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ABSTRACT

Internet over the past few years has undergone dramatic changes
in terms of scale, penetration rate and the diversity of applications.
The demand for continuous network connectivity is profilerating.
Moreover, it has been observed that the usage of real time applica-
tions like Voice over IP (VoIP) and Live Streaming has increased
drastically. Passive Queue Management (PQM) mechanisms in the
routers do not react to congestion till the buffers overflow. This
has two severe consequences: (i) large queueing delays that hurt
the performance of real time traffic because such traffic is sensi-
tive to delay and (ii) a large number of consecutive packet drops
which affect the network stability. Recently, there has been a lot of
interest in the deployment of Active Queue Management (AQM)
mechanisms in modern Internet routers to overcome drawbacks of
buffer overflow. Although Random Early Detection (RED) is the
most widely studied AQM mechanism, it is highly sensitive to pa-
rameter settings. In this paper, we propose a robust AQM mech-
anism named Adaptive Nonlinear RED (ANLRED) which min-
imizes the parameter sensitivity of RED. Results obtained using
ns-2 in a wide variety of Internet scenarios show that ANLRED
improves the overall performance of the network in terms of link
utilization while maintaining an acceptable mean queue length and
minimal packet drop rate. Moreover, ANLRED implementation re-
quires minimum algorithmic changes and hence, is easy to deploy.
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1. INTRODUCTION

Internet in the present era has become a gigantic source of informa-
tion and one of the most preferred means of communication. The
success of Internet can be partly attributed to the congestion con-
trol mechanisms implemented in Transmission Control Protocol
(TCP). TCP, although modified largely, continues to be the work-
shorse for Internet applications. Tremendous growth in the range
of bandwidth, increase in Bit-Error Rates and increased diversity
of applications however, have recently posed challenges to TCP.

TCP provides congestion control by four main algorithms: Slow
Start, Additive Increase/Multiplicative Decrease (AIMD), Fast Re-
transmit and Fast Recovery (FR-FR) [17]. Slow start and AIMD
are used for dynamically changing the size of a congestion win-
dow (cwnd). Slow Start increases the cwnd exponentially to quickly
bring a newly started flow to the desired speed. In steady state, TCP
uses AIMD to vary the cwnd in conjunction with FR-FR. FR-FR
are triggered in the event of a packet loss and are used to quickly re-
cover from the state of congestion. These algorithms, though mod-
ified several times in the recent past, have been the cornerstones of
TCP research.

Congestion avoidance mechanisms differ from congestion control
mechanisms, since former are proactive while latter are reactive.
Though AIMD is also known as Congestion Avoidance algorithm,
it is a misnomer since AIMD does not try to avoid congestion
proactively [23]. Henceforth, we consider AIMD algorithms as
Congestion Control mechanisms and AQM mechanisms as Conges-
tion Avoidance mechanisms since AQM mechanisms proactively
inform the sender about network state and avoid congestion. The
deployment of AQM mechanisms in the Internet has significantly
increased in the recent past, because PQM mechanisms have a few
limitations such as:

(1) Lock-out [12]: PQM mechanisms (e.g.: tail-drop) allow a sin-
gle connection or a few connections to monopolize the buffer
space in the router queues. This results in unfair sharing of the
network resources among the connections, thereby giving rise
to fairness problems.

(2) Global Synchronization [8]: Traditional tail-drop gateways do
not provide an early congestion notification. This leads to
global synchronization, a phenomenon in which all senders
sharing the bottleneck gateway reduce their sending rate at the
same time, thereby under-utilizing the network resources.

(3) Bufferbloat [10]]: Since memory costs have reduced in the re-
cent past, modern routers are designed with extremely large
buffers. As a result, today’s Internet suffers from poor net-
work performance because TCP variants implemented in mod-
ern operating systems are end-to-end protocols and hence, do
not reduce the sending rate unless a packet drop is encoun-
tered. Since the packet drop occurs only when these large
buffers overflow, queueing delay experienced by each packet
increases drastically, thereby degrading the Quality of Service
for delay sensitive applications such as DNS queries, VoIP and



other multimedia applications. This problem has been termed
as Bufferbloat.

AQM mechanisms have been extensively studied to monitor and
limit the growth of the queue at routers. These mechanisms avoid
congestion by proactively informing the sender about congestion,
either by dropping a packet or by marking a packet. Random Early
Detection (RED) [§] is the most widely deployed AQM mecha-
nism in the routers and Explicit Congestion Notification (ECN)
[22] is the most popular marking mechanism used in conjunc-
tion with RED. A lot of research studies have demonstrated that
the performance of RED largely depends on appropriate setting of
the following four parameters: minimum threshold (min, ), maxi-
mum threshold (max,;,), queue weight factor (w,) for exponential
weighted moving average and maximum drop probability (max,).
Optimal values for these parameters differ for different scenarios
and are dependent on other factors such as number of flows passing
through same bottleneck gateway, packet size, etc. Table[T} repro-
duced from [23]] presents the values of above mentioned parameters
used in Cisco 12000 Series routers that implement a modified RED
called Weighted RED (WRED). C is the capacity of the link in
packets where mean packet size is 1500 bytes.

Table 1. WRED parameter setting in Cisco 12000 Series

Routers
Link Speed C ming, | maTin, | wg | Mazxy
DS3 3666 110 367 9 1
0C3 12917 388 1292 10 1
0OCl12 51666 1550 5167 12 1

This paper proposes a robust AQM mechanism which aims to mini-
mize the parameter sensitivity of RED by making minimal algorith-
mic modifications. The proposed algorithm is named as Adaptive
Nonlinear RED (ANLRED) Algorithm. Unlike other RED based
AQM mechanisms, ANLRED does not introduce new parameters
to achieve better performance since adding new parameters further
complicates the original design of RED.

The remainder of the paper is organized as follows: Section 2 de-
scribes the related work that aims to improve the performance of
RED. Section 3 presents the design of ANLRED algorithm. Results
and analysis of the same is demonstrated in Section 4 and Section
5 concludes the paper with possible future directions.

2. RELATED WORK

The parameter sensitivity of RED has been addressed by several
researchers and as a result, RED has been extended and enhanced
by adopting many different approaches. The basic mechanism of
RED, however, still remains the same.

On arrival of every packet, RED gateways calculate the average
queue size (avg) using Exponential Weighted Moving Average
(EWMA). If avg is less than min,y,, the packet is enqueued. If
avg is more than maxy, the packet is droppecﬂ However, if avg is
between min,, and maxyy,, the packet is dropped randomly with
a certain probability. RED, therefore, has two computational parts:
computation of avg and calculation of packet drop probability (p,).
The following equations show avg and p4 calculation of RED re-
spectively:

In presence of ECN, router may choose to mark the packet instead of drop-
ping. Hence, the terms dropping and marking are used interchangeably.
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avg = ((1 —wy) X oldavg) + (wq X cur_q) (1)

where oldavg = average queue size during previous packet arrival
cur_q = current queue size

0 avg < ming,
_ avg—mingy
Pa = MAT¢p —Mingy,

1 avg > mazgp,

X mazx, ming < avg < may, (2)

The probability with which a packet is dropped is a linear function
of avg. Hence when avg varies from ming;, to maxy,, the drop
probability varies from 0 to max,,. If avg increases above maxp,,
drop probability becomes 1 i.e. all incoming packets are dropped.
Figure|[T]shows the marking function of RED.

Marking
probability

min th max th

Average queue size

Fig. 1. Marking function of RED

The effectiveness of RED highly depends on the appropriate setting
of its parameters. However, it is difficult to find the appropriate
values of parameters that enable RED to perform equally well in
different scenarios. RED may in fact perform worse than PQM if
its parameters are not correctly tuned. We now discuss the issues
and prior work done in appropriately setting these parameters.

2.1 Setting max,

The choice of max,, significantly affects the performance of RED.
If max,, is too small, the number of active packet drops becomes
less and hence, cannot prevent the queue overflow. If mazx, is too
large, the number of active packet drops becomes more and signif-
icantly affects the throughput.

Feng [[7] demonstrates that the choice of max, depends not only
on the bandwidth delay product but also on the number of flows.
An algorithm called Self Configuring RED is developed and im-
plemented in [7]] to vary mazx, parameter based on the average
queue length dynamics. The main idea is to modulate the packet
dropping behavior of RED by monitoring the variations in the avg.
If the avg oscillates around minyy,, the value of max,, is decreased
to make RED less aggressive. Similarly, if the avg oscillates around
maxyp, the value of max,, is increased to make RED more aggres-
sive. max, is carefully varied so as to keep the avg between min,
and maxyy,. This algorithm performs well in different traffic sce-
narios since it reduces the oscillations in the instantaneous queue
length.

As an extension to Self Configuring RED, an Adaptive RED
(ARED) is developed in [9] and its effectiveness over the origi-



nal RE]ﬂ is demonstrated in terms of improved throughput and
reduced oscillations in the queue size. Unlike Self Configuring
RED, ARED is designed to keep the avg in target range between
miny, and maxy, and thus, max, is varied accordingly. More-
over, ARED automatically sets min,, max, and w, parameters.
The choice of target queuing delay, which determines the trade-off
between delay and link utilization, is left to the network operators.

ARED follows an AIMD policy to vary max,. While ARED
adopts a conservative approach to vary mazx,, Refined Adaptive
RED (Re-ARED) [14] adopts an aggressive approach to bring avg
within its farget range more quickly. However, like ARED, Re-
ARED too employs an AIMD policy to adapt mazx,. On the con-
trary, a modified ARED algorithm based on Multiplicative Increase
Multiplicative Decrease (MIMD) policy to adapt max,, is designed
in [19]. However, the results show that MIMD policy to adapt
max,, yields similar results as the AIMD policy.

2.2 Setting w, for EWMA

The avg in RED is required to filter out the transient congestion
while, at the same time, detect congestion that has persisted for
several RTTs. If w, is too small, the AQM may fail to detect the
incipient congestion and lead to overall performance degradation
by causing queues to overflow. If w, is too large, avg tracks the
instantaneous queue and leads to more oscillations in the queue,
thereby degrading the performance of AQM.

ARED, as discussed above, automatically sets the w, as a function
of the link bandwidth. It is shown in as

-1

wg=1- 63517(?) (3)
where C is the link capacity in packets/second, computed for pack-
ets of the specified default size.

An ARED based algorithnﬂ that adaptively varies w, along with
max,, is designed in [24]. The main goal of the algorithm is to
modulate the aggressiveness of RED by varying the value of w,
based on the changes in avg. If the change in avg is negligible,
smaller value for w, (wq1) is chosen to give more weight to the
oldavg. On the other hand, if the change in avg is significant, larger
value for w, (wg2) is chosen to give more weight to the instanta-
neous queue length. However, wq; and wgo are fixed values and
must be predefined.

Similar mechanisms, Stabilized ARED (SARED) [13]] and Self
Tuning RED [5]] focus on assigning different queue weights, wy,
to ARED instead of one fixed queue weight. The major limitation
of these approaches is that they introduce several new parameters
to achieve performance gain. Setting these additional parameters
adds to the complexity.

2.3 Setting min., and mazx;,

It is recommended that the min.y for a RED router that carries only
TCP traffic should be around five packets. max,; should be at least
three times min;,. However, a different set of values are required
for ming;, and max,, to achieve fairness when non-TCP traffic
(e.g., UDP traffic) coexists with the TCP traffic. This approach is
adopted by Class-Based Threshold RED (CBT-RED) [20]]. CBT-
RED sets the min:, and max, thresholds according to the traffic

2Original RED refers to the RED proposed in [§]
3We call this as wq+max, algorithm.
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type and its priority. UDP traffic is assigned a separate drop thresh-
old than the one assigned for TCP traffic.

Balanced RED (BRED) [3] achieves fairness among TCP and UDP
traffic by regulating the bandwidth of a flow based on the other
active flows. However, it requires per-flow accounting and hence,
has scalability and deployment issues.

ARED automatically sets min,;, based on the Eq.. maxyy, 18 set

to three times of min,y,.

dy x C
ming, = maz(5, v

) “

where d; represents the target queuing delay set by the network
operators.

Eq.(@) ensures that for high bandwidth links, min,, is set suffi-
ciently high and for low bandwidth links, ming, is set equally low.

2.4 Calculating packet drop probability (p;)

It is observed that sharply increasing the p4 to 1 when avg crosses
max,, (see Fig[l) results in high number of packet drops. Hence,
a modified RED known as Gentle RED (GRED) is recommended
that varies the p; from mazx, to 1 when avg varies from maz,, to
twice max,p, S0 as to reduce the number of packet drops. Figure
shows the marking function of GRED.

Marking
probability

minth maxy, 2 maxy,

Average queue size

Fig. 2. Marking function of Gentle RED

Stabilized RED (SRED) [15] has been designed to make the router
queue stable over a wide range of load levels. Instead of calculating
the avg, SRED drops packets depending on the instantaneous queue
length and the number of active flows. Eq.(3) and Eq.(6) show the
pq and the final packet drop function (ps,-.q) of SRED respectively.
B represents the buffer capacity. SRED achieves the goal of stabi-
lizing the queue, however, suffers from low throughput even for a
small number of active flows.

maz, £ <curq<B
Pa = %maxp % <curq< g 5)
0 0<curg< %

for large number of active flows

Pd

Psred = { s (numberof flows)?  for small number of active flows

(6)
Double Slope RED (DSRED) [26] implements two linear drop
functions with different slopes to improve the throughput and de-
lay of RED. The main idea is to divide the queue between ming,
and max,, into two segments and use a separate linear function
for each segment. DSRED adapts to the level of congestion by



changing the slope of the drop function. The equation governing
the packet drop probability (pg) is given by Eq.(7).

0 avg < Ming,
a(avg — mingy,)

1 — v+ B(avg — midy)
1 avg > mazyp

. ming, < avg < midgp
pa midy, < avg < max,

(N
where o and 8 are given by Eq.(8) and Eq.(9) respectively. mid,,
is a threshold for avg to change the slope of the drop function and ~y
is used as a mode selector to adjust the slopes of the drop function.

oo 20-7) ®

maxsy, — MiNng,

2
f=— T ©)
Maxy, — Ming,

Nonlinear RED (NLRED) [27], on the other hand, replaces the lin-
ear packet dropping function of RED by a nonlinear quadratic func-
tion to improve the effectiveness of RED. (See Eq.(I0))

Though DSRED and NLRED outperform the original RED, their
parameter sensitivity remains same as the original RED because
they do not vary max,, and use the default value of w,.

0 avg < ming,
( avg—mingy,

2 .
maacth—minth) X Maxy MMy < avg < max

Pd =
1 avg > maxip

(10)

2.5 Other RED Variants

There are a few RED based AQM mechanisms that not only take
avg, but also consider the instantaneous queue size. Examples of
such mechanisms include Modified RED [6]] and Effective RED
[2]. Appropriately setting thresholds for instantaneous queue size
is a challenging issue in these mechanisms. Moreover, since these
mechanisms are completely based on the original RED, their pa-
rameter sensitivity remains same as that of the original RED.

Other AQM mechanisms based on RED include: Dynamic RED
(DRED) [4], RED with Preferential Dropping (RED-PD) [18]], Ex-
ponential RED [16], Loss-ratio based RED (LRED) [25], RED
based on Neural Networks (NN-RED) [L1], etc. There are some
concerns on the suitability of these AQMs since they do not elimi-
nate the parameter sensitivity of RED. Moreover, they are complex
to deploy than the original RED algorithm. We summarize this sec-
tion (See Table[2) by classifying RED variants based on the param-
eters they focus to improve the performance of RED.

Table 2. Classification of RED Variants

mazxy, Wq ming, and max, | pg

Self Configuring RED | wg+max, algorithm | CBT-RED GRED
ARED ARED BRED SRED
Re-ARED SARED ARED DSRED
ARED with MIMD Self Tuning RED NLRED
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3. ADAPTIVE NONLINEAR RED ALGORITHM

ANLRED varies max, adaptively based on the change in avg.
Although a similar approach is adopted by Re-ARED, the packet
drop rate with Re-ARED is high since it varies max, aggresively
[23]. Moreover, Re-ARED does not achieve optimal performance
for a few scenarios where traffic load is high [23]. ANLRED is de-
signed to provide robust performance in a wide variety of scenarios.
ANLRED algorithm consists of two parts:

(1) Setting max,, - to improve link utilization and
(2) Calculating p, - to control packet drop rate.
ANLRED combines the advantages of two algorithms in one: first

part is borrowed from Re-ARED and second part is borrowed from
NLRED.

3.1 Setting max, in ANLRED

The following algorithm presents the approach adopted by
ANLRED to vary max,. Note that like ARED and Re-ARED,
ANLRED also varies max,, within a range of 1% to 50%.

Algorithm 1: Adapting max,, in ANLRED Algorithm

every interval seconds :
if avg < target and max, > 0.01 then
decrease max,

target—avg )

B =1- (017 x target—ming.p
max, = max, x 3

end

else if avg > target and max, < 0.5 then
increase mazxy

a = 0.25 X max, X
max, = max, +

avg—target
target

end

Variables used in the algorithm:
avg: average queue size
B : decrease parameter
« : increase parameter

Fixed Parameters in the algorithm:

interval = 0.5 seconds

target = target for average queue size:

[ming, + 0.48 X (maxy, - ming,), ming, + 0.52 X (maxyy, -
mingp)]

3.2 Calculating p; in ANLRED

Eq.(TI) shows the NLRED based approach adopted by ANLRED
to calculate pgy, where max,, is obtained from 3.1:

0 avg < Ming,

( avg—mingp

Pa = )2 X maz, ming, < avg < mazy,

maxyp —mingp
avg > maTyp

(11

ANLRED’s approach to combine the advantages of two algorithms

in one not only keeps the deployment complexity low, but also im-

proves the link utilization significantly while maintaing acceptable

mean queue length and minimal packet drop rate. The next section



highlights the performance gain of ANLRED as compared to other
popular RED based AQMs.

4. SIMULATION RESULTS AND ANALYSIS

In this section, we compare the performance of ANLRED with
RED, ARED and NLRED in a wide variety of Internet scenarios.
We have used ns-2 [1] and TCP Evaluation suite for simulating In-
ternet like scenarios. TCP Reno with SACK and CUBIC TCP are
selected for HTTP and FTP traffic since the former is a default
transport protocol used in Microsoft Windows family of operating
systems and the latter is a default transport protocol in Linux kernel
> 2.6. Background traffic is generated by using UDP flows.

A single bottleneck dumbbell topology with two-way traffic is de-
signed for all the simulations. The bottleneck bandwidth is set to
10Mbps with bottleneck RTT set to 32ms unless specified. Non-
bottleneck bandwidth is set to 20Mbps with RTT is set to 4ms.
The scenario consists of 5 forward-FTP flows unless specified, 5
reverse-FTP flows, 15 HTTP flows generated using PackMime gen-
erator, 5 audio flows, 5 forward-streaming flows and 5 reverse-
streaming flows. The parameters chosen above are based on the
simulation scenario designed in [21]]

The desirable properties of an optimal AQM mechanism are: high
link utilization, minimum queue occupancy and least packet drop
rate. Thus, we mainly concentrate on analyzing three parameters
viz. link utilization of bottleneck link, queue size at bottleneck
router and packet drop rate.

4.1 Varying Bottleneck Bandwidth

This scenario verifies robustness of ANLRED in a wide range of
bottleneck bandwidth starting from 1 Mbps to 1 Gbps. Fig. B|high-
lights the advantages of ANLRED in terms of efficient link uti-
lization. Link utilization with ANLRED is significantly better than
RED, ARED and NLRED. While other AQMs fail to achieve even
30% link utilization, ANLRED succeeds in achieving more than
60% link utilization, even in high bandwidth scenarios. Fig. Ehigh—
lights that mean queue length with ANLRED is slightly higher than
other AQMs. However, note that it is in the acceptable range and is
stable around 19%. It can be verified from Fig. [5 that unlike other
RED based AQMs, ANLRED does not improve the link utiliza-
tion at the cost of increased packet drop rate. Packet drop rate with
ANLRED remains almost similar to those of other algorithms. Fig.
[6] through Fig. [8] represent similar performance measurements ob-
tained with CUBIC TCP.

Link Utilization with BW Changes

100

EY s

o =2}

Link Utiization (%)
/£

e
40 v/’ N P

SACK + RED —+—
SACK + ARED
SACK + NLRED ---*:
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1 10 100 1000
Bandwidth (Mbps) Log Scale

Fig. 3. Link Utilization vs Varying Bottleneck Bandwidth (TCP SACK)
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Fig. 4. Mean Queue Length vs Varying Bottleneck Bandwidth (TCP
SACK)
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Fig. 5. Packet Drop Rate vs Varying Bottleneck Bandwidth (TCP SACK)
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Fig. 6. Link Utilization vs Varying Bottleneck Bandwidth (CUBIC TCP)
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Fig.7. Mean Queue Length Varying Bottleneck Bandwidth (CUBIC TCP)

Packet Drop Rate with BW Changes
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Fig. 8. Packet Drop Rate Varying Bottleneck Bandwidth (CUBIC TCP)

4.2 Varying Number of FTP flows

This scenario varies the number of FTP flows from 1 to 1000 and
highlights the robustness of ANLRED in varying traffic loads.

‘When number of forward FTP-flows are less, the bottleneck link
utilization is expected to be low and when number of forward FTP-
flows are more, the bottleneck link utilization is expected to be high
because of increase in the traffic load. It can be observed from Fig.
[9 that even when number of FTP flows are less - ANLRED utilizes
the available bandwidth much more efficiently than other algo-
rithms. Fig.[T0]and Fig.[TT]show that the performance of ANLRED
is similar to other algorithms in terms of mean queue length and
packet drop rate. This implies improvement in link utilization with
ANLRED does not affect the other network parameters.

Fig. [I2] through Fig. [T4] show that network performance improves
slightly when CUBIC TCP is used with other AQMs, however,
ANLRED’s performance is stable and better than the other algo-
rithms.

4.3 Varying RTT

In this scenario, RTT is varied from 1 ms to 1 second to cap-
ture the behavior of AQMs with varying amount of bursts. Fig. @
through Fig. [T7)show that except RED - all other AQMs including
ANLRED exhibit similar performance. Although RED has lesser
mean queue length and packet drop rate than other AQMs, it does
not exhibit similar behavior when bandwidth is varied or number
of flows are varied. Moreover, it must be noted that average RTT in
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Link Utilization with FTP Flows Changes
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Fig. 9. Link Utilization vs Number of FTP flows (TCP SACK)
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Fig. 10. Mean Queue Length vs Number of FTP flows (TCP SACK)
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Fig. 11. Packet Drop Rate vs Number of FTP flows (TCP SACK)

the Internet is around 100 ms to 300 ms [21]]. In that case, it can be
observed that all AQMs have similar performance.

Same experiments were repeated with CUBIC TCP and observa-
tions were similar. Fig.[T8]through Fig. 20]demonstrate the results.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a robust AQM mechanism named ANLRED is pro-
posed to enhance the network performance in terms of link utiliza-
tion and packet drop rate. Based on the simulation results, it is ob-
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Packet Drop Rate with FTP Flows Changes
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served that ANLRED exhibits robust performance in a wide variety
of Internet scenarios when compared to RED, ARED and NLRED.
ANLRED, however, occupies slightly more queue space than other
AQM algorithms. The future work includes optimizing ANLRED
to occupy the minimum possible queue space without affecting the
link utilization and packet drop rate.
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