Open Computing Language (OpenCL) are such 

programming models; provide a standard interface for 

achieving high performance across these GPU devices. 

However, because of the wide variety of architectural 

complexities of these GPU devices; often makes difficult to 

write programs for these platforms. One of the approaches to 

get rid off this difficulty is to parallelize sequential programs 

into equivalent parallel programs. In this paper, we present a 

methodology for parallelization of sequential C-programs 

with function calls to equivalent OpenCL programs with little 

assistance from programmer. Our proposed methodology 

identifies function calls and converts them into ‘kernel’ to be 

executed in parallel on GPU devices. To the best of our 

knowledge, there are no tools dedicated to conversion of C 

code to equivalent OpenCL code. 
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1. INTRODUCTION 
Current High Performance Computing (HPC) platforms have 

multicore processors and Graphics Processing Units (GPUs) 

[1] as computing units. These GPUs have become a common 

feature of high performance computing. GPUs are highly 

parallel, multithreaded; many core processor with tremendous 

computational power and very high memory bandwidth. 

GPUs use aggressive multithreading so that whenever a thread 

is stalled, waiting for data, the thread can efficiently switch to 

execute another thread. 

Achieving good performance on these devices requires 

explicit structuring of the applications to exploit parallelism. 

Parallel programming languages such as Brook+ [2], NVidia’s 

CUDA [3], OpenCL (Open Computing Language) [4], have 

been recently introduced to help programmers in writing 

parallel programs to take benefit of GPUs for high 

performance computing. Still, even these new languages 

require the programmers to explicitly extract the parallelism 

from their applications. There are many factors concerning 

OpenCL and programmers have to create and manage 

thousands of threads, deal with concurrent execution, copy 

data between different processors, make use of scratchpad 

memories, and deal with issues such as memory access 

patterns, synchronization, race conditions and atomicity. It is, 

therefore, of great interest, for programmer’s point of view, to 

develop support to facilitate automatic transformation of 

sequential programs into efficient parallel OpenCL programs.    

However, there are few works are available on automatic 

parallelization for GPUs. Lee et al. [5] developed compiler 

framework for automatic translation from OpenMP to CUDA. 

The system handles both regular and irregular programs 

parallelized using OpenMP primitives. An automatic code 

transformation system that generates parallel CUDA code 

from input sequential C code is presented in [6]. In this, said 

system makes use of CLooG [7] generator that transforms a 

polyhedral representation of a program and affine scheduling 

constraints into concrete loop code and Pluto [8] optimizer 

that enables end-to-end parallelization. Another parallelization 

system that targets GPUs is that of Cornwall et al. [9] which 

perform source-to-source translations to help domain experts 

retarget an image processing library written in C++ to GPUs. 

CUDAlite [10] and hiCUDA [11] are source-to-source 

compilers which generate GPU code, but both require 

annotations in the original code. A CU2CL translator has been 

implemented in [12] for multi and many core architectures. 

In this paper, we present a parallelization methodology to 

generate high performance GPU code from sequential C code. 

Our proposed methodology identifies function calls and 

converts them into ‘kernel’ to be executed in parallel on GPU 

devices. We focus heavily on the applicability of this 

translator in practice, and address its shortcomings and 

experimental results. To the best of our knowledge, there are 

no tools dedicated to automatic conversion of C code to 

OpenCL programs. 

The rest of this paper is organized as follows. Section 2 

introduces an overview of GPU architecture and OpenCL 

programming model and its issues are covered in Section 3. In 

Section 4, we propose our methodology C-to-OpenCL 

translation scheme. Next, experimental results and 

performance issues are provided in Section 5. Section 6 

concludes with summary and future scope.  

 

Fig 1: Architecture of CUDA-enabled GPU Device 
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2. GPU ARCHITECTURE  
A GPU device is made up of hundreds of processing cores. As 

shown in Fig. 1, GPU is two-level architecture. It is made of 

vector processors at top level termed as Streaming 

Multiprocessors (SMs) and each SM contains eight processing 

cores, termed as, Symmetric Processors (SPs) grouped in an 

SIMD fashion. As a result, all SPs in an SM execute the same 

instruction. In this paper, we focus on CUDA-enabled NVidia 

Quadro FX 3800 GPU. It has 24 SMs, which makes for a total 

of 192 processing cores.   

Each multi-processor is capable of creating, managing and 

executing concurrent threads with zero scheduling overhead. 

OpenCL uses a relaxed consistency memory model. The 

device memory is divided into global, local, and on-chip 

shared memory areas as illustrated in Fig. 1.  

 Global memory is visible to all compute units on the 

device and accessible to all the threads. Whenever 

data is transferred from the host to the device, the 

data will reside in global memory. Any data that is 

to be transferred back from the device to the host 

will also reside in global memory. 

 A 16KB Local memory is a scratchpad memory for 

a thread block and is shared amongst the threads 

running on multiple compute units. It is a very fast 

memory, as access time is very less.  

 Constant memory is a part of global memory that 

stores variables whose values never change. It is a 

read-only memory.  

 Private memory is memory that is unique to each 

thread. This is memory used within a work item that 

is similar to registers in a GPU multiprocessor or 

CPU core.  

In OpenCL programs, data needed for computations on GPU 

is transferred from CPU to GPU through global memory and a 

number of threads are spawned. All the threads launched are 

independent of each other and their execution or ordering 

cannot be controlled by the user. Refer [3, 4, 17] for more 

details on this topic. 

3. OPENCL PROGRAMMING MODEL 

AND ITS ISSUES 

3.1 OpenCL Programming Model 
An OpenCL program consists of two parts: one that executes 

on host (CPU) and other that executes on device (GPU).  The 

function that executes on the GPU is called kernel. OpenCL is 

a restricted version of the C99 language with extensions 

appropriate for executing data-parallel code on a variety of 

heterogeneous devices. The OpenCL programming model is 

based on multi-threaded SIMT model. A typical OpenCL 

application consists of following steps, also shown in Fig. 2. 

 Query to check whether OpenCL platform is present 

 Get list of devices supported by OpenCL platform 

using ‘clGetDeviceInfo()’  

 Create context from selected device then 

o Create one or more command-queues 

o Create programs to run on one or more 

GPU devices 

o Create kernel from these programs 

o Allocate buffer space on GPU devices 

o Write or copy data to and from host and 

GPU devices 

o Submit kernels to a command-queue for 

execution 

A key concept of OpenCL programming model is the Work-

Item. A work-item is a smallest execution entity. Every time a 

kernel is launched, a set of work-items, specified by 

programmer are launched, each one executing the same code. 

A set of work-items are organized in an N-dimensional grid, 

termed as work-group. Synchronization among work-items in 

the same work-group is achieved by using barriers. Work-

items in different work-groups cannot synchronize with each 

other. 

 

Fig 2: Programming steps to write OpenCL application 

Fig. 3 shows OpenCL parallel execution model. The 

NDRange contains all work-items. In the Fig. 3, kernel is 

launched with a two-dimensional (2D) NDRange. All the 

work-items are given unique global index values. However, if 

they are organized in the form of work-groups, respective 

local index values are obtained from dimensional size of its 

work-group. The OpenCL API functions get_global_size() 

and get_local_size() cab be used to identify the dimensional 

sizes of NDRange on either x and y directions. Refer [13 - 17] 

for more details on this topic. 

3.2 Issues Related to OpenCL 
There are many factors concerning OpenCL; that is 

programmers have to explicitly create and manage thousands 

of threads, deal with concurrent execution, copy data between 

different processors, make use of different memory 

hierarchies of GPU devices, and deal with issues such as local 

work-group, global work-group parameters, barriers and 

synchronizations. 

 

Fig 3: OpenCL Parallel Execution Model  

It is, therefore, of great interest, for programmer’s point of 

view, to develop support to facilitate automatic transformation 
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of sequential programs into efficient parallel OpenCL 

programs covered in next section.  

4. METHODOLOGY FOR C-to-OPENCL 

TRANSLATOR  
In this section, we describe our proposed C-to-OpenCL 

translator, which translates C program to OpenCL based GPU 

program. We have presented a diagram of the various parts of 

translator in Figure 3. The translation consists of several steps: 

(1) Lexical Analysis & Parsing (2) Control and Array-flow 

Analysis (3) Dependence Analysis and transformations (4) 

GPU Buffer and Data Management (5) Syntactic post-

processing and Parallel Program Generation. Fig. 4 shows 

schematic representation of these steps. 

4.1 Phase 1: Lexical and Parsing 
The input sequential C-program (strictly in C99 format) is fed 

into the first block which consists of a pre-processor phase, 

Lex Analyzer, and a Parser. In pre-processing phase, header 

files and some string substitutions are processed throughout 

the input code. This block checks whether the semantic 

constraints of the C-language, as per our format, have been 

properly satisfied.  

A sequential C-99 program consists of “declaration-part” & 

“expression-part” as shown in Listing 1.1. The “declaration-

part” consists of all variables and other data structures needed 

for program. The “declaration-part” is analyzed to get the 

array symbols and dimensionality of these array symbols. The 

“expression-part” contains “Function-Call” and other 

expressional statements. If “Function Definition” is identified 

as a candidate for parallel execution then “kernel code” is 

generated for executing on GPGPU device. The output of 

lexical analyzer is fed to parser.  

The parser produces an Abstract Syntax Tree (AST), a symbol 

table and other useful information needed for dependence and 

inter-procedural analysis. 

4.2 Phase 2 and 3: Control Flow and 

Dependence Analysis 
The next stage of translator is analysis, which consists of 

several phases of analysis. The first step is to produce control-

flow graph (CFG) by control-flow analysis. The CFG 

converts the different kinds of control transfer constructs in 

the program into a single form that is easier for compiler to 

manipulate. The next step is to construct Function 

Dependence Graph (FDG). The FDG is analyzed to determine 

possible candidates for parallelization. The loops and loop-

nestings is the code to be parallelized. 

#include <hdr_files> 

void main() 

{ 

    /* declaration–part */ 

    int i,j,k =1024; 

    int a [1024] , b [1024] , c [1024]; 

    for (i=0; i<k; i++) { 

    a[i]=b[i]=c[i]=i+3; 

    } 

    fro (a,b,c,k); /* Function - Call */ 

    print_result (); 

} 

Listing 1.1. Typical C-99 Program 

Next Symbolic Array Dataflow Analysis is applied. Array 

dataflow analysis refers to computing the flow of values for 

array elements. With this information Pluto Compiler [8] will 

determine parallelism in loops. Array Dataflow information 

plays an important role for the automatic parallelization of 

sequential programs. The array information is used for 

allocating memory on GPU device and data to be transferred 

to the GPU device. 

A typical example of a nested loop program is shown in 

Listing 1.2. It shows a for-loop with iterator “i”. The upper 

bound of the loop is specified by the variable “size”. Inside 

the for-loop, there is a statement which takes two input 

variables “A” and “B” on Right-hand side (Rhs) and produces 

one output variable “Out” on Left-hand side (Lhs variable). 

void fro(int A[],int B[],int Out[],int size) 

{ 

    int i ; 

    for(i=0; i<size; i++) 

    Out[i] = A[i]* B[i]; 

} 

Listing 1.2. Function Block ‘fro’ 

Both the Rhs & Lhs variables in Listing 1.2 are enclosed by 

for-loop, spanned by iteration space. This space is 

mathematically described as a polytope e(I; P) where I 

represent the iterators (e.g. i) and P represents the parameters 

(e.g. size). Two variables have dependency if and only if both 

access the same memory location. After analyzing the 

dependences, we apply Uni-Modular transformation technique 

[18] which takes dependence matrix as input and produces 

equivalent dependent-free code which can be run in parallel. 

So, in our case, “fro” is detected in the Function Detection 

Graph and control will be transferred to kernel module. 

 

On analyzing the Function Block, our system will store 

following information in the symbol table shown in Table 1. 

 

Table 1. Read-Write Reference Table 

A Read Reference 

B Read Reference 

Out Write Reference 

NDRange Dimensionality (Iteration space) 

 

Let Rf (R) = {set of all ‘read’ references of statement Sk in 

Function Block FB} 

 

Let Rf (W) = {set of all ‘write’ references of statement Sk in 

Function Block FB} 

 

Hence, set of all data spaces accessed by all statements of 

Function Block FB will be 

   
 

 
  i B

f f f

S S in F

R R R R W  

  

The NDRange accessed by the array references determines the 

buffer space needed on the kernel device. 

 

4.3 Phase 4: GPU Buffer Management and 

Data Transformations 
There are two ways to copy data from the host to the GPU 

compute device memory: (i) Implicitly by using 

“clEnqueueMapBuffer” and (ii) Explicitly through 

“clEnqueueReadBuffer”. Fig. 5 illustrates the standard 

dataflow between host (CPU) and GPU. 



International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No3, November 2013 

14 

 

Fig 5: Architecture of CUDA-enabled GPU Device 

In our translator, we consider only the second method of 

translating values between CPU and GPU. In OpenCL, data 

values that must be transferred from host to device are costly 

in terms of performance. There are two types of data 

movement (i) kernel_in_stmt: Data movement statements to 

move data from host to device. (ii) kernel_out_stmt: Data 

movement statements to move data from device to host.  

The “read” and “write” modes of array symbols can be 

obtained from symbol table. The kernel_in_stmt will be sent 

to device using the “clEnqueueWriteBuffer” subroutine, 

defined in OpenCL specifications. Using Algorithm 1, CLooG 

[7] generates the code for data movement using data space 

polytopes. The algorithm to generate data movement in 

OpenCL code is outlined in Algorithm 1.  

At Function Block FB do 

{ 

     // S: Set of statements in FB 

     for each statement sS do 

for each array A do 

find ND-Range 

end for 

     define Polytope Boundary Region 

     Apply Uni-Modular Transformation 

     end for 

     for each statement sS do 

find kernel_in_stmt = “read” reference stmt 

find kernel_out_stmt = “write” reference stmt 

     end for 

 Output - Buffer space and Data Movement statements for 

GPU device 

} 

Algorithm 1 Generation of Data Movement Code 

 

4.4 Phase 4: GPU Buffer Management and 

Data Transformations 
The output from previous phases, gives parallel code which is 

further analyzed to give object code for OpenCL 

programming model. An OpenCL program consists of set of 

kernels that are identified as functions declared with the 

__kernel qualifier in the program source. The generation of 

OpenCL code involves declaration of OpenCL variables, an 

associated context, a program source or binary, successfully 

built program executable, the list of devices for which the 

program executable is built, the build options used and a build 

log and the kernel object attached. 

__kernel void fro(__global const int *A,__global const int 

*B,__global const *Out, const int size) 

  {  

int i ; 

i = get_global_id(0) ; 

Out[i] = A[i] * B[i]; 

  } 

Listing 1.3. Generated GPU Kernel code for Listing 1.2 

 

After OpenCL code is generated, the last step is to clean-up 

all the resources associated with OpenCL objects. This can be 

done by using release functions specified in OpenCL 

specifications. All the above phases require little assistance 

from the programmer wherever possible. 

5. RESULTS AND ANALYSIS   
To evaluate our framework, we investigated translations from 

sequential input program to output program tailored for 

parallel execution on GPU-equipped system. Translation is 

based on above mentioned translation scheme.    

5.1 Experimental setup 
All experiments were performed on 2.66 GHz Intel Xeon X 

5650 (dual-core) systems with 4GB DDR3 main memory. The 

GPU device used in our experiment was NVidia Quadro FX 

3800. The device has 192 processing cores with 1 GB 256 bit 

memory interface and memory bandwidth of 51.2 GB/sec. 

The GPU device was connected to CPU through X58 I/O Hub 

PCI Express. The environment used was Fedora operating 

system running Linux Kernel - 2.6.38.6-26.rc1 

(FC15.x86_64). All experiments have been compiled with 

GCC 4.6.2 compilers. NVIDIA CUDA Toolkit 4.0 was used 

for GPU enabled experiments. We report application runtime 

(wall-time) for all test cases. We consider application runtime 

including runtime calls and GPU data transfers as an 

appropriate measure for our experiments. For test case, mean 

values from thirty runs are reported. 

5.2 Experimental Results 
An OpenCL program consists of two parts, host code (.c file) 

and a kernel code (.cl file). Our translation scheme creates two 

such files. For the above Listing 1.2, the kernel file generated 

is shown in Listing 1.3. 

Table 2 shows the execution time of above said Program 

Listings 1.1 on the CPU and GPU. We took very large data of 

for experimentation. It can be seen from Fig. 6 that there is 

huge performance improvement, up to 14 times when using 

the GPU as compared to CPU. 

6. CONCLUSION AND FUTURE SCOPE   
The methodology we described can be considered a premature 

stage of what could become a framework devoted to 

parallelizing complier for OpenCL programming model. The 

problem of achieving correct and efficient parallel programs is 

made difficult by the various issues involved with OpenCL 

programming model including local and global work-group, 

work-items and other complex parallel architectural 

communications. 

Our methodology can be extended to overcome above 

problems by a combination of good programming practice and 

using appropriate tools such as debuggers, profilers and 

performance analyzers. However, our translation currently has 

some limitations - (i) Input C-program should strictly follow 

C-99 format. (ii) Input program must have a “Function call”. 

(iii) Global and local work-group size parameters are set to 

default values depending on the GPU device. In the near 

future, we plan to complete the development, testing and the 

evaluation of our translation scheme by using more scientific 

algorithms and create a publicly available release of the 

transformation software.  
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Table 2. Execution Time calculation for CPU and GPU Device (in msec) 

Vector size 

(in MB) 
1 2 4 8 16 32 64 72 

Seq (CPU) 4.68 9.42 18.81 37.6 75.18 150.54 300.63 338.18 

OpenCL 

(GPU) 
0.35 0.68 1.33 2.66 5.29 10.56 21.08 23.71 

 

 

Fig 4: C-to-OpenCL Code Translator 

 

Fig 6: Performance comparison of CPU v/s GPU 
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