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ABSTRACT
This paper deals with the application of two computer based model
predictive control algorithms to a complex process. This process
is a fluid catalytic cracking unit (FCC). The FCC model used for
this study is inspired from Lee and Skogestad. The algorithms
used are quadratic dynamic matrix control(QDMC) and observer
base model predictive control(OBMPC). A disturbance rejection
is tested by introducing some change in the feed rate. Despite the
important nonlinearities of the FCC, The two linear model predic-
tive control algorithms are able to maintain a smooth multivari-
able control of the plant, while taking into account the constraints.
But, OBMPC algorthm is more efficient in following the set
points even in the present of disturbances than QDMC algorithm.
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1. INTRODUCTION
Fluid catalytic cracking (FCC) is one of the most important pro-
cesses in a refinery, in particular due to its economic importance.
This latter comes from the fact that fluid catalytic cracking is used
to crack heavy atmospheric residues and vacuum distillate into
lighter molecules that yield more valuable products such as gaso-
line, kerosene, light gas oil, . . . The FCC unit is a complex pro-
cess [1] due to the composition of the feed, complex chemical re-
actions and dynamic mass and heat interactions between its main
units, namely riser, separator and regenerator. The complex nature
of this process, the environmental regulation and the gains that can
come from an improvement in the optimal control of this process
make it a challenge to science and engineering in the field of au-
tomation. The control of this process and the necessity to operate
the plant close to constraints [20] [17] in order to maximize the
gains call for an advanced control tool. Model predictive control
(MPC) is presently used due to its capacity to easily handle mul-

tivariable processes while also taking into account hard and soft
constraints with respect to the manipulated variables, their moves
and the controlled variables. Furthermore, many variables in FCC
processes must be followed such as the concentration of coke on
the catalyst surface in the regenerator. FCC control has been done
using different approaches [12, 18, 19, 23]. In practice, FCC units
are frequently regulated by means of PID controllers based on the
knowledge and experience of operators in the refinery.
In this work, two Model Predictive Control (MPC) algorithms of
the FCC using two manipulated inputs and two controlled outputs
are addressed [10]. This paper is organized as follows, Section 2 is
related to the process description, Section 3 describes the model of
FCC. Section 4 deals with model predictive control principles. Sec-
tion 6 deals with the control of the FCC unit with the discussions
of the simulation results.
Finally, the conclusions of the paper are presented in Section 7.

2. DESCRIPTION OF A MODERN FCC PROCESS
A modern FCC process mainly consists of three units (Figure 1).
The cracking reactions of the hydrocarbon feed take place in the
riser while the catalyst is reactivated in the regenerator by combus-
tion of the coke deposited on the catalyst in the riser reactor.
The preheated feed is injected in the bottom part of the riser with
a small quantity of vapor. The feed is vaporized at the contact of
the hot catalyst. The hydrocarbon vapors undergo an endothermic
reaction while rising to the top of the riser.
The temperature at the top of the riser is between 750 and 820K.
The disengagement part of the reactor is used to separate the cat-
alyst from the vapors, then the vapors enter the main fractiona-
tor. The spent catalyst is separated from the vapors by cyclones
and flows in the extraction part where the remaining hydrocarbons
on its surface are removed by stripping steam. The catalyst flows
through a transport line to the regenerator.
In the regenerator, the catalyst is reactivated by burning the de-
posited coke using air entering at the bottom of the regenerator.
This partial or total exothermic combustion reaction reactivates the
catalyst and maintains the bed temperature between 950-980K for
future gasoil cracking. The regenerated catalyst flows continuously
in the riser through another circuit and the heat transported by the
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catalyst is used to compensate the endothermic reactions in the
riser.
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Fig. 1. Schematic diagram of FCC unit

3. MATHEMATICAL MODEL OF THE FCC
Many more or less detailed models are available in the literature
for different purposes. The FCC model presently used is adapted
from [13] with slight modifications by [3] and [11]. This model de-
scribes the main dynamical aspects of an FCC unit for a feedback
control [2] and is adequate for predictive control because the main
objectives of an FCC model are an acceptable description of the re-
generator dynamics and also an acceptable description of gasoline
yield [15].

3.1 Riser model
The riser is considered as plug flow reactor. The residence time
of catalyst and feed in the riser is supposed to be a few seconds.
Consequently, the riser is only described by spatial equations and
considered as an algebraic system. The kinetic model makes use of
a three lump scheme [24] to describe the cracking in the riser [4].
In the riser model, a dimensionless spatial variable is used, i.e. at
bottom of riser z = 0 and at top of riser z = 1 corresponds to
actual height L. The feed temperature Tris(z = 0) at the entry of
the riser results from the heat balance

Fcat,reg Cpcat(Treg − Tris) = Ffeed[Cp,ol(Tboil − Tfeed)+

∆Hvap + Cp,og(Tris(0)− Tboil)] (1)

Mass balance of gas oil in the riser

dygo
dz

= −k1 y
2
go Cowr φ tc (2)

where k1 is the kinetic constant for gasoil consumption,Cowr is the
catalyst to oil ratio, ygo is the mass fraction of gasoil in the riser, tc
is the residence time of the catalyst in the riser φ is the deactivation
factor of the catalyst due to coke deposition
Mass balance of gasoline

dyg
dz

= (α2 k1 y
2
go − k3 yg)Cowr φ tc (3)

Energy Balance in the riser

dTris

dz
=

∆HcrackFfeed

(Fcat,regCpcat + FfeedCpo + λFfeedCp,steam)

dygo
dz

(4)
where ∆Hcrack is the heat of reaction and Ffeed and Fcat,reg are
the flow rates of the gasoil and catalyst respectively. The kinetic
constants follow Arrhenius law. The deactivation of the catalyst by
the coke deposition is given as

φ = (1−mCcoke,reg) exp(−α tc z Cowr) (5)

The produced coke concentration is empirically given by

Ccoke,prod = kc

√
tc
CN

rc

exp(
−Eacf

RTris,1

) (6)

where Tris,1 is the temperature at the riser outlet. The amount of
concentration of coke leaving the riser is

Ccoke,ris,1 = Ccoke,reg + Ccoke,prod (7)

3.2 Separator model
The residence time of catalyst in the separator is frequently of the
order of one minute. This separator can be modelled as a perfectly
mixed tank.
Mass balance of coke on catalyst

dCcoke,sep

dt
=
Fcat,reg (Ccoke,ris,1 − Ccoke,sep)

mcat,sep

(8)

Energy balance

dTsep

dt
=
Cp,cat Fcat,reg (Tris,1 − Tsep)

mcat,sep Cp,cat

(9)

3.3 Regenerator model
The regenerator model is inspired from Errazu [8]. It is made of
a dense bed and a dilute zone. The regenerator is a fluidized bed
where air bubbles cross the dense bed formed by the catalyst. This
bed is considered as a CSTR. The temperature and amount of coke
are considered uniform throughout the dense bed as well as the
oxygen concentration. An important feature of the FCC is that the
reactions in the riser are mainly endothermic whereas those in the
regenerator are exothermic, thus the heat released in the regenerator
is used by the riser by means of the transported catalyst. As the
process involves a recycle, the behavior of a FCC is difficult to
simulate correctly in steady state and transient state.
Mass Balance of coke on the catalyst

dCcoke,reg

dt
=

(Fcat,spent Ccoke,sep − Fcat,reg Ccoke,reg)− rcb
mcat,reg

(10)
Energy balance in the regenerator

dTreg

dt
=

1

(mcat,reg Cp,cat)
[(Tsep Fcat,spent Cp,cat+

Tair Fair,reg Cp,air − Treg (Fcat,reg Cp,cat + Fair,reg Cp,air)

−∆Hcb
rcb

Mw,coke

]

(11)
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The kinetics of coke combustion is given by

rcb = kcb exp(− Eacb

RTreg

)xO2 Ccoke,regmcat,reg (12)

Mass balance of oxygen in the dense bed

dxO2

dt
=

1

mair,reg

[Fair,reg/Mw,air (xo2,in − xo2,reg)

− ((1 + σ)nCH + 2 + 4σ)/(4 (1 + σ)) rcb/Mw,coke)] (13)

A complete description can be found in [11]. The model is simu-
lated in Fortran90.

4. MODEL PREDICTIVE CONTROL
4.1 Quadratic dynamic matrix control
Model Predictive Control (MPC) is a generic name for a class of
multivariable algorithms that utilize a process model to predict the
future behavior of the process and find corrective control moves re-
quired to drive the predicted outputs as close as possible to the de-
sired trajectories while handling constraints. Historically, MPC was
first implemented by [21], then Dynamic Matrix Control (DMC)
was introduced [7]. Nowadays, many algorithms are used for model
predictive implementation. The difference between them comes
from the model used to represent the process, either step response,
impulse response, or state space form. In the present work, step
responses were used and the corresponding algorithms are briefly
described. DMC [7] minimizes a quadratic criterion without taking
into account the constraints so that an analytical solution results for
the control vector. Quadratic dynamic matrix control (QDMC) [9]
minimizes a more complete criterion in presence of linear con-
straints. In the present study, QDMC was used with constraints on
the manipulated inputs and their variations.
For explanation purposes, DMC is first presented in a SISO frame-
work [5,6]. A quadratic criterion taking into account the difference
between the estimated output and the reference on the prediction
horizon Hp is given by

J =

Hp∑
i=1

(ŷ(k + i|k)− yref (k + i))2 (14)

This criterion is minimized with respect to the variation of ∆u(k)
of the input considered over a control horizon Hc.
The prediction of the ouput based on past and future inputs is

ŷ(k + l|k) =

yss +

Hm−1∑
i=l+1

hi∆u(k + l − i) + hM (u(k + l −M)− uss)︸ ︷︷ ︸
past inputs effect

+

l∑
i=1

hi∆u(k + l − i)︸ ︷︷ ︸
future inputs effect

+ d̂(k + l|k)︸ ︷︷ ︸
predicted disturbances

(15)

where hM is the model horizon which must be larger than or equal
to the prediction horizon. The output prediction based on past in-

puts is defined as

y∗(k + l|k) = yss +

M∑
i=l+1

∆u(k + l − i) (16)

The vector of output predictions ŷ(k + l|k) is related to the vector
of ouput predictions y∗(k+ l|k) based on past inputs, to the vector
of inputs ∆u(k) and to the vector of predicted disturbances as ŷ(k + 1|k)

...
ŷ(k +Hp|k)

 =

 y∗(k + 1|k)
...

y∗(k +Hp|k)

+

A

 ∆u(k)
...

∆u(k +Hc − 1)

+

 d̂(k + 1|k)
...

d̂(k +Hp|k)

 (17)

where A is the dynamic matrix made of step response coefficients
hi of the plant outputs to the manipulated inputs.
For a multivariable system of dimension nu × ny the dynamic
matrix is simply composed of submatrices as

A =

 A11 . . . A1nu

...
...

Any1 . . . Anynu

 (18)

According to past equations, the vector of future input moves is
given as

∆u(k) = [∆u1(k)T . . .∆unu(k)T ]T (19)

which is the least-squares solution of the following linear system yref (k + 1)− y∗(k + 1|k)− d̂(k|k) = e(k + 1)
...

yref (k +Hp)− y∗(k +Hp|k − d̂(k|k) = e(k +Hp)

 =

e(k + 1) = A∆u(k)

(20)

In the absence of constraints, the least-squares solution is

∆u(k) = (AT A)−1AT e(k + 1) (21)

In order to take into account the constraints, quadratic dynamic
matrix control (QDMC) is used instead of DMC. Furthermore, a
modification of the quadratic criterion as the sum of a performance
term and an energy term is introduced in QDMC. Hard constraints
affecting the manipulated variables and their moves are taken into
account

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax
(22)

These constraints can be gathered as a system of linear inequalities
incorporating the dynamic information concerning the projection
of constraints

B ∆u(k) ≤ c(k + 1) (23)

In the presence of constraints (22), the QDMC problem can be for-
mulated as quadratic programming such as

min
∆u(k)

[
1

2
∆u(k)TH∆u(k)− g(k + 1)T ∆u(k)

]
(24)
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subject to constraints (22). H is the Hessian matrix which is equal
to

H = ATΓTΓA + ΛTΛ (25)

where A is the dynamic matrix, Γ is a diagonal matrix of weights
for the outputs, Λ is a diagonal matrix of weights for the inputs, g
is the gradient vector which is equal to

g(k + 1) = ATΓTΓe(k + 1) (26)

This quadratic programming problem can be solved efficiently by
available subroutines [22]. The present MPC code has been devel-
oped in Fortran90 and is able to take into account any number of in-
puts and outputs, any type of constraints, with respect to the inputs,
their moves or the outputs [5, 6]. The version used in this article is
based on step responses.

4.2 Observer based model predictive control
We will present for explanation purpose, the main equations related
to OBMPC [5].
OBMPC was developed by [14] and expanded by [16]. In the case
of a multivariable system with nu inputs and ny outputs the matrix
Si is defined as

Si =


h1,1,i h1,2,i . . . h1,nu,i

h2,1,i h2,2,i . . . h2,nu,i

...
... . . .

...
hny,1,i hny,2,i . . . hny,nu,i

 (27)

where hk,l,i is the coefficient at the instant i of the output k corre-
sponding to the step input l.
At time k, the inputs to be determined are u(k) and the future con-
trol.
In the absence of disturbance, the state space form corresponding
to the step response can written as

Y (k) = ΦY (k − 1) + S∆u(k − 1) (28)
y∗(k|k) = ΨY (k)

The future outputs are predicted by means of a state observer such
as the optimal Kalman filter with the gain matrix K.
The objective function to be minimyse is

J = ‖Γ(Y (k + 1|k)−R(k + 1|k)‖2 + ‖Λ∆U(k|k)‖2 (29)

with

∆U(k|k) = ΦY (k − 1) + S∆u(k − 1) (30)

Y (k + 1|k) = [yf (k + 1|k)T . . . yf (k +Hp|k)T ]T

R(k + 1|k) = [r(k + 1|k)T . . . r(k +Hp|k)T ]T

where R is the reference trajectory.
In the absence of constraints, the leasquare solution of OBMPC is
expressed as

∆U(k|k) = [ST
Hp

ΓT ΓSHp+ΛT Λ]−1ST
Hp

ΓT Γ[R(k+1|k)−ΦHp Ŷ (k|k)]
(31)

Only ∆u(k|k) the first component of ∆U(k|k) is implemented

4.2.1 Kalman Filter. The observer used for the OBMPC control
is a descret descret Kalman filter. We will briefly describe it algo-
rithm. Let consider a dynamic sctochastic system :

xk+1 = Akxk +Bkuk +Gkwk

yk = Ckxk + vk
(32)

where wk et vk are white noise, with known covariance Qk et vk:

E[wkw
T
j ] = Qkδkj

E[vkv
T
j ] = Rkδkj

E[vkw
T
j ] = 0

(33)

The Kalman filter can be used to calculate the prediction according
to the equations:

x̂k+1 = Akx̂k +Bkuk +Kk[yk − Ckx̂k]

ŷk = Ckx̂k
(34)

where Kk is the Kalman gain matrix, yk is the real measure carried
out at time k. Kalman filter is implemented by going trough two
steps
The prediction step

x̂k+1|k = Akx̂k|k +Bkuk

Pk+1|k = AkPk|kAkT +GkQkGk

(35)

The correction step

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk + 1− Ck+1x̂k+1|k)

Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1T +Kk+1Rk+1Kk+1T
(36)

The optimal gain is

Kk = Pk|kCkTRk − 1 (37)

5. IDENTIFICATION
In order to identify the FCC process, step responses are used. The
coefficients of the step responses are used to build the dynamic
matrix. Step inputs are successively applied to the FCC model and
the outputs are sampled with a sampling period of 250s in order to
obtain the step response coefficients. The model horizon is equal to
60.
The relationship between each input i and output j at instant k is
given by

hij,k =

(
∆yj
∆ui

)
k

(38)

The identified step responses are represented in Figures 2, 3. The
indicated normalized time is the number of sampling periods. The
manipulated inputs are respectively the regenerated catalyst flow
rate u1 and the air flow rate to the regenerator dense bed u2. The
controlled outputs are the temperature at the top of the riser y1 and
the regenerator temperature y2. The step responses to u1 show an
algebraic effect followed by an inverse response. The algebraic ef-
fect is due to the immediate influence of the catalyst flow rate vari-
ation as the dynamic influence is neglected in the riser. The inverse
response is more complex, the temperature first decreases due to
the endothermic reactions in the riser, then it increases due to the
exothermic reactions in the regenerator, but with a larger time con-
stant in this latter. The influence of u2 is simpler and the responses
are close to those of first-order transfer function responses.
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Fig. 2. Coefficients of the step responses between u1 and y1 (left) and
between u1 and y2 (right)
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Fig. 3. Coefficients of the step responses between u2 and y1 (left) and
between u2 and y2 (right)

6. CONTROL OF THE FCC PROCESS
As the process is multivariable and as imposed constraints on the
manipulated variables are considered, the QDMC and OBMPC al-
gorithms are used. The controlled outputs are the riser temperature
and the regenerator temperature. The manipulated inputs are the air
flow rate to the regenerator and the regenerated catalyst flow rate.

6.1 Simulation results and discussions
The simulations have been carried out with the conditions 6.1 As
well as the MPC code written in Fortran90 [6], the process code is
also written in Fortran90. Constraints are imposed on the manipu-
lated variables (Table 6.1). The set points are known in advance,
i.e. at initial time t = 0, all the set points profiles are already
known. The set points were chosen desynchronized to emphasize
the coupling effects. Two cases have been studied (Table 6.1). The
simulations results (Figures 4(a), 4(b), 5(a), 5(b)) show that, de-
spite changes in the set points, the outputs follow their respective
set points with small deviations, lower than 1 or 2K at the most,
while the manipulated variables remain within the constraints.
The results (Figures 8(a), 8(b), 9(a), 9(b)) show the performance
of the controller even when the weights on the outputs are signif-
icantly reduced. The manipulated inputs are still within the con-
straints and the output still follow the set points in an acceptable
manner.
The coupling effects between inputs and outputs are visible on Fig-
ures 4(a),5(b) and on Figures 4(b),5(a) , but for example output
1 rapidly joins its stable set point after some transient behavior
whereas output 2 tracks its new set point. Thus, the Quadratic Dy-
namic Matrix controller used with the identification through step

Table 1. Simulations conditions
Parameter QDMC OBMPC
Platform PC Linux Ubuntu PC linux ubuntu
Software Fortran90 Fortran90

Execution time 10mn 10mn

Table 2. MPC parameters
Parameter Case 1 Case 2

Sampling period 250s 250s
Prediction horizon 63 63

Control horizon 3 3
Min-Max constraints on input 1 [269 , 325] [269 , 325]
Min-Max constraints on input 2 [25 , 52] [25 , 52]

Γ diagonal values 8 8 4 4
Λ diagonal values 1 1 1 1
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response coefficients is able to maintain the complex process out-
puts close to their respective variable sets points with very accept-
able deviations.
The influence of the weights in the criterion has been studied (Table
6.1). They were introduced to give more importance to the perfor-
mance part than to the energy part of the criterion. The consequence
is that the tracking is very correct 5(a),5(b)
but that at the same time some rather steep variations of the inputs
are imposed, such as clearly shown at set point changes. When the
weights Γ are decreased,9(a),9(b)
the tracking is a little worse with larger deviations at set point
changes, but it remains acceptable and the inputs are more smooth.
Some important variables in the regenerator and separator such
as the concentrations of coke on the catalyst in the separator and
in the regenerator, the mole fraction of oxygen in the regenerator
dense bed are shown in Figures 10, 11, 12. From Figures 10 and

11, it appears that the coke on catalyst is not completly burnt, in
agreement with the hypothesis that the regenerator was assumed in
partial combustion mode. The evolution of the coke content at the
top of the riser is similar to that in the separator, and follows the
same tendency as the coke in the regenerator, i.e. when the regener-
ator temperature increases, the coke content decreases and when the
riser temperature increases, the coke content increases. The quan-
tity of coke decreases with the increase of the flow rate of air in the
regenerator.
Due to the fact that gasoline yield is strongly dependent on the tem-
perature in the riser and the catalyst activity is also dependent on
the temperature in the regenerator, the overall functioning of the
FCC can be significantly improved by this tool.

0 2 4 6 8 10

x 10
4

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
−3

Time (s)

Co
ke

, re
g

Fig. 10. Mass fraction of coke on catalyst in the regenerator

0 1 2 3 4 5 6 7 8 9 10

x 10
4

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4
x 10

−3

Time (s)

Ma
ss 

fra
ctio

n

Fig. 11. Mass fraction of coke on catalyst in the separator

0 2 4 6 8 10

x 10
4

5

5.5

6

6.5

x 10
−3

Time (s)

Ox
yg

en
, re

g

Fig. 12. Oxygen mole fraction in the regenerator

The influence of several disturbances can be studied. A first distur-
bance is introduced by a 5% increase of the feed flow rate at the
bottom of the riser after 40000s

The simulation results (Figures 13(b) 13(a)) show a good rejection
of disturbance by the controller (Figures 14(a) 14(b)) show that the
manipulated variables still remain within the constraints.
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Fig. 13. Controlled variables in the case of feed disturbance with QDMC
(5% increase of the feed flow rate at t=40000s )
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Fig. 14. Manipulated inputs in the case of feed disturbance with QDMC
(5% increase of the feed flow rate at t=40000s )

0 2 4 6 8 10 12

x 10
4

772

774

776

778

780

782

784

786

Time (s)

y(
K

),
ys

p

 

 
Temperature
fontsize

(a) Temperature at the top of the
riser y1 (K) in the case of feed dis-
turbance

0 2 4 6 8 10 12

x 10
4

964

966

968

970

972

974

976

978

980

982

Time (s)

y(
K

),
ys

p

 

 
Temperature
fontsize

(b) Temperature in the regenerator
y2 (K) in the case of feed distur-
bance

Fig. 15. Controlled variables in the case of feed disturbance with OBMPC
(5% increase of the feed flow rate at t=40000s )

7. CONCLUSION
In this work, Quadratic Dynamic Matrix Control and observer
based model predictive control algorithms are implemented to con-
trol the FCC process with the regenerated catalyst flow rate and
the flow rate of air to the regenerator as manipulated variables. The
simulations results show a very good tracking of the set points de-
spite set points changes and disturbances by both algorithms. But
, however, We notice a superior tracking of the set points by the
observer based model predictive control algorithm in the presence
of disturbances.
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Fig. 16. Manipulated inputs in the case of feed disturbance with OBMPC
(5% increase of the feed flow rate at t=40000s )

Nomenclature
Γ diagonal matrix of weights for the outputs
Λ diagonal matrix of weights for the inputs
λ mass fraction of vapor in the feed
A dynamic matrix
φ catalyst deactivation
σ molecular ratio of CO2 to CO in the dense bed of the regenera-

tor
Ccoke,reg mass fraction of coke in the regenerator
Cpcat heat capacity of catalyst
CN

rc weight fraction of coke on regenerated catalyst
Ffeed mass flow rate of feed (kg.s−1)

Fair,reg,mas mass flow rate of air to regenerator (kg.s−1)

Fcat,reg mass flowrate of catalyst (kg.s−1)
Hc control horizon
Hp prediction horizon
ki kinetic constant
rcb rate of coke combustion (kg.s−1)

Tair temperaure of air to regenerator (K)
Treg temperature in the regenerator dense bed (K)
Tris temperature in the riser (K)
Tsep temperature in the separator (K)
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