
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

33

Design and Analysis of a New Hash Algorithm with Key

Integration

Richa Purohit (Arya)
Amity University Rajasthan,

Jaipur, India

Upendra Mishra, Ph. D

Amity University Rajasthan,
Jaipur, India

Abhay Bansal, Ph. D
Amity University Uttar Pradesh

Noida, India

ABSTRACT

Message Integrity and authenticity are the primary aim with the

ever increasing network protocols’ speed. Cryptographic Hash

Functions are main building block of message integrity. Many

types of hash functions are being used and developed. In this

paper, we propose and describe a new keyed hash function. This

newly designed function produces a hash code of 128 bits for an

arbitrary length input. The function also uses a key during

hashing, so any intruder that does not know key, cannot forge

the hash code, and, thus it fulfills the purpose of security,

authentication and integrity for a message in network. The paper

discusses the algorithm for the function design, its security

aspects and implementation details.

Keywords

Authentication, Integrity, Key, MAC, MD5, Security.

1. INTRODUCTION
Hash Function is a function that takes an input of arbitrary

length and produces output small but fixed length. Here, usually

always the input length is greater than output length. It is a

technique for message integrity and if keys are used in the

process, it also provides source authentication. Integrity is the

technique to transmit the message to receiver without any

modification or change in it. Source Authentication provides

protection for messages against impersonating and tempering by

an active deceiver. G.J. Simmons proposed a model for

authentication [1]. The model assumes three active participants-

(1) a sender, (ii) a receiver and (iii) an intruder. Here, the

intruder impersonates the sender and sends a fraudulent message

to the receiver or changes the original message sent by sender.

Use of keyed hash function may solve this issue to the vast

extent. As, the key is known to only sender and receiver, and it

is being used for authentication or hash generation, then without

knowing the actual key, the intruder or deceiver cannot create

the new message or change the original one. Thus only sender

and receiver may communication using this way. Use of key for

hash generation is known as message authentication code

(MAC). Moreover, the hash functions, that are used for the

purpose of cryptography, in network security, are referred to as

cryptographic hash functions specifically.

The recent attacks on MD4 [2], MD5 [3], SHA-0 [4] and SHA-1

[5] by Wang et.al have enforced research in designing new

cryptographic hash functions and cryptanalysis of existing ones.

[6]. This paper describes the design of a new hash function

algorithm with integration of a key. It serves the requirements of

message integrity and source authentication both. The proposed

algorithm offers features of simplicity as well as speed while

implementing on processors of different bits.

2. KEY CONSIDERATION FOR A

SECURED HASH FUNCTION
Cryptographic hash functions not only produce a fixed size

output from an arbitrarily long input but, for each different input,

the output should also be different. Any acceptable

cryptographic hash function should possess following three

properties [7]:

(a) Pre-Image Resistance- This is also known as one way

property. A message {0,1}* → {0,1}m is pre-image

resistant if from given hash value d ∈{0,1}* it is

impossible to find a message M ∈{0,1}* such that h(M) =

d i.e. from given hash value, it should be practically

impossible to find original message.

(b) Second Pre-Image Resistance- A hash function h: {0,1}*

→ {0,1}m is called second pre-image resistant if given a

message M1 ∈{0,1}* it is impossible to find another

message M2 ∈{0,1}* such that h(M1)= h(M2). i.e. there

should exist no two different messages for which final hash

value is same.

(c) Collision Resistance- a hash function h: {0,1}* → {0,1}m

is called collision resistant if it is impossible to find two

messages M1 and M2 ∈{0,1}* such that h(M1)= h(M2).

i.e. M1 and M2 colloid.

Here, in second pre-image resistance, either M1 or M2 is fixed,

but in collision resistance both M1 and M2 can be chosen

arbitrarily. Thus, a hash function that is collision resistant is

always second pre-image resistance also, but reverse is not

always true. Apart from these three properties, the hash function

should be computationally feasible. But for increased security,

sometimes speed of computation and execution is compromised.

3. DESIGN SPECIFICATIONS FOR

CRYPTOGRAPHIC HASH FUNCTIONS
Any cryptographic hash function should first of all withstand all

the different possible attacks on it, and at the same time, it

should also satisfy the requirements as stated in previous section

of the paper. As we have already discussed, the input length is

arbitrary ({0, 1}* leading to infinite number of inputs) and

output is of fixed length ({0,1}m leading to few finite number of

inputs). Thus due to mapping from infinite to finite length,

collision always exists in hash functions. Thus, we may modify

our definition of requirement from “it is impossible to find two

different messages that produce same hash value” to “it should

be very difficult to find two different messages that produce

same hash value”. This difficulty should be imposed by

underlying design algorithm. First of all, Yuval [8] discussed

method of finding collisions in hash functions using the Birthday

Paradox, which lead to the birthday attack. In this attack, a

collision is found with probability q2 / 2n after q queries to a

hash function whose output is of n-bit length [9]. Apart from

this, to make algorithm work fast, it must include simple

operations, such as addition, XOR, complements etc.

Furthermore, the security of designed algorithm needs to be

proved. Only assumptions of security may lead to failure. And it

should also be a modifiable structure so that it may be modified

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

34

and made secure against the attacks that will be discovered in

future.

4. RELATED WORK
Almost all cryptographic hash functions are based on Merkle-

Damgard construction [10]. He proposed few steps for a general

purpose hash function generation. Those were padding, append

length, initialization of buffer, processing of message in blocks.

We may depict those steps as follows:

M1 M2 - - - Mℓ 10* L

 Original Message Padding

Figure-1 Merkle-Damgard Padding Step

Algorithm- Pads (M)

 D = M+1+64 mod m

 M||1||od||<M>64 → M

 M → M1 - - - Mℓ

Algorithm MDF:

 M → M1 - - - Mℓ

 Y0 = IV

 for i = 1 to ℓ do

 yi = F(Mi, yi-1)

return Yℓ

Deploying a new hash function includes two constructs- a

compression function that operates on input strings of a fixed

length and then to use the cascade function to extend the

compression function to string of arbitrary length[11]. To

improve security aspect with hash function, a key may be used.

For this purpose two solutions were proposed. First is

Dedicated-Key setting [12], in which a publicly keyed

compression function h: {0,1}k × {0,1}n × {0,1}m → {0,1}n is

accessed by a family of hash functions Ch: Κ × M → {0,1}n ,

such that Ch members are indexed by different public keys ki ∈
Κ. This approach facilitates multiple instances of same hash

function with multiple keys. And if an attack is found on any

particular instance of hash function family, which is indexed by

a particular key, it still guarantees of safety of other instances of

hash function family, that are indexed by other keys. The only

drawback of this approach is need for extra input, in terms of

key, resulting in extra calculations and thus, more time, but for

increased level of security, this extra time can be afforded [13].

Another approach is Integrated –Key setting [8], which

overcomes an important drawback of dedicated-key function,

that is: not easily accommodation of key input by keyless

compression function. Here, we may take an approach of

processing the key only at last compression call, i.e. no need of

modifying the compression function, but last hash value will be

produced by application of a key too. BCM (Backward Chaining

Mode) [14] is a method of construction of hash families without

keying all compression function applications. EMD (Enveloped

Merkle Damgard) [15] is another same kind of technique. One

more variant RMX [16] combines a random salt with every

message block before sending it to compression function. This

technique makes it suitable for Digital Signature.

5. DESIGN OF PROPOSED ALGORITHM
Typically any hash function has two components: a compression

function and a construction. The compression function is a

mapping function that transforms a larger arbitrary-size input to

a smaller fixed-size output, and the construction is the method

by which the compression function is being repeatedly called to

process a variable-length message [17]. Traditionally hash

functions are being designed without any usage of key

component. However, many a few recent attacks have been

successfully implemented on these traditional popular hash

functions such as- SHA1, MD5 etc. [18, 5, 19]. As we discussed

in previous section, security of algorithm needs to be proved,

most of the newly designed algorithms are based on previously

established and accepted designs with few modifications. If

established design promises few security aspects, the new design

will automatically do so. In the same line, this algorithm is also

based on popular MD5 [20] design. The security notions are

assumed from MD5 construction. Furthermore, integration of

key in each round of operation on individual blocks gives more

strength to the proposed algorithm against many of the known

attacks on MD5.

Let us assume an input message M of length b bits. We will use

following notations in the description of algorithms:

+ : addition modulo 232

<<< S: circular left shift by s bit positions

∧ : bit-wise AND

∧: Bit-wise OR

⊕ : bit-wise XOR

¬ : bit-wise complement

The proposed algorithm may be divided into two phases-

preprocessing and hash calculation. The preprocessing phase is

very much similar to that of MD-5 and SHA-1, involving

padding and message length and further obtaining in m-blocks,

each block of 512 bit length. The hash calculation is done on

each 512 bit block in iterative manner in second phase of the

algorithm. This phase also makes use of two 64 bit keys. The

512 bits are then compressed into 128 bits and provided as input

for processing of next block of message. The output of

processing of last block of message is called as digest or hash

value. The compression function makes use of S-Box, XOR,

addition modulo 232 and look-up tables. The use of primitive

logical functions, which are implemented on hardware and

readily available look-up table help in increasing speed of hash

function processing. Following are the few steps of proposed

algorithm:

Step 1: Padding-

The original message is padded so that the length of message

after padding is congruent to 448 modulo 512 (length ≡ 448 mod

512) this purpose, first bit is always 1 and remaining bits are

always 0. This is a compulsory step so, 1 to 512 bits may be

appended, depending upon the length of original message.

F

F F

M1 M2 Mℓ

IV

Yℓ

Figure 2: The Merkle-Damgard Construction

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

35

Step 2: Append Message Length-

After padding, length of original message is appended to the

result of step 1. This length is in 64 bit representation. After this

step, the length of message is now in multiples of 512.

Step 3: Initialize Buffer-

The algorithm uses a 128 bit buffer (4 words A, B, C and D, 32

bit each), which is initialized with following hexadecimal

values:

A = 0 1 2 3 4 5 6 7

B = 8 9 A B C D E F

C = F E D C B A 9 8

D = 7 6 5 4 3 2 1 0

This step is done only for once, and then after receiving the

output from first block acts as buffer for second block and so on.

The final result of hashing is also stored in this.

Step 4: Initialize t-table-

A 64 element t-table is used in the algorithm, which is prepared

by following formula for each t value (ranging from 0 to 63):

Kt= ⌊2
32

 ∣ sin (t+1) ∣∣ where, t is in radians.

Step 5: Four Secondary Functions-

The algorithm also makes use of four secondary functions f1, f2,

f3 and f4, which produce 32 bit word from 32 bit input word.

The functions take 16 values from the previously discussed t-

table-

f1 (B,C,D) = (B∧C) ∨ (¬B ∧D) for t = 0 , . . . , 15

f2 (B,C,D) =(B∧D) ∨(C ∧ ¬D) for t = 16 , . . . , 31

f3 (B,C,D) =(B ⊕ C ⊕ D) for t = 32 , . . . , 47

f4 (B,C,D) =C ⊕ (B ∨ ¬D) for t = 48 , . . . , 63

Step 6: Order of words for processing:

The processing is done in 4 rounds. In each round, following

sequence of words is used for processing.

Round1: (j0,... , j15) =

 (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

Round2: (j16,... , j31) =

 (1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12)

Round1: (j32,... , j47) =

 (5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2)

Round1: (j48,... , j63) =

 (0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9)

Processing is done in blocks. Each block is of 512 bit in length.

A word is of 32 bits, thus, each block is made up of 16 words

(32 × 16 = 512).

Step 7: Shifting-

Shifting is done in following amounts:

Round1: (s0,...,s15) =

(7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22)

Round2: (s16,... , s31) =

 (5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20)

Round1: (s32,... , s47) =

(4,11,16,23, 4,11,16,23, 4,11,16,23, 4,11,16,23)

Round1: (s48,... , s63) =

(6,10,15,21, 6,10,15,21, 6,10,15,21, 6,10,15,21)

Step 8: Processing of message in sixteen 32-bit word (512 bit)

blocks-

(a) for I = 0 to n-1 do (here, n= number of blocks)

(b) divide Mi into words W0, . . . , W15 where W0 is left

most word.

(c) Initialization of 4 words ABCD. Here each word is of

32 bit, i.e. total length = 32 × 4 = 128 bit.

A’ = A

B’ = B

C’ = C

D’ = D (‘ represents complement)

(d) For t = 0 to 63 do

X= B+((A+ ft (B,C,D) + Wjt + Kt)<<< St

A=D

D=C

C=B

B=X

 /* end of loop in step d*/

(e) Increment of 4 words ABCD

A = A’ + A

B = B’ + B

C = C’ + C

D = D’ + D

(f) Make two 64 bit blocks Y and Z from ABCD

Y = BA

Z = CD

(g) Generate 64 bit key for internal keyed operation. Out

of these 64 bits, 8 are used as parity bits and rest 56

bits are used as effective key. Out of this one 56 bit
key, 18 keys are generated, each of 48 bit long.

(h) Operations on Y and Z blocks- Both Y and Z are

treated similarly. Each block is further subdivided into

two partitions- left half of Y block (Ly) and right half

of Y block (Ry), and left half of Z block (Lz) and right

half of Z block (Rz). Initially the right and left halves
(R and L) are permuted (swapped), i.e.

X = L

L = R

R = X

Now next L’ and R’ are produced as follows-

L’ = L

R’ = L (+) f (R n-1, Kn)

Here, (=) is addition modulo 232.

This process is repeated for 16 times, each time with a

different 48 bit key K.

Thus, Ln= Rn-1

 Rn = Ln-1 (+) f(Rn-1, Kn)

After sixteenth round of operation, again perform final

permutation (swapping of left and right half), thus,

X = Ln

Ln = Rn

Rn = X

(here X is a 32 bit block used for permutation only.)

Final X= X XOR K17

Final Y = Y XOR K18

The algorithm for function f(R.K) is defined as follows-

X= E(R), applying expansion permutation and returning 48-bit

data

X' = X ^ k, XOR with the round key

X" = s(X'), applying S boxes function and returning 32-bit data

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

36

R' = P(X"), applying the round permutation

(i) Combine final 32 bit values of X and Y. After

combining two 64 bit blocks, Y and Z respectively, we

get one 128 bit block. These 128 bits are again stored
in four 32 bit words ABCD.

/* end of loop in step a. */

(j) After processing last 512 bit block, the final hash

value is in ABCD, i.e. output is always 128 bit long

digest.

6. SECURITY OF PROPOSED DESIGN
Each individual component of the proposed algorithm has its

respective security criteria, that ensures us that the algorithm

is secure and collision free. We may give few arguments for

security of the algorithm:

 Mathematically secondary functions f1, f2, f3 and f4 are

non-invertible and non-linear.

 If individual bits of B,C and D are independent of each

other, then overall bits of f(B,C,D) are also independent of

each other. It guarantees one-way property.

 Each round access input words in different sequences.

 In fixed point attacks, the attacker tries to produce second

pre-image or collisions by insertion of extra blocks into the

input [21]. To restrict this attack, padding is done by 1 and

number of zeros in preprocessing phase.

 Each step takes input from the output of previous step.

Thus, changes done at any one place in any one of the

blocks, will surely affect the final output of algorithm.

Thus, no two different messages will result in same output

hence, proves second pre-image resistance.

 Algorithm works on basic functions, such as modular

arithmetic, XOR, addition, left shift, right shift, simple

permutation etc. Thus, it does not lead to increased time

requirement for processing.

 t-table and all 48 keys can be generated well in advance, so

function need not wait in between for table element

generation or key generation. This also helps in better

execution speed.

 Use of XOR makes sure that output depends on all bits,

rather than on neighboring ones.

7. KEY GENERATION AND USAGE
As we have discussed both Dedicated-Key setting and

Integrated-Key setting, both use fixed keys, i.e. once a key is

dedicated, it will be used for each iteration of compression

function. But, in the proposed solution, we will use 16 different

key combinations in an iteration of compression function,

individually on two word combinations Y and Z respectively.

Obviously this approach is more time consuming than keyless

one, and it also increases overhead for computing hash by at

least n * 2t, where n is total number of blocks and t is

computation cost for one block either Y or Z. If we run it in

parallel for both of these blocks simultaneously than

computation time will increase by only n * t. Now, the

efficiency lies in implementation of key function in hashing, and

as we have already discussed earlier, because of simpler

functions it has come out as a light weight function and will not

take much time or efforts for whole message length.

8. IMPLEMENTATION OF THE

PROPOSED ALGORITHM
The proposed algorithm can be implemented efficiently on

different platforms. It does not require large space (for tables,

codes, variables etc.) if large cache memory is used, then higher

performance and better throughput can be achieved. This new

hash function design uses the same building blocks as MD5 and

DES, so we can expect similar performance and space

characteristics. But compared to MD5, SHA-0, SHA-1 etc., it

provides more security by use of key. Thus, it is a better

message authentication code, which may take few seconds, more

than MD5 or SHA-1 but at the same time is stronger and less

vulnerable.

9. PERFORMANCE ANALYSIS OF

PROPOSED ALGORITHM
We have run and tested the function for a large number of

inputs. Each time a different key is generated and results in

different hash value even for the same input. We tested the

algorithm on number of inputs, where input is fixed to a definite

size (say 1000 Bytes). In such a case, the execution time is

almost same as shown in Figure-3, but each time key is not the

same. Different key is being generated even for the same input,

thus, it results in different hash value each time. (refer to figure-

6 for sample). Similarly, we run this function for different input

size (similar number of test cases for same input size between

1000 bytes to 50000 bytes), that is shown in Figure-4. It is found

that average execution time is proportional to input size (Figure-

5). But as this function is based on predefined MD5 algorithm,

there exist no method for getting original message from hash

value. And as we have used the concept of key for generating

hash value, there is no chance for adversary to compute hash

value for a new message and to send it to receiver for the

purpose of forging, because we assume that key is known to

receiver and sender only.

Figure-3: Execution time taken by proposed design for

different input test data (of 1000 byte each)

0.320
0.330
0.340
0.350
0.360

1 3 5 7 9 11 13 15 17 19

Execution time taken for input
size 1000 bytes

Time Taken
in Seconds

samp

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

37

Figure-4: Execution Time (in Seconds) taken by proposed

design for input test data of different sizes. (The X axis

shows different input samples of same size and Y axis shows

execution time for these inputs)

Figure-5: Average Execution Time (in Seconds) for inputs of

different size

Figure 6: Execution of 1000 input byte data (notice different

key and varying computation time for each individual input

of same size)

Software implementation of the algorithm was tested on system

with Intel based CPUs Pentium® -4 2.66 GHz with 1GB RAM.

The comparison is given in the following table for various hash

functions tested on 1 Mb data file. It shows that the algorithm is

the third fastest output after MD5 and RIPEMD. And we may

argue in support of lesser speed as compared to MD5 and

RIPEMD with the fact that it is using a key in the algorithm and

thus providing more security as compared to these algorithms.

Figure 7: Comparison of execution time taken by few

existing hash functions and proposed design

10. CONCLUSION
In this paper we proposed a new hash function algorithm that

includes a 64 bit key as an ingredient to the function. It produces

128 bit digest with a secure and simpler technique as compared

to many of the popular existing techniques. Use of key adds the

source integration facility while creating digest just for integrity

purpose. The function has been verified and found fast by using

existing tables for number of keys and S-Box.

11. REFERENCES
[1] Simmons GJ. Message Authentication with arbitration of

transmitter/receiver disputes. Advances in Cryptology-

Eurocrypt’87, Lecture Notes in Computer Science,

Springer-Verlag, Berlin; 1988; 304: 151-165.

[2] Wang X, Feng D, Lai X, Chen H and Yu X. Cryptanalysis of

the hash functions MD4 and RIPEMD. In Eurocrypt'05,

LNCS Springer-Verlag 2005; 3494:1-18.

 [3] Klima V. Finding MD5 Collisions on a notebook PC-using

multi message modifications. Cryptology ePrint Archive,

Report 2005. http://eprint.iacr.org/102.pdf.

[4] Wang X, Yu H, Yin Y. L. Efficient Collision Search Attacks

on SHA-0. In Crypto 2005; LNCS 3621, 1-16.

[5] Wang , Yin YL, Yu H. Finding Collisions in the Full SHA-1.

In Crypto'05, LNCS Springer-Verlag 2005; 3621:17-36.

[6] Shakeel N, Murtzaa G, Ikram N. MAYHAM- A New Hash

Function. International Journal of Network Security, 2011;

15(6): 417-425.

[7] Massierer M. Provably Secure Cryptographic Hash Function.

Ph.D. Thesis, School of Mathematics, The University of

New South Wales, submitted on December 2006.

[8] Mohammed S A. Al-Kuwari. Integrated-Key Cryptographic

Hash Function. Ph. Thesis submitted to University of Bath,

Department of Computer Science, September 2011.

[9] Bellare M, Tadayoshi. Hash Function Balance and its Impact

on Birthday Attacks. Eurocrypt '04, LNCS Springer-Verlag

2004 ; 3027: 401- 418..

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 3 5 7 9 11 13 15 17 19

1000 Bytes

10000 Bytes

20000 Bytes

30000 Bytes

40000 Bytes

50000 Bytes

0.000
0.200
0.400
0.600
0.800
1.000
1.200

time taken in
seconds

0

100

200

300

400

500

Time (ms)

http://eprint.iacr.org/102.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

38

[10] Damgard I. A Design Principle for Hash Functions.

Crypto’89, LNCS Springer Verlag 1989; 435 : 416-427, ,

1989.

[11] Walker J, Kounavis M, Gueron S, Graunke G. Recent

Contribution to Cryptographic Hash Function, Intel

Technology Journal 2009: 13 (2): 80-95.

[12] Bellare M, Ristenpart T. Hash Functions in Dedicated Key

Settings: Design Choices and MPP Transforms. ICALP’07,

LNCS Springer-Verlag 2007; 4596: 399-410.

[13] Rogaway P, Steinberger J. Constructing Cryptographic

Hash Function from Fixed-Key Blockciphers. Crypto’08.

LNCS Springer-Verlag 2008; 5157: 433-450.

[14] Endreeva E, Preneel B. A Three-Property-Secure Hash

Function. SAC ’09, LNCS Springer-Verlag 2009; 5381:

228-244.

[15] Bellare, Ristenpart T. Multiproperty- Preserving Hash

Domain Extension and the EMD Transform. Asiacrypt ’06,

LNCS Springer-Verlag 2006; 4284 : 299-314.

[16] Halevi S, Krawczyk H. The RMX transform and Digital

Signatures. 2nd NIST Hash Workshop, 2006.

[17] S. Al-Kuwari. Engineering Aspects of Hash Functions. In

International Conference on Security and Management

(SAM '11), 2011.

[18] Wang X, Feng D, Lai X, Yu H. Collisions for hash

functions MD4, MD5, HAVAL-128 and RIPEMD.

Cryptology ePrint Archive, Report 2004/1999, 2004.

[19] Wang X, Yu H.. How to Break MD5 and Other Hash

Functions. In Eurocrypt'05, LNCS Springer-Verlag 2005;

3494:19-35.

[20] Public-Key Cryptography Standards (PKCS): PKCS #7:

Cryptographic Message Syntax Standard: 3.6 Other

Cryptographic Techniques: 3.6.6 What are MD2, MD4, and

MD5?. RSA Laboratories. Retrieved 2012-10-03.

[21] Rompay B V. Analysis and Design of Cryptographic Hash

Function, MAC Algorithms and Block Ciphers. Thesis,

Katholieke University Leuven, 2004.

[22] Mornov I. Hash Functions: Theory, Attacks and

Applications. Microsoft Research, 2005.

[23] Hirose S, Park JH, Yun A. A Simple Variant of the Merkle-

Damgard Scheme with a Permutation. Asiacrypt '08, LNCS

Springer-Verlag 2008; 4833 : 113-129.

[24] Tirtea R. Cryptographic hash functions, trends and

challenges. Journal of Computer and System Sciences,

2009; 2: 62-65.

IJCATM : www.ijcaonline.org

