
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

22

Transport Layer Security Protocol for Intranet

Mohammed Adeeb

AbdulJabbar
Department of Computer

Science
University of Anbar

Ramadi, Iraq

Ali Makki Sagheer
Information System Department

College of Computer
University of Anbar

Ramadi, Iraq

Ayoob Abdulmonem
Abdulhameed

Department of Computer
Science

University of Anbar
Ramadi, Iraq

ABSTRACT

Key management is the hardest part of cryptography.

Designing secure cryptographic algorithms and protocols isn’t

easy. As the Intranet becomes popular, it is important to

consider the system security. This is because the data flowing

through the network is susceptible to be intercepted and

modified by a cracker or hacker. So, how to protect personal

privacy and preserve a safe online commerce? These are

challenges for security protocols. In this paper, a protocol has

been developed that depends on the Elliptic key cryptosystem

to provide a robust mechanism for key exchange. Also the

confidentiality is provided using AES and RC4 with random

selection. To satisfy message integrity, SHA1 technique is

considered.

General Terms

Security, Networks.

Keywords

Security protocol, Transport layer, Intranet, Key exchange.

1. INTRODUCTION
Security systems typically consist of a number of terminals

such as people, computers or other devices, which are

communicating through a variety of channels. Security

protocols represent the rules by which these communications

are governed. Protocols are typically designed in order to

avoid any attack or malicious act as possible as. Protection

against all possible threats is too expensive; therefore

protocols are designed under certain assumptions about the

attacks. They may be extremely simple or very complex.

A protocol that incorporates security objective is called a

security protocol. Security protocols shall particularly provide

security properties of distributed systems. Cryptographic

protocols are security protocols that use cryptographic

techniques such as encryption methods and digital signature

algorithms as basic components [1].

Network security protocols provide a mechanism to securely

communicate over public networks, such as the internet,

personal and business interactions, facilitating electronic

commerce and transactions that require some level of security.

The aim of a security protocol is to provide the required

combination of the general security services, such as

Authentication, Confidentiality, Integrity or Non-repudiation

[2].

Protocols that provide secure communication channel over an

untrusted network are considered one of the most important

parts of today's computing infrastructure. Examples of such

common protocols are SSL [3], TLS [4], Kerberos [5], IPSec

[6] and IEEE 802.11i [7] protocol suites. SSL and TLS are

widely used by web servers and internet browsers to secure

the transactions in applications like online banking and other

e-commerce applications. The IPSec protocol suite is widely

used to provide confidentiality and integrity services over the

IP layer and it is commonly used to secure corporate VPNs.

IEEE 802.11i offers data protection and message integrity for

wireless local area networks, while Kerberos is used for

network authentication.

2. RELATED WORKS
In 2003, Wooseok Ham proposed two secure and efficient E-

commerce protocols: mobile payment system and on-line

sealed-bid auction. These two protocols were built based on

number-theoretic hard problems such as DLP and used digital

signature and cryptographic hash function as major primitives

[8].

Gon Kim, in December 2004, introduced various types of

security protocols and addressed general attack types on them.

He proposed an ACG-C# tool that can be used to

automatically generate C# implementation code for the

security protocol verified with Casper and FDR (Failure and

Divergence Refinement). With this tool, the security

weakness of security protocols which may occur in the

implementation step are reduced [9].

Anupam Datta, in September 2005, conducted a study on

security analysis of network protocols for his PhD degree. The

study addressed two major problems associated with the

design and security analysis of network protocols that

implement cryptographic primitives. The first problem is

related to the secure composition of protocols, which means

that to prove properties of complex protocols, the goal is to

develop methods for combining independent proofs of their

parts. The second one pertains to the computational soundness

of the symbolic protocol analysis. This means that, at a high-

level, a logical method for protocol analysis must have an

associated soundness theorem. This should guarantee that a

completely symbolic analysis or proof has an interpretation of

the standard complexity-theoretic model of modern

cryptography [10].

In August 2012, Sukalp Bhople performed a number of

experiments to analyze the DoS vulnerabilities in SSL/TLS

Protocols. His experiment included a study of the SSL

protocols so as to find a number of SSL functionalities that

are likely to be the weak-link and can be used to perform the

DoS attacks. He also reviewed the implementation of Openssl

to investigate the existence of DoS attack vulnerabilities in the

implementation. The experimental results of the study showed

that the client authentication can create a significant

computational overhead on the server side [11].

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

23

Also, there are many examples in the literature of protocols

that have been widely used before it turns out that an attack

can be taken against the protocol, even though the protocol

received intensive analysis, and thought to be correct before

they were found to be flawn.

For instance, the Needham-Shroeder authenticated key

distribution protocol [12] which was found to allow an

intruder to pass an old compromised session key as a new one

to a legitimate party [13]; Burrows, Abadi, and Needham [14]

showed that, for a protocol in an early draft of the CCITT

X.509 draft standard [15], an intruder can cause an old session

key whether or not it had been compromised to be accepted as

a new one; Also, Pereira and Quisquater [16] showed that two

attacks on the Group Diffie-Hellman protocol [17] can be

taken; another example is an attack on the Internet Key

Exchange (IKE) protocol was independently found by Zhou

[18] and Ferguson and Schneier [19]. Kats and Shin [20]

addressed the case of attacks by malicious insiders for

authenticated key exchange protocols. Pereira and Quisquater

[21] suggested a systematic method to derive an attack against

any Authenticated Group Diffie-Hellman (A-GDH) type

protocol with at least four participants and exhibit protocols

with two and three participants.

3. NETWORK SECURITY PROTOCOLS
More and more human interaction these days are taking place

over networks instead of face-to-face. The rapid growth of

network technologies as both individual and business

communication channels have created a growing need for

security and privacy. This has led to several security protocols

and standards. Among these are: Secure Socket Layer (SSL)

and Transport Layer Security (TLS) Protocols; secure IP

(IPSec); Secure HTTP (S-HTTP), secure E-mail (PGP and

S/MIME), DNDSEC, SSH, and many others.

Prior to the development of these protocols, security attacks

have also been developing. Attacks can be directed against the

cryptographic algorithms used in protocols, against the

cryptographic techniques used to implement the algorithms

and protocols, or against the protocols themselves[22].

4. DESIGN OF THE PROTOCOL
Security protocols relay the most on key exchange

mechanisms because they provide the means to share secret

keys. Therefore, the elliptic curve algorithm has been chosen

to increase the level of security needed during the key

exchange process. The proposed protocol tends to secure

organizations transactions over a private network by

providing a secure and robust technique to exchange secret

keys safely. The protocol was implement using the windows

form application of the .Net environment and it was tested on

a group of 20 PCs connected through a wireless network. The

protocol performs two major operations to secure

transactions: Handshake and data transfer. These operations

are shown in more details below:

4.1 Handshake
The client and the server make several connections. They both

use the elliptic curve technique to exchange messages. When

the handshake process is completed, client and server should

both have a shared secret key of a predefined encryption

algorithm (AES or RS4). Figure 1 shows the handshake

protocol.

Fig 1: The Handshake Process

1- Client Hello: the client sends hello message that

includes a list of cipher suite supported by the client

and the requesting the public key of the server. The

client also generates a random number.

2- Server Hello: the server sends a response of the

client hello message that includes the server public

key. The server will choose a cipher suite from the

list sent by the client and generate a random

number.

3- Server Certificate: the server sends a certificate to

the client to verify his identity. This certificate is

followed by a server hello done to notify the client

with the completion of the Hello procedure.

4- Client creates another random number:

pre_master_secret (encrypted with the server’s

public key using an elliptic curve algorithm) to

produce a master_key which will then be used with

the two random numbers generated during the Hello

step to create the secret key and MAC key.

5- Server decrypts the message that contains the

pre_master_key sent by the client and generates the

same master key as the client.

6- Change cipher specification: sent by the server and

then the client copies the pending cipher spec. into

the current cipher spec. After that, the client sends

the finished message.

Client Server

Client hello message

Server hello message with server certificate

Server hello done

Client verify certificate

Generating the pre_master_key, secret key

and MAC key

Sever generate the same secret key and MAC

key from the sent pre_master_key

Change cipher spec, handshake finish

Application data

Key exchange

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

24

7- At this point, both are ready to transmit data

encrypted with the created secret key after sending a

handshake "finished" message to each other.

4.2 Data transfer
Both sides should have shared secret key of a specified cipher

suite. Now the client and server can communicate by sending

encrypted messages with the hash code of the message for

data integrity. Each message is encrypted using either AES or

RC4 based on the importance and application selection from

the previous step. The key length for these algorithms is

initially 512 and can be adjusted to become 1024 if a higher

level of security needed. The sender encrypts the message and

embeds the hash code along with the protocol header to

produce the complete packet. At the receiving site, the

receiver decodes the packet to get the cipher text and the

message hash code, and then compares the computed hash to

the received one to ensure that the message hasn't been

modified during the transmission.

5. RESULTS AND DISCUSSION
The problem is that the protocols tend to focus on either

security or performance. Many protocols have been proposed

to deal with the problems of security in both wired and

wireless networks. In this paper, a protocol was proposed that

deals with the following issues:

1- Authentication: establishing session keys between

communicating parties is essential when using

symmetric cryptographic primitives to protect

confidentiality and integrity. Currently most of the

applications uses RSA. A new promising alternative

is ECC. The following table shows a comparison

between the most used key exchange mechanism:

the RSA, and the new promising ECC technique.

2- Confidentiality: two algorithms have been

implemented for this purpose. The first is a block

cipher, the AES, with variable key length up to

1024. The second one is a stream cipher, the RC4,

which is used when high speed communication is on

the board.

AES and RC4 are two encryption ciphers that are

used in a variety of applications. A common

example where both ciphers are employed is in

wireless routers. The following Figure 2 shows the

performance of RC4 and AES algorithms in terms

of sharing the CPU load. RC4 tends To acquire a far

greater CPU time for its processing with a small

block size while the AES tends to consume much

less time. However, RC4 is operating using less

CPU processing time and reducing the work load on

the CPU when it encrypts large data blocks.

Fig 2: CPU time of RC4 and AES with varied key size

3- Integrity: for this purpose the SHA1 hashing

algorithm has been implemented to maximize

message integrity. In addition to integrity, speed is

also considered. Therefore, this algorithm was

chosen as it is considered one of the fastest. The

following figure shows the performance of some

hash functions.

Fig 3: Hash functions performance

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

25

Table 1. Comparison between RSA and ECC

 RSA ECC

Time of Execution

Key Gen.

! Nondeterministic

0,2 s - 14 min

1024-bit key: 2,8 s

0,054 s - 1,4

min

ECP, P+, 161-

bit key: 0,09 s

Encryption

0,02 s - 6,7 s

1024-bit key, e=65537:

0,025 s

0,05 s - 2,8 min

ECP, 163-bit

key, 2048 byte

data:

0,12 min

Decryption
0,03 s - 4,45 s

1024-bit key: 0,13 s

0,03 s - 1,55

min

ECP, 163-bit

key, 22 byte

data: 0,05 s

Size of Data Files

Common

Params &

Key Files

872 byte - 6870 byte

1024-bit key, e=65537:

1584

byte

1452 byte -

11328 byte

160-bit key, P-:

1890 byte

160-bit key, P+:

4684 byte

Encrypted

Data Files

64 byte - 512 byte

1024-bit key, 22 byte:

128

byte

73 byte - 595

byte

160-bit key, 22

byte: 83 byte

Maximal.

Size of

Encrypted

Data Files

! Strong limitation

22 byte - 470 byte

1024-bit key: 86 byte

3971 byte -

4045 byte

160-bit key:

4035 byte

Signature
64 byte - 512 byte

1024-bit key: 128 byte

30 byte - 102

byte

160-bit key: 42

byte

6. CONCLUSIONS
The problem is that the protocols tend to focus on either

security or performance. Many protocols have been proposed

to deal with the problems of security in both wired and

wireless networks. Therefore, the proposed protocol deals

with the following issues:

1- Authentication: establishing session keys between

communicating parties is essential when using

symmetric cryptographic primitives to protect

confidentiality and integrity. The elliptic curve

algorithm was used to provide this service with

128bit key length.

2- Confidentiality: two algorithms were implemented

for this purpose. The first is a block cipher, the

AES, with variable key length up to 1024. The

second one is a stream cipher, the RC4, which is

used when the high speed communication is on the

board.

3- Integrity: for this purpose, the SHA1 has been

implemented with some modifications that makes it

faster.

7. REFERENCES
[1] Amjad Gawanmeh. " On the Formal Verification of

Group Key Security Protocols", A Thesis, The

Department of Electrical and Computer Engineering,

Concordia University, 2008

[2] Benjamin Tobler. " A Structures Approach to Network

Security Protocol Implementation", a Dissertation,

Faculty of Science, University of Cape Town, 2005

[3] A. Freier, P. Karlton, and P. Kocher. The SSL protocol

version 3.0. draft-ietf-tls-ssl-version3-00.txt, November

18 1996.

[4] T. Dierks and C. Allen. The Tls Protocol Version 1.0,

1999. RFC 2246.

[5] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The

Kerberos Network Authentication Service (v5), 2005.

RFC 4120.

[6] S. Kent and R. Atkinson. "Security architecture for the

internet protocol", 1998. RFC 2401.

[7] IEEE P802.11i/D10.0. Medium Access Control (MAC)

security enhancements, amendment 6 to IEEE Standard

for local and metropolitan area networks part 11:

Wireless Medium Access Control (MAC) and Physical

Layer (PHY) specifications., April 2004.

[8] Wooseok Ham. " Design of Secure and Efficient E-

commerce Protocols Using Cryptographic Primitives", A

Thesis, School of Engineering, Information and

Communications University, 2003.

[9] Gon Kim. " Formal Analysis and Automatic Code

Generation of Security Protocols", A Thesis, Department

of Computer Science and Engineering, Korea University,

December 2004.

[10] Anupam Datta. "Security Analysis of Network Protocols:

Compositional Reasoning and Complexity-Theoretic

Foundation", A Dissertation, Department of computer

science, Stanford university, September 2005.

[11] Sukalp Bhople. Server based DoS vulnerabilities in

SSL/TLS Protocols, A Thesis, Department of

Mathematics and Computer Science, Eindhoven

University of Technology, August 2012.

[12] R. Needham and M. Schroeder. "Using Encryption for

Authentication in Large Networks of Computers".

Communications of the ACM, 21(12), December 1978.

[13] G. Lowe. "Breaking and Fixing the Needham-Schroeder

Public-Key Protocol using FDR. In Tools and

Algorithms for the Construction and Analysis of

Systems", volume 1055 of Lecture Notes in Computer

Science, pages 147–166. Springer-Verlag, March 1996.

[14] M. Burrows, M. Abadi, and R. Needham. A Logic of

Authentication. ACM Transactions on Computer

Systems, 8(1):18–36, 1990.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No1, November 2013

26

[15] CCITT. CCITT Draft Recommendation X.509. The

Directory Authentication Framework, version 7,

November 1987.

[16] O. Pereira and J. Quisquater. Some Attacks upon

Authenticated Group Key Agreement Protocols. IOS

Journal of Computer Security, 11(4):555–580, 2004.

[17] G. Ateniese, M. Steiner, and G. Tsudik. "New Multiparty

Authentication Services and Agreement Protocols". IEEE

Journal of Selected Areas in Communications,

18(4):628–639, 2000.

[18] J. Zhou. "Fixing A Security Flaw in IKE Protocols".

IEEE Electronics Letters, 35(13):1072–1073, 1999.

[19] N. Ferguson and B. Schneier. "A Cryptographic

Evaluation of IPSec", Technical report, Counterpane

Internet Security Inc., 2000.

[20] J. Katz and J. Shin. "Modeling Insider Attacks on Group

Key-Exchange Protocols", In ACM Conference on

Computer and Communications Security, pages 180–

189. ACM Press, 2005.

[21] O. Pereira and J. Quisquater. "On the Impossibility of

Building Secure Cliques-Type Authenticated Group Key

Agreement Protocols", Journal of Computer Security,

14(2):197–246, 2006.

[22] Bruce Schneier. "Applied Cryptography: Protocols,

Algorithms, and Source Code in C", Second Edition.

IJCATM : www.ijcaonline.org

