
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

11

A Methodology for Translating C-Programs to OpenCL

Krishnahari Thouti
Dept. of CSE
VNIT, Nagpur

India, pin-440010

S. R. Sathe
Dept., of CSE
VNIT, Nagpur

India, pin – 440010

ABSTRACT

Graphics Processing Units (GPUs) is currently a common

feature of high performance computing. Languages such as

CUDA and Open Computing Language (OpenCL) are such

programming models; provide a standard interface for

achieving high performance across these GPU devices.

However, because of the wide variety of architectural

complexities of these GPU devices; often makes difficult to

write programs for these platforms. One of the approaches to

get rid off this difficulty is to parallelize sequential programs

into equivalent parallel programs. In this paper, we present a

methodology for parallelization of sequential C-programs

with function calls to equivalent OpenCL programs with little

assistance from programmer. Our proposed methodology

identifies function calls and converts them into ‘kernel’ to be

executed in parallel on GPU devices. To the best of our

knowledge, there are no tools dedicated to conversion of C

code to equivalent OpenCL code.

General Terms

Parallel Computing, Parallel Algorithms

Keywords

GPU Computing; OpenCL; Automatic Translation;

Parallelization; Parallelizing Compilers

1. INTRODUCTION
Current High Performance Computing (HPC) platforms have

multicore processors and Graphics Processing Units (GPUs)

[1] as computing units. These GPUs have become a common

feature of high performance computing. GPUs are highly

parallel, multithreaded; many core processor with tremendous

computational power and very high memory bandwidth.

GPUs use aggressive multithreading so that whenever a thread

is stalled, waiting for data, the thread can efficiently switch to

execute another thread.

Achieving good performance on these devices requires

explicit structuring of the applications to exploit parallelism.

Parallel programming languages such as Brook+ [2], NVidia’s

CUDA [3], OpenCL (Open Computing Language) [4], have

been recently introduced to help programmers in writing

parallel programs to take benefit of GPUs for high

performance computing. Still, even these new languages

require the programmers to explicitly extract the parallelism

from their applications. There are many factors concerning

OpenCL and programmers have to create and manage

thousands of threads, deal with concurrent execution, copy

data between different processors, make use of scratchpad

memories, and deal with issues such as memory access

patterns, synchronization, race conditions and atomicity. It is,

therefore, of great interest, for programmer’s point of view, to

develop support to facilitate automatic transformation of

sequential programs into efficient parallel OpenCL programs.

However, there are few works are available on automatic

parallelization for GPUs. Lee et al. [5] developed compiler

framework for automatic translation from OpenMP to CUDA.

The system handles both regular and irregular programs

parallelized using OpenMP primitives. An automatic code

transformation system that generates parallel CUDA code

from input sequential C code is presented in [6]. In this, said

system makes use of CLooG [7] generator that transforms a

polyhedral representation of a program and affine scheduling

constraints into concrete loop code and Pluto [8] optimizer

that enables end-to-end parallelization. Another parallelization

system that targets GPUs is that of Cornwall et al. [9] which

perform source-to-source translations to help domain experts

retarget an image processing library written in C++ to GPUs.

CUDAlite [10] and hiCUDA [11] are source-to-source

compilers which generate GPU code, but both require

annotations in the original code. A CU2CL translator has been

implemented in [12] for multi and many core architectures.

In this paper, we present a parallelization methodology to

generate high performance GPU code from sequential C code.

Our proposed methodology identifies function calls and

converts them into ‘kernel’ to be executed in parallel on GPU

devices. We focus heavily on the applicability of this

translator in practice, and address its shortcomings and

experimental results. To the best of our knowledge, there are

no tools dedicated to automatic conversion of C code to

OpenCL programs.

The rest of this paper is organized as follows. Section 2

introduces an overview of GPU architecture and OpenCL

programming model and its issues are covered in Section 3. In

Section 4, we propose our methodology C-to-OpenCL

translation scheme. Next, experimental results and

performance issues are provided in Section 5. Section 6

concludes with summary and future scope.

Fig 1: Architecture of CUDA-enabled GPU Device

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

12

2. GPU ARCHITECTURE
A GPU device is made up of hundreds of processing cores. As

shown in Fig. 1, GPU is two-level architecture. It is made of

vector processors at top level termed as Streaming

Multiprocessors (SMs) and each SM contains eight processing

cores, termed as, Symmetric Processors (SPs) grouped in an

SIMD fashion. As a result, all SPs in an SM execute the same

instruction. In this paper, we focus on CUDA-enabled NVidia

Quadro FX 3800 GPU. It has 24 SMs, which makes for a total

of 192 processing cores.

Each multi-processor is capable of creating, managing and

executing concurrent threads with zero scheduling overhead.

OpenCL uses a relaxed consistency memory model. The

device memory is divided into global, local, and on-chip

shared memory areas as illustrated in Fig. 1.

 Global memory is visible to all compute units on the

device and accessible to all the threads. Whenever

data is transferred from the host to the device, the

data will reside in global memory. Any data that is

to be transferred back from the device to the host

will also reside in global memory.

 A 16KB Local memory is a scratchpad memory for

a thread block and is shared amongst the threads

running on multiple compute units. It is a very fast

memory, as access time is very less.

 Constant memory is a part of global memory that

stores variables whose values never change. It is a

read-only memory.

 Private memory is memory that is unique to each

thread. This is memory used within a work item that

is similar to registers in a GPU multiprocessor or

CPU core.

In OpenCL programs, data needed for computations on GPU

is transferred from CPU to GPU through global memory and a

number of threads are spawned. All the threads launched are

independent of each other and their execution or ordering

cannot be controlled by the user. Refer [3, 4, 17] for more

details on this topic.

3. OPENCL PROGRAMMING MODEL

AND ITS ISSUES

3.1 OpenCL Programming Model
An OpenCL program consists of two parts: one that executes

on host (CPU) and other that executes on device (GPU). The

function that executes on the GPU is called kernel. OpenCL is

a restricted version of the C99 language with extensions

appropriate for executing data-parallel code on a variety of

heterogeneous devices. The OpenCL programming model is

based on multi-threaded SIMT model. A typical OpenCL

application consists of following steps, also shown in Fig. 2.

 Query to check whether OpenCL platform is present

 Get list of devices supported by OpenCL platform

using ‘clGetDeviceInfo()’

 Create context from selected device then

o Create one or more command-queues

o Create programs to run on one or more

GPU devices

o Create kernel from these programs

o Allocate buffer space on GPU devices

o Write or copy data to and from host and

GPU devices

o Submit kernels to a command-queue for

execution

A key concept of OpenCL programming model is the Work-

Item. A work-item is a smallest execution entity. Every time a

kernel is launched, a set of work-items, specified by

programmer are launched, each one executing the same code.

A set of work-items are organized in an N-dimensional grid,

termed as work-group. Synchronization among work-items in

the same work-group is achieved by using barriers. Work-

items in different work-groups cannot synchronize with each

other.

Fig 2: Programming steps to write OpenCL application

Fig. 3 shows OpenCL parallel execution model. The

NDRange contains all work-items. In the Fig. 3, kernel is

launched with a two-dimensional (2D) NDRange. All the

work-items are given unique global index values. However, if

they are organized in the form of work-groups, respective

local index values are obtained from dimensional size of its

work-group. The OpenCL API functions get_global_size()

and get_local_size() cab be used to identify the dimensional

sizes of NDRange on either x and y directions. Refer [13 - 17]

for more details on this topic.

3.2 Issues Related to OpenCL
There are many factors concerning OpenCL; that is

programmers have to explicitly create and manage thousands

of threads, deal with concurrent execution, copy data between

different processors, make use of different memory

hierarchies of GPU devices, and deal with issues such as local

work-group, global work-group parameters, barriers and

synchronizations.

Fig 3: OpenCL Parallel Execution Model

It is, therefore, of great interest, for programmer’s point of

view, to develop support to facilitate automatic transformation

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

13

of sequential programs into efficient parallel OpenCL

programs covered in next section.

4. METHODOLOGY FOR C-to-OPENCL

TRANSLATOR
In this section, we describe our proposed C-to-OpenCL

translator, which translates C program to OpenCL based GPU

program. We have presented a diagram of the various parts of

translator in Figure 3. The translation consists of several steps:

(1) Lexical Analysis & Parsing (2) Control and Array-flow

Analysis (3) Dependence Analysis and transformations (4)

GPU Buffer and Data Management (5) Syntactic post-

processing and Parallel Program Generation. Fig. 4 shows

schematic representation of these steps.

4.1 Phase 1: Lexical and Parsing
The input sequential C-program (strictly in C99 format) is fed

into the first block which consists of a pre-processor phase,

Lex Analyzer, and a Parser. In pre-processing phase, header

files and some string substitutions are processed throughout

the input code. This block checks whether the semantic

constraints of the C-language, as per our format, have been

properly satisfied.

A sequential C-99 program consists of “declaration-part” &

“expression-part” as shown in Listing 1.1. The “declaration-

part” consists of all variables and other data structures needed

for program. The “declaration-part” is analyzed to get the

array symbols and dimensionality of these array symbols. The

“expression-part” contains “Function-Call” and other

expressional statements. If “Function Definition” is identified

as a candidate for parallel execution then “kernel code” is

generated for executing on GPGPU device. The output of

lexical analyzer is fed to parser.

The parser produces an Abstract Syntax Tree (AST), a symbol

table and other useful information needed for dependence and

inter-procedural analysis.

4.2 Phase 2 and 3: Control Flow and

Dependence Analysis
The next stage of translator is analysis, which consists of

several phases of analysis. The first step is to produce control-

flow graph (CFG) by control-flow analysis. The CFG

converts the different kinds of control transfer constructs in

the program into a single form that is easier for compiler to

manipulate. The next step is to construct Function

Dependence Graph (FDG). The FDG is analyzed to determine

possible candidates for parallelization. The loops and loop-

nestings is the code to be parallelized.

#include <hdr_files>

void main()

{

 /* declaration–part */

 int i,j,k =1024;

 int a [1024] , b [1024] , c [1024];

 for (i=0; i<k; i++) {

 a[i]=b[i]=c[i]=i+3;

 }

 fro (a,b,c,k); /* Function - Call */

 print_result ();

}

Listing 1.1. Typical C-99 Program

Next Symbolic Array Dataflow Analysis is applied. Array

dataflow analysis refers to computing the flow of values for

array elements. With this information Pluto Compiler [8] will

determine parallelism in loops. Array Dataflow information

plays an important role for the automatic parallelization of

sequential programs. The array information is used for

allocating memory on GPU device and data to be transferred

to the GPU device.

A typical example of a nested loop program is shown in

Listing 1.2. It shows a for-loop with iterator “i”. The upper

bound of the loop is specified by the variable “size”. Inside

the for-loop, there is a statement which takes two input

variables “A” and “B” on Right-hand side (Rhs) and produces

one output variable “Out” on Left-hand side (Lhs variable).

void fro(int A[],int B[],int Out[],int size)

{

 int i ;

 for(i=0; i<size; i++)

 Out[i] = A[i]* B[i];

}

Listing 1.2. Function Block ‘fro’

Both the Rhs & Lhs variables in Listing 1.2 are enclosed by

for-loop, spanned by iteration space. This space is

mathematically described as a polytope e(I; P) where I

represent the iterators (e.g. i) and P represents the parameters

(e.g. size). Two variables have dependency if and only if both

access the same memory location. After analyzing the

dependences, we apply Uni-Modular transformation technique

[18] which takes dependence matrix as input and produces

equivalent dependent-free code which can be run in parallel.

So, in our case, “fro” is detected in the Function Detection

Graph and control will be transferred to kernel module.

On analyzing the Function Block, our system will store

following information in the symbol table shown in Table 1.

Table 1. Read-Write Reference Table

A Read Reference

B Read Reference

Out Write Reference

NDRange Dimensionality (Iteration space)

Let Rf (R) = {set of all ‘read’ references of statement Sk in

Function Block FB}

Let Rf (W) = {set of all ‘write’ references of statement Sk in

Function Block FB}

Hence, set of all data spaces accessed by all statements of

Function Block FB will be

 i B

f f f

S S in F

R R R R W

The NDRange accessed by the array references determines the

buffer space needed on the kernel device.

4.3 Phase 4: GPU Buffer Management and

Data Transformations
There are two ways to copy data from the host to the GPU

compute device memory: (i) Implicitly by using

“clEnqueueMapBuffer” and (ii) Explicitly through

“clEnqueueReadBuffer”. Fig. 5 illustrates the standard

dataflow between host (CPU) and GPU.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

14

Fig 5: Architecture of CUDA-enabled GPU Device

In our translator, we consider only the second method of

translating values between CPU and GPU. In OpenCL, data

values that must be transferred from host to device are costly

in terms of performance. There are two types of data

movement (i) kernel_in_stmt: Data movement statements to

move data from host to device. (ii) kernel_out_stmt: Data

movement statements to move data from device to host.

The “read” and “write” modes of array symbols can be

obtained from symbol table. The kernel_in_stmt will be sent

to device using the “clEnqueueWriteBuffer” subroutine,

defined in OpenCL specifications. Using Algorithm 1, CLooG

[7] generates the code for data movement using data space

polytopes. The algorithm to generate data movement in

OpenCL code is outlined in Algorithm 1.

At Function Block FB do

{

 // S: Set of statements in FB

 for each statement sS do

for each array A do

find ND-Range

end for

 define Polytope Boundary Region

 Apply Uni-Modular Transformation

 end for

 for each statement sS do

find kernel_in_stmt = “read” reference stmt

find kernel_out_stmt = “write” reference stmt

 end for

 Output - Buffer space and Data Movement statements for

GPU device

}

Algorithm 1 Generation of Data Movement Code

4.4 Phase 4: GPU Buffer Management and

Data Transformations
The output from previous phases, gives parallel code which is

further analyzed to give object code for OpenCL

programming model. An OpenCL program consists of set of

kernels that are identified as functions declared with the

__kernel qualifier in the program source. The generation of

OpenCL code involves declaration of OpenCL variables, an

associated context, a program source or binary, successfully

built program executable, the list of devices for which the

program executable is built, the build options used and a build

log and the kernel object attached.

__kernel void fro(__global const int *A,__global const int

*B,__global const *Out, const int size)

 {

int i ;

i = get_global_id(0) ;

Out[i] = A[i] * B[i];

 }

Listing 1.3. Generated GPU Kernel code for Listing 1.2

After OpenCL code is generated, the last step is to clean-up

all the resources associated with OpenCL objects. This can be

done by using release functions specified in OpenCL

specifications. All the above phases require little assistance

from the programmer wherever possible.

5. RESULTS AND ANALYSIS
To evaluate our framework, we investigated translations from

sequential input program to output program tailored for

parallel execution on GPU-equipped system. Translation is

based on above mentioned translation scheme.

5.1 Experimental setup
All experiments were performed on 2.66 GHz Intel Xeon X

5650 (dual-core) systems with 4GB DDR3 main memory. The

GPU device used in our experiment was NVidia Quadro FX

3800. The device has 192 processing cores with 1 GB 256 bit

memory interface and memory bandwidth of 51.2 GB/sec.

The GPU device was connected to CPU through X58 I/O Hub

PCI Express. The environment used was Fedora operating

system running Linux Kernel - 2.6.38.6-26.rc1

(FC15.x86_64). All experiments have been compiled with

GCC 4.6.2 compilers. NVIDIA CUDA Toolkit 4.0 was used

for GPU enabled experiments. We report application runtime

(wall-time) for all test cases. We consider application runtime

including runtime calls and GPU data transfers as an

appropriate measure for our experiments. For test case, mean

values from thirty runs are reported.

5.2 Experimental Results
An OpenCL program consists of two parts, host code (.c file)

and a kernel code (.cl file). Our translation scheme creates two

such files. For the above Listing 1.2, the kernel file generated

is shown in Listing 1.3.

Table 2 shows the execution time of above said Program

Listings 1.1 on the CPU and GPU. We took very large data of

for experimentation. It can be seen from Fig. 6 that there is

huge performance improvement, up to 14 times when using

the GPU as compared to CPU.

6. CONCLUSION AND FUTURE SCOPE
The methodology we described can be considered a premature

stage of what could become a framework devoted to

parallelizing complier for OpenCL programming model. The

problem of achieving correct and efficient parallel programs is

made difficult by the various issues involved with OpenCL

programming model including local and global work-group,

work-items and other complex parallel architectural

communications.

Our methodology can be extended to overcome above

problems by a combination of good programming practice and

using appropriate tools such as debuggers, profilers and

performance analyzers. However, our translation currently has

some limitations - (i) Input C-program should strictly follow

C-99 format. (ii) Input program must have a “Function call”.

(iii) Global and local work-group size parameters are set to

default values depending on the GPU device. In the near

future, we plan to complete the development, testing and the

evaluation of our translation scheme by using more scientific

algorithms and create a publicly available release of the

transformation software.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

15

Table 2. Execution Time calculation for CPU and GPU Device (in msec)

Vector size

(in MB)
1 2 4 8 16 32 64 72

Seq (CPU) 4.68 9.42 18.81 37.6 75.18 150.54 300.63 338.18

OpenCL

(GPU)
0.35 0.68 1.33 2.66 5.29 10.56 21.08 23.71

Fig 4: C-to-OpenCL Code Translator

Fig 6: Performance comparison of CPU v/s GPU

7. REFERENCES
[1] General-purpose computations using Graphics hardware,

http://www.gpgpu.org/

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fathalian,

M. Houston and P. Hanrahan, “Brook for GPUs: Stream

Computing on Graphics Hardware,” ACM Trans.Graph,

Vol.23, No.3, 2004, pp. 777-786

[3] NVIDIA CUDA, http://developer.nvidia.com/cuda/

[4] OpenCL, http://www.khronos.org/registry/cl/

[5] Lee, S., Min, S-J., Eigermann, R.: OpenMP to GPGPU:

A compiler framework for automatic translation and

optimization. In: PPoPP, pp. 101-110 (2009)

[6] Baskaran, M., Ramanujam, J., Sadayappan, P.:

Automatic C-to-CUDA generation for Affine Programs.

Compiler Construction. Lecture Notes in Computer

Science, Vol. 6011. pp. 244-263 (2010)

[7] CLooG, The Chunky Loop Generator,

http://www.cloog.org/

[8] Pluto, http://pluto-compiler.sourceforge.net/

[9] Cornwall, J.L.T., Beckmann, O., Kelly, P.H..:

Automatically translating general purpose C++ image

processing library for GPUs. In: POHLL. pp. 381 (2006)

[10] Ueng, S-z., Lathara, M., Baghsorkhi, S., Hwu, W-m.:

CUDA-Lite: Reducing GPU Programming Complexity,

Languages & compilers for parallel computing. Lecture

Notes in Computer Science, Vol. 5335. pp. 1-15 (2008)

[11] Han, T.D., Abdelrahman, T. S.: hiCUDA: A high-level

directive based language for GPU programming. In:

GPGPU -2. pp. 52-61 (2009)

[12] Martinex, G., Gardener, M., Feng, W-c.: CU2CL: A

CUDA-to-OpenCL translator for Multi-and-many-core

Architectures. In: IEEE ICPADS. pp. 300-307 (2011)

[13] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,

“Heterogeneous Computing with OpenCL”, Morgan

Kaufmann Publishers, 2011.

[14] AMD Accelerated Parallel Processing OpenCL

Programming Guide, Advanced Micro Devices, Inc.

2012. http://developer.amd.com/appsdk

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No3, November 2013

16

[15] A. Munshi, B. Gaster, T. Mattson, J. Fung and D.

Ginsburg, OpenCL Programming Guide, Addison-

Wesley Publishers, 2011.

[16] M. Scarpino, “OpenCL in Action,” Manning

publications, 2011.

[17] D. Kirk and W-m. Hwu, Programming Massively

Parallel Processors: A Hands-on Approach. Morgan-

Kaufmann Publishers, 2010.

[18] Banerjee, U.: An introduction to a formal theory of

dependence analysis. In: Journal of Supercomputing.

Vol.2, No.2 pp. 133-149 (1988).

IJCATM : www.ijcaonline.org

