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ABSTRACT
Content-Centric Networks (CCNs) have recently emerged as an
innovative trend to overcome many inherent security problems
in the IP-based (host-based) networks by securing the content it-
self rather than the channel through which it travels. In this net-
work architecture new kinds of attacks -ranging from DoS to pri-
vacy attacks- will appear. Therefore, it is becoming necessary to
design a flexible and powerful mechanism to be able to detect
them in an intelligent manner the first time they are employed.
In this paper, a novel anomaly detection system has been pro-
posed to detect known and previously unknown types of attacks
using an efficient unsupervised learning engine that utilizes clus-
tering with the optimal number of clusters, high detection rate,
and low false positive rate in the same time over the CCN traf-
fics flows. This paper compares the performance of five different
clustering algorithms in the proposed anomaly detection system in-
cluding K-means and Farthest First as Partitioning clustering, Cob-
web as Hierarchical clustering, DBSCAN as Density-based clus-
tering and Self Organizing Map (SOM) as Model-based cluster-
ing. Results show that DBSCAN method is the most efficient one
for this purpose since it outperforms the other ones in terms of
high detection rate and low false positive rate in the same time.
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1. INTRODUCTION
Recently, Content-Centric Networking (CCN also referred to
as Data-Centric Net-working, Named-Data Networking, or
Information-Centric Networking) as the future Internet has
emerged to overcome the inherent limitations of the current Internet
such as, useful trust model, content security, and protection of pri-
vacy by shifting the security mechanisms from the network nodes
to content itself [2, 14, 31]. The CCN not only eliminates many
security problems in the current Internet by securing the data em-
bedded in the content to avoid of transmission of fake contents but
improves also the performance in terms of response time, band-
width usage, and accessibility [3, 7, 12]. Unlike the host-based ap-
proaches in which security, integrity and trust should be enabled

in the channel, the CCN secures content itself and puts integrity
and trust as the content properties. On the other hand, with this
new paradigm new kinds of attacks and security challenges -from
Denial of Service (DoS) to privacy attacks- will arise that an effi-
cient and effective security mechanism should be proposed to se-
cure content, protect privacy, and defense against unknown and new
forms of attacks [41].
This new Internet architecture should be resilient to existing DoS
attacks, or at least limit their effectiveness, anticipate new and
undetected (unknown) attacks that take advantage of its idiosyn-
crasies, and incorporate basic defenses in its design [13]. Thus,
one of the most important challenges of CCN design is develop a
method or protocol so that detect these new forms of attacks (intru-
sions) and any deviation. Designing an anomaly detection system is
a major approach in attempt to solve the attack (intrusion) detection
problem [32]. In this sense, unsupervised learning for anomaly de-
tection can be used to cluster traffic flows without prior knowledge
to discover a pattern of traffic behaviors and find features inherent
and their deviations to the problem [5, 36]. To the best of the au-
thor’s knowledge, this is the first time a proposal on unsupervised
learning for anomaly detection is made for Content-Centric Net-
works. The main contribution of this paper is to design the anomaly
detection system for detection of unknown and new types of at-
tacks and their variants using an efficient clustering with the opti-
mal number of cluster, high detection rate and low false positive
rate over the Content-Centric Network traffic flows.
The rest of the paper is as follows. Section 2 presents structure
of CCN and potential DoS attacks. Clustering algorithms are de-
scribed in Section 3. In Section 4, internal clustering validation is
proposed. Experimental setup and discussion are presented in Sec-
tions 5 and 6. Finally, the conclusion draws in Section 7.

2. DOS ATTACKS IN CCN
All communications in CCNs are performed using two distinct
types of packets: Interest and Data (Content). The main idea in
the CCN is that, an Interest request for a content object is routed
towards the location of the origin content where it has been pub-
lished. Any router or middle node on the way checks its cache for
matching copies of the requested content. If a cached copy of any
piece of Interest request is found, it is returned to the requester
along the path the request came from. On the way back, all the
middle nodes store a copy of content in their caches to answer to
probable same Interest requests from subsequent consumers (users)
[37, 40]. Each CCN router maintains three major data structures:
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(1) Pending Interest Table (PIT): hold all not yet satisfied Interests
that sends upstream towards potential data sources. Each PIT
entry holds one or multiple incoming and outgoing physical
interfaces with related Interest packets.

(2) Forwarding Interest Base (FIB): forward Interests to one or
multiple physical network interfaces based on the forwarding
strategies.

(3) Content Store (CS): temporarily buffers data packets for data
retrieval efficiency.

In this paper, current potential DoS attacks in CCNs are considered.
There are new attack opportunities in the forms of DoS attacks to
make either content unavailable or deny service to users [13, 18,
41]:

(1) To make content unreachable: a source can be disrupted by
sending large numbers of new and distinct Interests (Interest
Flooding Attacks (IFA)) or an attacker can decline the com-
mon cache efficiency by overloading the cache when a cache
receive a legal traffic. When attackers get high access control
in a router, they can make disruption in routing by do not for-
warding requests or enforce misbehaving in Pending Interest
Table (PIT) routers in order to prevent content retrieval.

(2) To serve fake responses: an attacker can make routers believe
a valid content is invalid and reply a ”not valid” response, de-
liberately. A content can also be spoofed by injecting fake re-
sponses that are not signed or are signed with a wrong key,
hoping that the user accepts the response in source. An old
content (which may be unsecured) signed with the right key
can be also replaced with the original one, or an attacker may
get high access to the source’s signing key to sign content with
the correct key [39].

3. CLUSTERING ALGORITHMS
Data clustering is a data exploration technique that attempts to find
groups of data based on similar characteristics to separate data ob-
jects into meaningful and reasonable groups [29]. In order for the
measurement of similarities between data objects, distance metric
plays an important role. While many distance measures exist, Eu-
clidean distance is one of the most commonly used and easy metric
[38]. A large number of clustering algorithms exist. The choice of
the appropriate clustering algorithm depends on the type of data
set and the particular purpose [5]. In this paper, the performance of
the five frequently used and powerful clustering algorithms are im-
plemented and compared in our anomaly detection system namely,
K-means and Farthest First as Partitioning clustering, Cobweb as
Hierarchical clustering, DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise) as Density-based clustering and
Self Organizing Map (SOM) as Model-based clustering. Partition-
ing approach produces sphere-like clusters where it constructs a
single level (flat) partition of a data set with N data objects into K
clusters. The objects in a cluster are more similar (minimum dis-
tance) to each other than to objects in other clusters. Partitioning
methods usually start with a random partition and refines partitions
iteratively to constructs different groups by maximizing the homo-
geneity within the cluster by minimizing the square error [9]. Hi-
erarchical approach forms a classification tree or a sequential pre-
sentation scheme over the objects into meaningful categories [34].
Density-based approach finds clusters as dense regions that are sep-
arated by regions of lower density. The density region continues
growing the given cluster as long as the density in the neighbor-
hood exceeds some threshold. This type of clustering is designed to

discover clusters of arbitrary shapes which are not necessarily con-
vex [23]. Model-based approach is based on the probability model
from the data that attempts to optimize the fit between the data set
and some mathematical models.

3.1 K-means clustering
K-means clustering algorithm groups objects by a predefined pa-
rameter, K (the number of clusters) which objects are classified
with similar values or patterns into K distinct clusters. The five
steps of the K-means clustering algorithm is as follows [26]:

(1) Define the number of clusters K,
(2) Place randomly the initial group (K cluster) of centroids,
(3) Assign each object to the group with closest centroid. The dis-

tance between each cluster centroid to each object is measured
by distance metrics (e.g., Euclidean distance). Then, objects
are assigned to a specific cluster with a minimum distance,

(4) Recalculate the positions of the centroids in each group,
(5) Repeat step 2 until the centroids do not change any more.

K-means is computational ease and relatively memory efficient by
O(T ·K ·N), where N is the number of objects, K number of the
clusters, and T number of the iterations. In contrast, it often termi-
nates at a local optimum. It needs to specify K in advance, unable
to handle noisy data and sensitive to outliers, does not work well
with overlapping clusters, and no suitable for discovering clusters
that are not hyper-ellipsoids or hyper-spheres [22].

3.2 Farthest First Clustering
The Farthest First algorithm is an implementation of the Farthest
First Traversal (FFT) by Hochbaum and Shmoys (1985), which is
fast, approximate, and a variant of K-means. It places each cluster
center in turn at the point furthermost from the existing cluster cen-
ter. This point must lie within the data area. This greatly speeds up
the clustering in most of the cases since less reassignment [1]. The
time complexity of FFT is O(N · K), where N is the number of
data objects and K is the number of clusters.

3.3 Cobweb Clustering
The Cobweb [11] is one of the most commonly used algorithms in
conceptual clustering which maximizes category utility to build a
probabilistic hierarchical tree. The detail of Cobweb algorithm is
described in [21], but the main function is defined as follows:

(1) Initialize the tree by reading in an object to form the root node,
(2) Read in the next object, and start from the root node,
(3) If the node is a leaf, go to step 4, else the current node is an

internal node. Then, choose the one of maximizing category
utility (locally) and repeat:
(a) Insert the object into each of the children of the current

node, and choose the one with highest category utility ob-
served,

(b) Create a new leaf for the object and add the leaf to the
children of the current node,

(c) Merge the two children found in the first step that have the
highest and the second highest values of category utility
by turning the two children of the current node into two
children of the merged node. Then, insert the object into
the merged node,
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(d) Split the child found in Insert step with the best category
utility by raising the level of its children up one level, so
that the children of this node become the direct children of
the parent of this node. This node is eliminated. Then the
object is inserted as in step Insert,

(4) When a leaf node is reached, create a new leaf node to hold
the objects, then both the old leaf node and the new leaf node
are added to a new nodes as its two children, finally, the new
node with two children replaces the original place of the old
leaf node to become an internal node of the tree,

(5) Check the stopping condition, if it is satisfied, terminate; else,
go to step 2 to begin a new iteration.

3.4 DBSCAN Clustering
The DBSCAN algorithm is power and commonly used density-
based clustering algorithm with the time complexity of O(N ·
logN). The DBSCAN algorithm is particularly suited to deal with
large databases, with noise, and is able to identify the clusters with
different sizes and shapes [10]. It is mostly insensitive to the order-
ing of the points in the database. In contrast, it does not respond
well to data sets with varying densities. Clusters are identified by
looking at the density of points. The regions with a high density of
points illustrate the existence of clusters, in contrast regions with a
low density of points present clusters of noise or outliers. This algo-
rithm needs two input parameters: Eps (the radius of the neighbor-
hood area of point) and MinPts (minimum number of points that
must exist in the Eps-neighborhood). The pseudocode of DBSCAN
algorithm is as follows [25]

(1) Select an arbitrary point P from data set,
(2) Retrieve all points density reachable from P by Eps and

MinPts,
(3) If P is a core point then a cluster is formed,
(4) If P is a border point then no points are density reachable from

P and DBSCAN visit the next point of the data set,
(5) Continue the process until all of the points have been pro-

cessed.

3.5 Self-Organizing Map (SOM)
The SOM algorithm or Kohonen Map [16] is capable for the large
data sets because the computational complexity scales linearly with
the number of data. It does not need high memory, and can be im-
plemented both in a neural, online learning manner as well as par-
allelized [19]. It belongs to the category of competitive learning
networks, in which the output neurons compete with each other to
be activated, with the result that only one is activated at any one
time. This activated neuron is called a Winner-Takes-All (WTA)
neuron or simply the winning neuron. Then, the lateral inhibition
connections are implemented between the neurons. The result is
that the neurons are forced to organize themselves. SOM involves
four major stages for n-dimensional input space andm output neu-
rons:

(1) Initialize weights vectors wi for neuron i, i = 1, ...,m, ran-
domly.

(2) An input vector x is randomly chosen to compute the distance
(using a distance metric such as Euclidean distance) between
x and neurons i.

(3) Determine winner (best matching) neuron k: ||Wk − X|| =
mink||Wi −X||

(4) Update all weights vectors of all neurons i in the neighborhood
of neuron k:Wi(t+1) =Wi(t)+ηk,i(t)hc,i(t)[X−Wi(t)],
where ηk,i(t) is adaption coefficient, hc,i(t) is neighborhood
kernel centered on the winner unit:

hc,i(t) = exp(−‖(rb − ri)
2‖

2σ2(t)
) (1)

Where rb, ri are positions of neurons b and i on the SOM grid.
Both η(t) and σ(t) decrease monotonically with time [35].
In the other words, the weights of every node are updated at
each cycle by adding: current learning rate (ηk,i(t)) * degree of
neighborhood with respect to winner (hc,i(t)) * difference be-
tween current weights and input vector to the current weights.

(5) Iterate the step 2-4 until the sufficiently accurate map is ac-
quired.

4. INTERNAL CLUSTERING VALIDITY
MEASURES

Many clustering algorithms require the number of clusters by the
user before running the algorithm. There is no completely satisfac-
tory and ideal method for defining the number of the clusters for
any type of clustering analysis [35]. Obviously, the quality of clus-
tering is significantly dependent on the estimation of the correct
K. Data clustering with too many partitions complicates the results
for analyzing and interpreting, while too few partitions lead to the
loss of information and misdirect the final decision [30]. One of
the most widely used techniques for estimation of the optimal K
and clustering validation are relative criteria where the algorithms
run repetitively using different parameters and input values until
the validity of clustering results are compared in two categories:
internal and external [17, 23]. The internal validation measures are
employed to choose both the optimal cluster number without any
additional information and the best clustering algorithm. The in-
ternal validation measures are also the only option for clustering
validation when there is no external information available, such as
labeled data set [24]. Compactness and Separation are two major
criteria that make similar data objects within the same clusters and
place other objects in distinct clusters [33]. The compactness (intra-
cluster cohesion) measures how near the data points in a cluster are
based on variance. The lower variance indicates the better com-
pactness. The separation (inter-cluster separation) measures how a
distinct (well-separated) cluster is far from other clusters. In spite
of variety of internal evaluation methods, in most application, ex-
pert judgments are still the key. Decision making based on numer-
ical representations might not be individually appropriate [15]. In
this work, three widely used internal validation measures have been
applied:

(1) Davies-Bouldin (DB) [6] calculates the similarities between
each cluster C and other clusters, and the highest value is as-
signed to C as its cluster similarity. Then the DB measures
the average of similarity between each cluster. As the clusters
should be compacted and separated, the lower DB means better
clustering result.

(2) Calinski-Harabasz (CH) index [4] evaluates the cluster validity
based on the average between clusters and within clusters. The
maximum value of CH means better cluster configuration.

(3) Dunn index [8] is based on the minimum pairwise distance be-
tween objects in the different clusters as the inter-cluster sep-
aration and the maximum diameter among all clusters as the
intra-cluster compactness. The larger value of Dunn means bet-
ter cluster configuration.
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Table 1. Internal clustering validity measurement
Validity index Notation Formula Optimal value

Davies-Bouldin index DB 1
NC

∑
i
maxj,j 6=i

[ 1
ni

∑
xεCi

d(x,ci)+
1
nj

∑
xεCj

d(x,cj)]

d(ci,cj)
Min

Calinski-Harabasz index CH [
∑

i
nid

2(ci, c)/(NC − 1)]/[
∑

i

∑
xεCi

d2(x, ci)/(n−NC)] Max

Dunn index Dunn mini{minj(
minxεCi,yεCj d(x,y)

maxk{maxx,yεCk }d(x,y)
)} Max

n: number of objects in data set; c: centers of data set; NC: number of clusters; Ci: i-th cluster; ni: number of objects in Ci; ci: center of Ci.

5. EXPERIMENTAL SETUP
We have implemented CCN flows on a testbed configuration run-
ning the CCNx software of PARC (www.ccnx.org). A full du-
plex link interconnects the nine Linux (Ubuntu) machines from the
three different countries (Spain, Finland and Brazil) including two
servers (place of the origin content) and seven clients. Figure 1
shows this construction. We performed the following experiments
with the main tools in CCNx: ccnsendchunks, ccncatchunks2, cc-
nputfile, ccngetfile, ccndsmoketest, HttpProxy, and ccnchat. We
launched the ccndc routing daemon on the all hosts to configure
the CCNx FIB (Forwarding Interest Table) and started this routing
utility in the background by ccndstart daemon. For generation of
the normal traffic, we uploaded some objects (small and large files)
into the CCN repository with ccnsendchunks C API on the server
side. It is a program used to chop contents in small data units called
chunks and inject them from stdin to ccn. In the other side, two
clients send Interest packets under the given CCNx URI (the CCNx
name) with ccncatchunks2 to get desired contents and write them
to stdout. We also load some files with ccnputfile (It publishes a
local file as content with the CCNx name) in the CCNx repository,
and retrieves the published content with ccngetfile (It retrieves con-
tent published under the CCNx name and writes it to the local file).
We used HttpProxy application to run a HTTP proxy that converts
HTTP Gets to CCN Interests. The ccnchat utility also allows one(s)
to join an existing chat channel (or create a new one if that partic-
ular channel does not exist). For generation of abnormal traffics,
we ran ccndsmoketest daemon for smoke-test of ccnd. This util-
ity used to send the large number of Interests (Interest flooding at-
tacks) toward servers (we called ’Smoke attack’). We also launched
ccndsmoketest again from some clients to simulate a distributed
Interest flooding attack. Then, we made abnormal traffics to sat-
urate channels by sending very small contents (decreasing buffer
size) from owner of origin content to requesters (we called ’Abnor-
malSource’ behavior). Moreover, we do not forwarding content re-
quests deliberately to requesters with killing (shutting down) ccnd
cleanly (we called ’AbnormalUnreachableContent’ behavior). Fi-
nally, we ran wireshark plugin for capturing CCNx packets.

5.1 Feature Construction
We employed the simple features (attributes) that are extracted
from the header’s area of the network packets. These intrinsic fea-
tures are available in many networks, for example, the duration
(length of the connection), source host, destination host, source
interface, and destination interface [20]. We also used three fea-
tures in each 2 seconds time interval: (1) Total number of packets
sent from and to the given interface in the considered time interval,
(2) Total number of bytes sent from and to the given interface in
the considered time interval, and (3) Number of different source-
destination pairs matching the given hostname-interface that being
observed in the considered time interval. The number of packets
and bytes allows to detect anomalies in traffic volume, and the third

features allows to detect the network and the interface scans as well
as the distributed attacks, which both result in an increased number
of source-destination pairs [27]. Since generated CCN flows are
very large (about 100,000 records), we sampled the data using an
appropriate scheme with 30% of total traffics until clustering algo-
rithm could be run in a timely manner. The evaluated data set (CCN
flows) includes 78% normal traffic and 22% abnormal traffic.

5.2 Performance Metrics
To evaluate clustering performance and accuracy in our system we
were Interested in some criteria. Firstly, we applied purity. The pu-
rity criterion ([0 1]) determines the frequency of the most common
category into each cluster:

Purity =
1

n

k∑
q=1

max
1≤j≤l

njq (2)

Where, n is the total number of samples; l is the number of the cat-
egories, njq is the number of samples in cluster q that belongs to the
original class j(1 ≤ j ≤ l). A larger purity is desired for a good
clustering.
we also used two typical indicators to quantify performance: De-
tection Rate (DR) and False Positive Rate (FPR). The Detection
Rate is the number of intrusion instances detected by the system
and the False Positive Rate is the number of the normal instances
that were incorrectly classified as intrusion [28, 36]. We calculated
these two indicators over the labeled data through equations 3 and
4, respectively:

DR =
TruePositive

TruePositive+ FalsePositive
(3)

Where, True Positive is the number of the attack instances when
successfully detected, and False Positive is the number of normal
is detected incorrectly as attack.

FPR = 1− TrueNegative

TrueNegative+ FalsePositive
(4)

Where, True Negative is the number of the normal instances are de-
tected as a normal (there is no attack).
Applied data set (CCN flows) consists of the different scale and
distribution of attributes that these differences make it difficult to
measure the similarities. To reduce the varied measurement units
and scale, the data set was transformed into normal form so that all
attributes can have equal impact on the computations. Normaliza-
tion is the most commonly used method with an average of zero
and standard deviation of one.
The proposed anomaly detection system in CCN consists of five
phases that is depicted in Figure 2. Firstly, pre-processing of the
data set including feature selection and normalization is required.
Secondly, we apply five clustering algorithms on normalized data
set. We run clustering algorithms in several times with different
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Fig. 1. Content-Centric Network Scenario

input parameters. For each clustering result, we measure the good-
ness of clustering with internal validation measurements and keep
the three best results. Thirdly, we apply three typical criteria to
check the performance of each clustering. Finally, the best cluster-
ing algorithm based on the performance measurement is selected.

6. EXPERIMENTAL RESULTS AND DISCUSSION
We conducted our experiments on Intel Pentium 2.13 GHz CPU,
3 GB RAM running Windows 7 Ultimate. Clustering techniques,
clustering validity and performance measurement methods imple-
mented on WEKA and MATLAB software.

6.1 DBSCAN Results
DBSCAN requires two input parameters: Eps and MinPts. We ex-
perimented with several values for Eps (between 0.01 and 4) and
for MinPts (between 1 and 300). Then, we selected the best three
results obtained from validity indices. As shown in Table 2, DB
and CH present very high purity (purity=0.9936) with the max-
imum detection rate (DR=100%) and the low false positive rate
(FPR=5.62%), with K=438, Eps=0.01 and MinPts=1. Second opti-
mal clustering result is K =109 from DB index with purity=0.9916,
Eps=0.01 and MinPts=20. According to the results, high purity
with low DR indicates that the high portion of the abnormal traffics
have distributed into the large normal clusters. Also the high purity
with the high FPR indicates that the most normal traffics place in
several small attack clusters.

Table 2. Results of DBSCAN algorithm implementation
DBSCAN result

Criteria Value Eps, Pts K Purity DR (%) FPR (%)

DB
0.0442 0.01, 1 438 0.9936 100 5.62
0.0697 0.01, 20 109 0.9916 89.96 8.85
0.0718 0.02, 120 8 0.9801 32 16

CH
119810 0.01, 1 438 0.9936 100 5.62
46200 0.05, 2 139 0.989 42.5 3.6
42600 0.06, 2 106 0.989 42.5 2.2

Dunn
1.367 0.25, 1 21 0.981 77.22 18.27
1.2661 0.3, 5 16 0.981 77.27 14.44
0.7521 0.3, 240 8 0.98 72 17.7

6.2 K-means results
The K-means algorithm was considered with its input value (num-
ber of clusters), ranging between 30 and 400. The best three values
of validity indices are shown in Table 3. The best combination of
DR and FPR was obtained with K=240, which achieved a DR of
94.21% and a FPR of 6.74% from Calinski-Harabasz (CH).

Table 3. Results of K-means algorithm implementation
K-means result

Criteria Value K Purity DR (%) FPR (%)

DB
0.2736 165 0.989 61.58 8.19
0.2796 250 0.9891 73.24 14.19
0.2841 155 0.989 55.79 3.3

CH
68925 230 0.989 68.57 9.52
61900 220 0.989 75.44 10.26
61867 240 0.989 94.21 6.74

Dunn
1.296 65 0.989 52.5 6.5
1.009 70 0.989 54.79 8.04
0.882 135 0.989 65.58 8.96

6.3 Farthest First Results
For the farthest first algorithm we tried with the K between 30 and
300 (Table 4). In spite of very high purity value, there is no sat-
isfaction DR and FPR. Insignificant results show that the farthest
first algorithm could not correctly place the normal and abnormal
traffics into the appropriate clusters.

6.4 Cobweb Results
The cobweb algorithm ran with the range of Acuity (minimum
standard deviation for numeric attributes) between 0.01 and 2 with
30 experiments. According to Table 5, DB and CH indexes propose
the good validity measurements, but their results are not ideal due
to the low DR and the high FPR. The inconsistent results confirm
that the cobweb algorithm realize too many normal data as noise or
outlier in small clusters.
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Fig. 2. Anomaly Detection System Design in CCN

Table 4. Results of Farthest First algorithm
implementation
Farthest First result

Criteria Value K Purity DR (%) FPR (%)

DB
0.1366 260 0.993 71.03 48.29
0.1519 130 0.993 71.03 45.12
0.1601 110 0.993 70.08 42.12

CH
78945 250 0.97 93.17 18.22
72901 210 0.96 95.44 20.16
62451 240 0.959 91.91 19.74

Dunn
1.0527 50 0.981 56.68 26.8
0.7726 40 0.981 56.68 23.37
0.0911 60 0.981 66.67 30.52

Table 5. Results of Cobweb algorithm implementation
Cobweb result

Criteria Value K Purity DR (%) FPR (%)

DB
0.125 176 0.9895 64.58 31.9
0.1583 36 0.9801 72.97 27.38
0.1752 44 0.9801 72.97 41.01

CH
42790 276 0.9936 81.08 32.5
35810 176 0.9895 64.58 31.9
17320 94 0.981 74.85 32

Dunn
1.1105 64 0.978 67.46 26.12
1.0034 58 0.978 65.41 21.89
0.0964 60 0.982 63.18 27.51

6.5 SOM Results
Table 6 displays the three optimal results of clustering by 28 com-
bination from 6-by-6 to 20-by-20 (height and width) neuron SOM.
The learning rate also was assigned to 0.1, 0.5, 1, respectively
for each combination. The obtained results are not satisfactory for
anomaly detection with the low DR and the high FPR.

Table 6. Results of SOM algorithm implementation
SOM result

Criteria Value neuron K Purity DR (%) FPR (%)

DB
0.0806 11-by-12 132 0.989 67.57 12.27
0.0817 14-by-15 210 0.989 52.5 17.09
0.0936 19-by-20 380 0.9924 47.03 34.28

CH
26013 10-by-11 110 0.989 44.79 13.11
24602 10-by-10 100 0.9882 40.54 21.74
20287 9-by-10 90 0.9882 40.55 11.83

Dunn
1.311 10-by-11 135 0.982 57.5 8.53
1.101 14-by-15 182 0.982 57.79 11.04
0.914 17-by-18 110 0.967 53.58 7.42

6.6 Anomaly Detection Performance Measurement
We continue our experiment by applying optimal algorithm results
with the high detection rate (more than 85%) and the low false
positive rate (under 10%) on the aforementioned data set for the
anomaly detection classified into three types of intrusion: ’Smoke
attack’, ’AbnormalSource’ behavior, and ’AbnormalUnreachable-
Content’ behavior. The DR and FPR results are shown in Figures
3 and 4, respectively. This experiment shows that the DBSCAN
(Eps=0.01, MinPts=1, K=438) is able to detect all three attacks
without any false positive rate. Unfortunately, this algorithm with
K=109 failed to accurately detect ’AbnormalUnreachableCon-
tent’ (DR=0, FPR=4.25%) and ’AbnormalSource’ (DR=74.58%,
FPR=6.98%) behaviors. The K-means (K=240) detects consid-
erably ’Smoke’ attack, ’AbnormalSource’ behavior (DR=100%,
FPR=0), and ’AbnormalUnreachableContent’ behavior with DR=
74.58% and FPR=6.98%.
Within the experimental results, we confronted with some ineli-
gible results, either high purity with low DR and/or low FPR (e.g.,
Farthest First, Cobweb, SOM), or with the acceptable results by too
many numbers of cluster (DBSCAN with K=438). This could be-
cause of the inherent structure of CCN which is summarized to two
types of packet: Interest and Data (Content). The further research
is to improve this preliminary results.

Fig. 3. Anomaly detection using DBSCAN (K=438 and 109) and K-
means (K=240) clustering algorithms

7. CONCLUSION AND FUTURE WORK
In this paper, an anomaly detection system has been proposed to
detect intrusions in forms of DoS attacks in Content-Centric Net-
works (CCNs) based on unsupervised learning algorithms. This
anomaly detection system is able to detect intrusions by an appro-
priate performance measurement. The promising results has been
obtained using DBSCN (K=438) with high purity, high detection
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Fig. 4. False positive rate using DBSCAN (K=438 and 109) and K-means
(K=240) clustering algorithms

rate, and low false positive rate. The K-means (K=240) also per-
forms very well in detecting ’Smoke attack’ and ’AbnormalUn-
reachableContent’ behavior but it did not perform well in detecting
’AbnormalSource’ behavior. We are currently working on a novel
protocol to mitigate the most security challenges in CCNs, which
this paper is our first experimental results and a base in order to con-
tinue other sections of our protocol. The next step in our research
is to work towards several improvements of the presented approach
by designing a system for effectively identifying the other types of
intrusions and anomalies by optimal performance.
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