
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

29

Efficiency Measurement for Effective Stress

Management in Heterogeneous 2-D Mesh Processor

Arashdeep Singh
Assistant. Prof.
LLRIET, Moga

Sunny Behal
Assistant. Prof.

SBSSTC, Ferozepur

Ankit Arora
Assistant Prof.
LLRIET, Moga

ABSTRACT

Multi-Processor interconnection with varying speed is a great

attempt in massive parallel processors. Such types of

distributed cluster along with heterogeneous behavior will

requires vast amount of scheduling efforts. Complexity

increases as scheduler has to detect dynamic characteristics of

the processors. Parallel schedulers are implemented in cluster

technology for job assignment and placement. Further, core

processor technology will provide a greater endeavor for load

balancing. This research covers heterogeneous multi-

processors with 2-D mesh interconnection mapped to cube

oriented memory mesh for job allocation and distribution. The

job distribution will be based upon processor cycle speed. A

two dimensional job slice is build, which in later stages along

with many other slices overlapped to exhibit memory cube.

General Terms

Heterogeneous Processor Mesh, Memory Slice, Scheduling,

Workload Distribution, Efficiency Degradation.

Keywords

Load Steadiness, Processor Cycle Speed, Efficiency

Measurements, Dynamic Distribution Characteristics, Stress

Management.

1. INTRODUCTION
Integrated hardware design for multiprocessor systems covers

complex algorithmic structures and varied number of

processing elements. Parallel hardware integration starts due

to the uniprocessor limited speed and modern demands of real

time computation intensive workload. Chip level computing is

one way to achieve the parallel computation leading towards

multi-core integration[5]. Application scenarios over multi-

processor systems must incorporate parallel behavior. Such

designs cover multiple processing application

modules/threads which can be distributed and executed

without any interference among them. Although, scheduling

jobs or their distribution policy implementation is a very

tricky task. An efficient scheduling mechanisms will provides

an effective utilization of multiprocessor hardware with major

aim is to exploit the machine efficiency. On board

multiprocessor hardware usually covers homogeneous

processor interconnection. Intel provides RISC based

multiprocessor Intel paragon IPSC/860 with 2-D mesh

architecture covers thousands of processor nodes [6].

Similarly CDC 6600 from control Data Corporation operates

with 128 processor nodes on hypercube. On board

heterogeneous multiprocessor are under consideration.

Dynamic scheduling against heterogeneous hardware is a way

to characterized application workload. This research deals

with heterogeneous processor simulation covering job

distribution with assumption that allocation well approximates

after estimating processor frequency speed [9][12].

2. OBJECTIVE
Intention to develop multiprocessor simulation along with

heterogeneity is to normalize the workload distribution, rather

than to cure load balancing aspects after distribution has been

takes place [1]. Such efforts will consume much of the

processor time on the behalf of the task adjustment and

placement. Further the study behind the current experiment is

to create mesh based processor interconnection mapped to 2-

D memory job slice. Each two dimensional job slice arranged

according to processor efficiency estimation by measuring

present processor load and frequency cycles. Parallel

allocation takes place with overlapped multiple memory

slices.

3. RELATED WORK
Existing literature about frequency based experiments

illustrates uniform single core processors where each

processor carries their individual cycle speed covering real

time workload characterization [4]. Based upon metric

measurements the workload will be distributed to intended

processor best suited to current application. Further the

experiments cover multi-core multiprocessors [10], where

each core speed will be considered as basic scheduling factor

in job distribution. Ultimate idea of core technology

development is to balance the processor mass (in terms of

workload) over their underlying sub-cores. Further the

experiment in this research will generate two dimensional job

slices overlapped with one another to produce cube like

structure as described earlier, where each slice mapped

downwardly over to processor mesh.

4. STRESS MANAGEMENT
Processor Stress management integrates processor utilization

per unit time, i.e. how frequently the processor consumption

reach upto 100% in one unit time or other means efficiency

degradation. The idea behind this methodology is to maintain

system’s steady state. This technique estimates stress metric

for load sharing aspects in multi-processor system for each

and every processor in the pool [2]. The SM factor will offer

processor indexes which are most frequently loaded in their

execution life cycle. Further the load balancer performs load

sharing to manage processor stress (in terms of workload) to

no. of available processors having low SM value. This

technique can be used in either homogeneous or

heterogeneous system interconnection. Stress in terms of

100% utilization is a valuable metric for dynamic load

balancing in multi-processor scheduling [3][11]. Although the

technique follows load adjustment guidelines to maintain

system’s safe state.

5. MEASURING & MANAGING STRESS
Processor load basically helps in estimating processor stress.

One distribution approach defined above based upon

processor speed and existing workload measurements

basically a stress management policy, estimating no. of cycles

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

30

required to complete exiting and present workload quickly.

Other approach defined above as stress management-that how

frequent a processor reaches its utilization upto 100% in one

unit time. One solution to this problem is that find the SM

value of each processor and find the candidate processor

which requires load balancing. Now evaluate the processor

ready queue and processes which are currently in running

state. Find the process which consumes frequently large

processor cycle pool. The Parallel workload analyzer interpret

this job for parallel behavior, if the job having parallel

modules can be executed simultaneously, then such parallel

modules can be distributed to other processors, this is requires

for high priority tasks for which immediate execution is also

the constraint. In this way the processor stress will also be in

steady state as well as job modules worked in parallel fashion.

If job execution structure does not correspond to parallel

behavior then the other processes running or ready that

consumes equivalent no. of processor cycles/time in

comparison to that process. Such processes can be distributed

to other processors having low SM value. Although context

switching is more in later case, but low effort in workload

partitioning. In the former case workload partitioning

consumes valuable processing time but context switching

comprises low efforts. One another approach is to measure

efficiency degradation i.e. time since last completed process

by each processor. This will be measured as no. of CPU cycle

consumed (NCC). The NCC Metric value conversion further

takes place as no. of seconds elapsed (NSE) respective to

processor frequency. NSE value greater than 1 will specifies

the stress beginning and may reach to further degradation.

NSE signifies even after consumption of too many cycles no

rise in throughput

If NSE > 1 then

 Requires load sharing/stress management

End if

Such situation may block the processors for further execution.

The solution to these overburden situation could be defined

as- Preempt the currently running process from that processor.

Evaluate the parallel behavior if concurrency found between

modules, distribute such modules to stress free processors that

can handle. If the process behavior is standalone then find

other processor after evaluating processor speed, its existing

load along with current process load. Utilization of processor

time in terms of actual processing and computation. This is

because earlier studies behind computation theory describes

much of the processor time wasted by currently running

processes in terms of unuseful work like data transfers,

memory management, managing process address space and

context switching. So estimates ratio between computation

cycle and control cycles. Any processor having more no. of

control cycles elapsed than computations from very long

duration. This will reduce the throughput, excessive cycles

length is wasted and efficiency is degraded. Solution to this

condition is to elaborate processor coupling in terms of

communication hierarchy and performing transmission of

module logic rather than obtaining data to intended processor.

This is because bulky data transfer from one processor

memory unit to another processor memory unit requires heavy

time volume, so rather than obtaining data from neighboring

processor, code/logical statements can be transferred to that

processor. In this way computation can be performed at same

place. Data transmission is reduced as well processor load

sharing is performed. This type of situation occurs where

distributed data takes place.

6. PROPOSED PARALLEL FLOW

Fig 1: Processor Memory Map

7. SIMULATION PRACTICE
Simulation structure covers multi-threaded environment

following heterogeneous processor mesh and incoming job

queue. The job slice arranged with respective to the processor

speed, existing load and current job workload (in terms of

cycle required) described in section-8. The job slice then

arranged like a cube overlapped with each other mapped to

processor mesh. Multi-threaded synchronous interconnection

is build with visual basic 6.0 language tools and libraries.

Nine processors are organized as mesh. Further the simulation

view will be described in figure-8.

8. DISTRIBUTION APPROACH
Distribution approach comprises relationship among

processor frequency cycle speed and computation.

Distribution takes place to the processor consuming minimum

amount of cycles for its current and new incoming workload

ready to distribute. Due to the variation in speed and

distributed workload this may be possible that a low speed

processor may quickly complete the new incoming workload.

Following is the metric used as cycle based scheduling.

For each Pth Processor where p=1 to n

 w=0

 For I=1 to RQueue[p].length

 w = w +Job_Wload [I]

 end for

 Job Slice

Memory

Cube

Mapping

to

processor

mesh

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

31

 P_ Exist_wload[p] = w

End for

For each Pth Processor where p=1 to n

 T_Comp_Cycle= P_Exist_Wload[p] + New_JobWorkload
 Comp_Time[p]=T_comp_Cycle * (1/Freq[p])

End for

PIndex = Min (comp_Time)

Allocate(New_job , PIndex)

9. RESULTS AND DISCUSSIONS
Underlying results from simulation practices illustrates

controlled form of load distribution with consistency. The

ultimate objectivity concepts will be elaborated with in the

Illustrations. Simulation results are carried out periodically at

some time barrier point. Although results provides

approximately 90% stability control. But gives benefits over

load balancing which is performed after load assignment and

corresponds to the load adjustment policies. Further the

results exhibits their intended performance.

Table-1 Load Distribution at Time Barrier 18

Processor_Freq Workload Cycle

P-1 GHZ 1221

P-1.7 GHZ 3279

P-2.4 GHZ 4265

P-3.2 GHZ 9105

P-4.0GHZ 9571

P-4.8 GHZ 11323

P-5.6 GHZ 15188

P-6.2 GHZ 18081

P-7.0 GHZ 18058

Fig 2: Load Stability Graph-1

Table-2 Load Distribution at Time Barrier 25

Processor_Freq Workload Cycle

P-1 GHZ 2097

P-1.7 GHZ 4761

P-2.4 GHZ 5204

P-3.2 GHZ 9430

P-4.0GHZ 12625

P-4.8 GHZ 14056

P-5.6 GHZ 16492

P-6.2 GHZ 19040

P-7.0 GHZ 22750

Fig 3: Load Stability Graph-2

Table-3 Load Distribution at Time Barrier 35

Processor_Freq Workload Cycle

P-1 GHZ 3200

P-1.7 GHZ 4583

P-2.4 GHZ 7428

P-3.2 GHZ 9991

P-4.0GHZ 11469

P-4.8 GHZ 16336

P-5.6 GHZ 16968

P-6.2 GHZ 20823

P-7.0 GHZ 24973

Fig 4: Load Stability Graph-3

Table-4 Load Distribution at Time Barrier 45

Processor_Freq Workload Cycle

P-1 GHZ 3488

P-1.7 GHZ 6452

P-2.4 GHZ 8837

P-3.2 GHZ 11956

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

32

P-4.0GHZ 15479

P-4.8 GHZ 19889

P-5.6 GHZ 23211

P-6.2 GHZ 24837

P-7.0 GHZ 31021

Fig 5: Load Stability Graph-4

Table-5 Load Distribution at Time Barrier 85

Processor_Freq Workload Cycle

P-1 GHZ 4369

P-1.7 GHZ 8996

P-2.4 GHZ 12428

P-3.2 GHZ 16238

P-4.0GHZ 22872

P-4.8 GHZ 26420

P-5.6 GHZ 32343

P-6.2 GHZ 35061

P-7.0 GHZ 37342

Fig 6: Load Stability Graph-5

Table-6 Load Distribution at Time Barrier 110

Processor_Freq Workload Cycle

P-1 GHZ 6163

P-1.7 GHZ 10918

P-2.4 GHZ 15828

P-3.2 GHZ 19985

P-4.0GHZ 25325

P-4.8 GHZ 32724

P-5.6 GHZ 39643

P-6.2 GHZ 41675

P-7.0 GHZ 46119

Fig 7: Load Stability Graph-6

10. CONCLUSION & FUTURE WORK
Results concluded from simulation exhibits a great effort for

load stability, consistent distribution is performed throughout

the whole process. Examination above captured is based upon

different simulation execution scenarios. Illustration produced

with respect to the beginning, intermediate and after very long

processed time barrier. All of the graphs characterize

workload distribution in a steady state. Although not

completely balanced but stabled results up to large extent.

Simulation long duration execution will show more and more

consistent state, more balanced distribution will takes place.

Future work of this research further explores stress

management approaches with dynamic distribution and

workload characterization. More advance simulation practices

and theory will lead to the effective implementation structure.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

33

Fig 8: Simulated View (Memory mapped over 2-D Mesh)

11. REFERENCES

[1] Mendel R, 1995 Complete Computer System

Simulation:The SimOS approach IEEE Parallel and

Distributed Computing.

[2] Orleans, L.F IEEE 2007 Fair Load-Balancing on Parallel

System, International Conference on parallel processing

[3] Chhabra, A. and Singh, G. 2009 Simulated Performance

Analysis of Multiprocessor Dynamic Space-Sharing

Scheduling policy

[4] Bobrek A., Paul M. 2010 IEEE Stochastic Contention

for Single-Chip Heterogeneous Multiprocessor.

[5] Varbanescu, A. 2010. On the effective parallel

programming on multi-core processors. Universities

POLITEHNICA Bucuresti Romania Tavel, P. 2007

Modeling and Simulation Design. AK Peters Ltd.

[6] Kot, A. IEEE 2011 The Evaluation of an Effective Out-

of-Core Run-Time System in the Context of Parallel

Mesh Generation. Parallel and distributed symposium

IPDS.

[7] Marowka, A. J. 2011 Back to thin-core massively

parallel processors. Bar-llan University, Israel. IEEE

computer society.

[8] Chhabra, A. and Arora, A. 2011. Cluster based

performance evaluation of Run-length image

compression.

[9] Lokhande, M. , Atique, M. , 2012. Real-Time Scheduling

for Parallel Task Models on Multi-Core Processors-A

Critical review".

[10] Hager, G. and Wellein, G. 2012 Ingredients for good

parallel performance multi-core based systems spring

sim, Alexander university Orlando USA.

[11] Srinivasa Rao, P. and Govardhan, 2013 A. Dynamic

Load Balancing With Central Monitoring of Distributed

Job Processing System. Foundation of Computer Science

New York.

[12] Arora, A., Arora, A. 2013. Scheduling Simulations: An

Experimental Approach to Time-Sharing Multiprocessor

Scheduling Schemes.

IJCATM : www.ijcaonline.org

