
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

1

Communication Optimization for Multi GPU Implementation of

Smith-Waterman Algorithm

Sampath Kumar
NVSSP

Department of Mathematics and Computer
Science

Sri Sathya Sai Institute of Higher Learning
Prasanthi Nilayam, A.P.-515134, India

P. K. Baruah
Department of Mathematics and Computer

Science
Sri Sathya Sai Institute of Higher Learning

Prasanthi Nilayam, A.P.-515134, India

ABSTRACT

GPU parallelism for real applications can achieve enormous

performance gain. CPU-GPU Communication is one of the

major bottlenecks that limit this performance gain. Among

several libraries developed so far to optimize this

communication, DyManD (Dynamically Managed Data)

provides better communication optimization strategies and

achieves better performance on a single GPU. Smith-

Waterman is a well known algorithm in the field of

computational biology for finding functional similarities in a

protein database. CUDA implementation of this algorithm

speeds up the process of sequence matching in the protein

database. When input databases are large, multi-GPU

implementation gives better performance than single GPU

implementation. Since this algorithm acts upon large

databases, there is need for optimizing CPU-GPU

communication. DyManD implementation provides efficient

data management and communication optimization only for

single GPU. For providing communication optimization on

multiple GPUs, an approach of combining DyManD with a

multi-threaded framework called GPUWorker was proposed.

Our contribution in this work is to propose an optimized

CUDA implementation of this algorithm on multiple GPUs

i.e., GPUWorker-DyManD which reduces the communication

overhead between CPU and multiple GPUs. This

implementation combines DyManD functionality with

GPUWorker for optimizing communication. The performance

gain obtained for the GPUWorker-DyManD implementation

of this algorithm over default multi-GPU implementation is

3.5x.

Keywords

DyManD, GPUWorker, Data Mangement, Communication

Optimization.

1. INTRODUCTION
GPUs are capable of accelerating real time applications and

can achieve performance gain of hundreds of GFLOPS. Real

applications, rewritten to take advantage of GPUs, regularly

achieve speedups between 4 and 100x [1]. But CPU-GPU

communication is one of the bottlenecks that limit the

performance gain that can be achieved by these applications.
As a part of communication, manually managing data

transfers between CPU and GPU is complex and error-prone.

And cyclic communication patterns between CPU and GPU

increases the execution latency and reduces the parallelism.

So when applications are implemented with efficient data

management and optimized communication, the complexities

involved in CPU-GPU communication can be eliminated.

Applications like Smith-Waterman require large databases for

its execution and hence there is need for optimizing

communication for such applications.

1.1 Data Management and Communication

Optimization
CPU and GPU have separate memories in a typical CPU-

GPU memory architecture. When a program executes on both

the host and device, data needs to be transferred between CPU

and GPU. Each processing unit efficiently access only its

memory and for accessing data-structures outside their

memory, the data must be explicitly copied between the

divided CPU and GPU memories. This process of copying

data between these memories for correct execution is called

Communication Management [2]. But, manually managing

this communication is laborious and error-prone. The

complexities involved with manual transfer of correct data

between host and device are pointer aliasing, subversive

typecasting, handling complex structures of variable sized

arrays and jagged arrays, handling global pointers. The

programmer must manage buffers and manipulate pointers

which are well-known sources of bugs.

Unfortunately, not all communication management techniques

are efficient; because typical GPU implementation consists of

cyclic communication patterns. Cyclic communication pattern

involves copying data from CPU to GPU memory, launching

a GPU kernel, and copying back results from GPU to CPU

memory. Cyclic communication patterns prevent the systems

from efficiently parallelizing complex programs that launch

many GPU kernels and are orders of magnitude slower than

acyclic patterns [3]. Transforming cyclic communication

patterns to acyclic patterns is called Optimizing

Communication. Copying data to the GPU in the pre-header,

spawning many GPU functions, and copying the result back to

CPU memory in the loop exit yields an acyclic

communication pattern. Incorrect communication

optimization causes programs to access stale or inconsistent

data.

1.2 Smith-Waterman algorithm
This is a most frequently used algorithm in the field of

computational biology for implementing local sequence

alignment in protein or nucleotide databases [4]. It identifies

similar regions between two protein sequences or nucleotide

sequences. This algorithm compares subsequences of all

possible lengths and optimizes the similarity measure instead

of trying to match the total sequence. This algorithm uses

dynamic programming and the alignment takes place in a 2D

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

2

matrix where each entry represents the pairing of one

character from each sequence. Each entry in the matrix

contains two values: a score and a pointer. This algorithm

consists of three basic steps:

 Initialization: The first row and column of the matrix are

initialized with zeroes.

 Fill: All cells in the matrix are filled with scores and a

pointer. To find the score of a cell the maximum value

among three scores: a match score, a vertical gap and a

horizontal score can be found. So the scores in all the three

cells which include left cell, top cell and the diagonal cell

are required to calculate the score in the present cell.

 Trace-Back: This step recovers the alignment from the

matrix. It starts from the bottom-right corner and follows

the pointer until it reaches the top-left corner of the matrix.

CUDA implementation of this algorithm is described as

follows. Host memory is allocated for protein database and

query arrays. Device memory is allocated for both these

arrays and the data is transferred to the device using CUDA

functionality. Then CUDA kernel is launched on the device

for finding best sequence match for the query sequence from

the database. Each thread in the kernel grid computes

similarity score for one of the protein sequences in the

database. Resulting score array is transferred from the device

to host. Best score across all the threads gives the best

sequence match for the given query. Some of the variants of

this implementation give improved performance by

optimizing its performance on single and multiple GPUs.

For larger input database sizes, multi-GPU implementation

gives better performance than single GPU implementation. In

multi-GPU implementation, input protein database is divided

between multiple devices and sequence matching is done on

individual portions of the database.

Our goal in this work is to provide an optimized multi-GPU

implementation of Smith-Waterman algorithm by optimizing

communication between CPU and GPUs. Several

communication optimization techniques have been developed

so far for providing efficient data management and

communication optimization. The most efficient technique for

optimizing communication between CPU and GPUs for multi-

GPU implementation of Smith-Waterman algorithm is

proposed in this work.

In Section 2 the existing techniques that provide

communication management and communication optimization

will be discussed. In section 3 the design and implementation

of our approach for communication management for Smith-

Waterman algorithm will be discussed. Section 4 evaluates

the performance of our approach with respect to default multi-

GPU implementation.

2. RELATED WORK
IE (Inspector - Executor) [5], CGCM (CPU - GPU

Communication Management) [2] and DyManD

(Dynamically Managed Data) [6] are some of the

efficient CPU-GPU communication optimization techniques

for GPU applications. Among all these techniques, DyManD

implementation overcomes the limitations of other techniques

and hence is more preferable for communication optimization.

The implementation details, advantages and disadvantages of

each of these techniques will be discussed here.

IE performs dynamic management of data but does not

provide communication optimization. In IE, a compiler

creates an inspector for every parallelized region. The

inspector loads the data needed by a parallelized region and

transfers the data to the appropriate memory space. Parallel

functions use this data for execution. IE is best suited for

distributed memory clusters and not for GPUs because the

communication is cyclic for each GPU function. When IE is

applied to GPUs yields a whole program slowdown compared

to sequential execution due to this cyclic communication [2].

2.1 CGCM
CGCM is the first fully automatic system for managing and

optimizing CPU-GPU communication. Semi-automatic

communication techniques that are proposed earlier to CGCM

have limited applicability and they lack optimized

communication [2]. This technique avoids the limitations of

IE with the help of a run-time support library and an

optimizing compiler to automatically manage data and to

optimize CPU-GPU communication, respectively.

The run-time library is used to determine correctly and

efficiently which bytes to transfer from host to device. For

maintaining correctness, the run-time library copies data from

CPU to the GPU at allocation unit granularity. An allocation

unit is a contiguous region of memory allocated as a single

unit. The run-time library maintains a self-balancing binary

tree map for storing allocation units. The base and size of each

allocation unit are stored in the map. The map is indexed by

the base address of each allocation unit.

CGCM compiler pass uses the run-time library for managing

data transfer automatically. The compiler uses liveness

analysis for determining values that are to be transferred to

GPU. For each GPU function, the compiler creates a list of

live-in values. A value is live-in if it is passed to the GPU

function directly or if it is a global variable used by the GPU.

For each live-in pointer to each GPU function, the compiler

transfers data to the GPU by inserting run-time library calls.

After the GPU function call, the compiler inserts a call for

each live-out pointer to transfer data back to the CPU.

CGCM compiler uses three passes to optimize

communication. All these compiler passes transform cyclic

communication patterns to acyclic patterns. Three compiler

passes are map promotion, alloca promotion and glue kernels.

For the mapped data in a function or a loop, the functionality

of Map promotion is to hoist the run-time library calls out of

them if the data is not referenced or modified. Map promotion

cannot hoist run-time library calls for local variables. The

other two passes helps Map promotion in optimizing

communication. Alloca promotion takes care of local

variables by pre-allocating them in the stack and thus helps in

map promotion. Glue kernels pass identifies small CPU code

regions between two GPU functions which prevent map

promotion and transform that region into single GPU

function. Thus alloca promotion and glue kernels compiler

passes improve the applicability of map promotion.

Overall implementation of CGCM is shown in the figure 1[2].

By implementing CGCM, a whole program speedup of 5.36x

over the best sequential CPU-only execution can be achieved.

Though implementation of CGCM provides improved

performance, execution of CGCM has its own limitations [2].

CGCM cannot be used for recursive data structures like trees,

linked lists etc. The performance of CGCM is limited by the

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

3

static analysis (type inference and alias analysis) performed

during the execution.

Fig. 1. High Level Diagram of CGCM

2.2 DYMAND
DyManD is another fully automatic system for providing data

management and optimizing CPU-GPU communication. It

combines dynamic analysis from IE with efficient acyclic

communication from CGCM [6]. Thus it addresses the

drawbacks of both the methods. DyManD uses dynamic

analysis and some heuristics to overcome the limitations

caused by static analysis (type inference and alias analysis).

For managing transfer of complex and recursive data-

structures, DyManD creates the illusion of a shared CPU-

GPU memory. DyManD ensures that every allocation unit on

the CPU has a corresponding allocation unit on the GPU at

the same numerical address. Thus DyManD results in

providing direct address translation for allocation units in

CPU to equivalent GPU locations and overcomes CGCM’s

static type inference.

For avoiding static alias analysis DyManD uses page

protection system. Using this, DyManD transfers data from

GPU to CPU memory only when needed. DyManD removes

read and write privileges from the allocation units in CPU

memory after copying them to GPU memory. If the CPU

accesses the pages later, the program will fault, and DyManD

will transfer the affected allocation units back to CPU

memory, mark the pages readable and writable, and continue

execution. Thus DyManD transfers data between GPU and

CPU only when there is need for that data in either host or

device and thus avoids cyclic communication to a larger

extent.

The DyManD data management and communication

optimization system consists of three parts: a memory

allocation system, a run-time library, and compiler passes.

The memory allocation system transfers data between CPU

and GPU at equivalent addresses and thus reduces the burden

of translation from the run-time system . The run-time system

manages data and optimizes communication at run-time. The

compiler inserts calls to the memory allocation system and to

the run-time library into the original program, and it generates

DyManD compliant assembly code for the GPU.

DyManD memory allocation system allocates two memory

blocks, one on host and another on GPU. The two blocks are

of same size and same address. Currently, there is no way to

allocate memory at fixed GPU addresses. Therefore, it first

allocates GPU memory normally and then uses mmap to map

a numerically equivalent address in CPU memory. DyManD

uses bitmasks to ensure that GPU allocations do not overlap

with program’s static memory allocations. Static allocations

start at low addresses so the allocation system sets a high

address bit to avoid overlapping static and dynamic

allocations. A bitwise mask operation before each GPU

memory access recovers the original GPU pointer.

DyManD’s run-time library manages data and optimizes

communication. For each allocation unit, at run-time, an

ordered map is maintained from the base address to the size

and state. The map is used for determining the extent to which

a pointer-sized value points to and checking if the range lies

within an allocation unit. Allocation unit can be in any of

three states: CPU Exclusive (CPUEx), GPU Exclusive

(GPUEx) and Shared. All allocation units begin in the CPUEx

state. In the CPUEx state, the CPU has exclusive access to the

allocation unit. The Shared state signifies that a specific

allocation unit and any other allocation units it points to

recursively should be copied to the GPU before invoking the

next GPU function. Shared allocation units can be accessed on

CPU but will become GPUEx on the next GPU function

invocation. Accesing any byte in a pro-tected allocation unit

triggers an exception. The exception handler copies the

allocation unit back to CPU memory and changes the state to

Shared. State transitions using DyManD is shown in the figure

2[6].

Fig.2. DyManD’s state transition diagram

DyManD uses two compiler passes for optimizing

communication dynamically: alloca promotion and glue

kernels. Both these optimization techniques were same as

Execution Time

Outputs

Compile Time

Parallel Code

Glue Kernel

Identification

Alloca

Promotion

Map

Promotion

Map

insertion

GPU code

generation

CPU Code Inferred Type

Information

GPU Code

 Application

CPU (Host)

Run-Time Library

Instrumentation

Allocation Map

GPU

(Device)

GPU

Functons

Inputs

ping-pong

launch()

segfault handler

ping-pong

map()

free() malloc()

free()
free()

Unallocated

Shared CPUEx

GPUEx

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

4

defined in CGCM. Thus using all these compiler passes,

runtime library and memory allocation system, DyManD

effciently manages and optimizes CPU-GPU communication.

DyManD outperforms CGCM equipped with production-

quality and research grade alias analyses, achieving a whole

program geomean speedup of 4.21x over best sequential

execution versus geomean speedups of 2.35x and 1.28x,

respectively, for CGCM [6].

3. COMMUNICATION OPTIMIZATION

ON MULTIPLE GPUs
The main goal of this work is to provide communication

optimization framework for multi-GPU implementation of

Smith-Waterman. DyManD’s implementation provided

optimized communication on a single GPU. For providing

communication optimization for multiple GPUs, a multi-

threaded framework called GPUWorker [7] along with

DyManD was used. GPUWorker concurrently launches

kernels onto multiple devices. The total overhead of running

applications on multiple GPU’s includes communication

overhead to each device, communication overhead between

devices, and even overhead of using a multi-threading

framework. As mentioned in section 2.2, DyManD is effective

in reducing the communication overhead from host to each of

the devices. And the overhead caused by GPUWorker

framework is very less. Thus GPUWorker-DyManD

implementation causes minimal execution overhead.

3.1 GPUWorker
GPUWorker [7] is a boost threads based multi-GPU

framework that was originally part of HOOMD molecular

dynamics package. It is a master/slave thread approach where

a worker thread holds a CUDA context and the master thread

can send messages to many slave threads. The advantages of

this framework over other multi-threaded GPU frameworks

are:

 A single master thread can call CUDA runtime and

kernel functions on multiple GPUs.

 Any CUDA runtime function can be called in the worker

thread easily with a simple syntax.

 No performance difference from normal CUDA calls.

But a minor disadvantage is that slight extra latency is added

to synchronous calls because of OS thread scheduling. Since

this framework has a single master thread that manages work

from slave threads bound to different devices, the need for

managing different GPU contexts arises. GPUWorker

manages different contexts efficiently by binding the context

to the corresponding threads. So any usage of GPUWorker

functionality within a GPUWorker thread, by default executes

within the respective context. In other multi-threaded

frameworks different child threads are created from the main

thread. Each thread maintains its own context and there is no

interference from contexts of other threads. So there is no

need of context management for these frameworks.

3.2 DyManD implementation for Multiple

GPUs
DyManD algorithm was extended for multi-GPU

implementation of Smith-Waterman algorithm which

optimizes the communication overhead involved in running

the application. The functionality of DyManD was integrated

with that of GPUWorker, to get an interface for calling

DyManD functionality through GPUWorker. The interface

provided is called as GPUWorker-DyManD interface.

 DyManD reduces the communication overhead from host to

device and GPUWorker reduces overhead caused by multi-

threaded frameworks. Thus the overhead involved in running

the application on multiple GPUs reduces significantly for the

overall application. GPUWorker-DyManD implementation is

done in three basic steps: Initialization, Map and Launch. All

these steps perform the DyManD based implementation

through GPUWorker framework.

 Initialization: This step involves creating and binding a

GPU context to the current CPU thread. It also involves

identification of kernels from the kernel’s PTX image

and loading them into the current context. The dynamic

allocations that follow this initialization allocate memory

on the corresponding device and map to an equivalent

address in the host’s virtual memory.

 Map: This is the second important step of the

implementation. In this step the data required by the

kernel is mapped onto GPU. Data will be in any of the

three states: CPU, Shared or GPU. Mapping the data

changes its state from CPU to Shared. The Shared state

signifies that a specific allocation unit in the data and any

other allocation units that are pointed to by this

allocation unit recursively in the data should be copied to

the GPU before invoking the next GPU function.

 Launch: In this step the kernel is not launched

immediately onto the device, kernel launch follows

transfer of mapped data. Data which is in Shared state is

identified and transferred from host to device in terms of

basic allocation units. When transferring the data from

host to device, read and write permissions for the

corresponding pages are removed to prevent false

sharing.

After the kernel implementation, when the host tries to access

this data, the action results in segmentation fault and the

signal handler restores read or write permissions for those

pages. The data will be updated only if the transferred data is

modified. By transferring the data only when necessary, the

dynamic data management ensures mostly acyclic

communication. Thus the communication is optimized.

Context management is a major challenge in providing

DyManD implementation for multiple GPUs. This is

illustrated with an example:

With GPUWorker-DyManD interface, initialization is

executed at the start of the main program as shown in the

example code below. In the example, gpu0 creates a GPU

context on device 0 and binds it to the main thread. When

gpu1 GPUWorker thread is created, the current context of

main thread gets changed to that of GPU context on device 1.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

5

}

); malloc(… = ray_1host_1D_Ar

); … malloc(= ray_0host_1D_Ar

...

);man"smithwater"swFunc1,function(&gpu1.setCU

swFunc1; CUfunction

es);*)imageBytdule((chargpu1.setMo

gpu1(1);GPUWorker

);man"smithwater"swFunc0,function(&gpu0.setCU

swFunc0; CUfunction

es);*)imageBytdule((chargpu0.setMo

gpu0(0);GPUWorker

{

) argv **char argc,int (main int

When the data needs to be allocated on the devices after the

initialization step, conflict between GPUWorker’s contexts

arises. DyManD’s initialization binds the GPU context to the

current thread’s context. Because of multiple contexts created

on multiple devices, the main thread must switch between

these GPU contexts for ensuring correct implementation. If

this is not done the execution fails because of accessing data

from an invalid context. Implementing the above code results

in runtime error which indicates that the data when tried to

transfer to the device 0 without setting its context is an invalid

value. The output is shown in the following code.

Aborted

 value.Invalid :p.59dyncuda.cp

In order to resolve this issue, context management

functionality was added to switch between GPU contexts in

the GPUWorker-DyManD interface. Context of the current

thread can be set to that of GPUWorker thread using the

functionality GPUWorker::setContext. This function binds the

context of the GPUWorker thread to the calling thread. With

the context management functionality of the interface, the

modified part of the example code is as follows:

}

); malloc(… = ray_1host_1D_Ar

ntext();gpu1.setCo

); … malloc(= ray_0host_1D_Ar

ntext();gpu0.setCo

...

{

) argv **char argc,int (main int

By using the GPUWorker’s context management functionality

and GPUWorker-DyManD interface, correct execution of

multi-GPU applications can be ensured. The functionality of

GPUWorker-DyManD interface used in this implementation

is shown in the Table 1.

Table 1: GPUWorker-DyManD Functionality

Function Prototype Description

GPUWorker(dev) This creates a context on device

with ordinal dev and binds it with

the corresponding thread.

setModule(gpuImage) Creates a module in the current

context and loads kernel image

from PTX file.

setCUfunction(gpuFunc) Loads the kernel function from

the kernel image into the current

module.

setContext() Binds the GPUWorker thread’s

context to the calling thread.

getContext() Returns the context of

GPUWorker’s thread to the

calling thread.

map() Maps the pointer from host to

device and sets it as an argument

for the kernel function at

particular offset.
ParamSetSize(gpuFunc,

offset)

Sets the parameter size of the

kernel function to be offset value.

launchKernel(gpuFunc,

dimx, dimy)
Updates the device with the

mapped data added to argument

list, and launches the kernel

function with the specified

dimensions.

init() When a signal is raised, calls a

handler for transferring data

2from device to host.

3.3 GPUWorker-DyManD implementation

of Smith-Waterman algorithm
As mentioned in section 1.1, Smith-Waterman algorithm is

used for finding similarities between nucleotide or protein

sequences and return a best match for a given query sequence.

The inputs for the algorithm are protein database and query

protein arrays and an array containing scores for the sequence

match is returned as output. This algorithm can be

implemented on multiple GPUs by dividing the input data

across multiple devices. When the algorithm uses larger

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

6

databases for finding the best match for the input query

sequence, multi-GPU implementation is useful.

In GPUWorker-DyManD implementation multiple contexts

are created for each of the devices in initialization step. Then

input database is divided among corresponding devices and

are accessed only in the respective contexts. Database and

query arrays of respective contexts are mapped onto the

devices. By switching between the GPU contexts, single

master thread launches kernels onto different devices and

finds a best sequence match on the divided data. Initialization

using GPUWorker-DyManD interface is already shown in the

example code in section 3.2. Map and Launch steps for

GPUWorker-DyManD implementation which includes

context management is shown below.

fset);SetSize(ofgpu1.Param

;ryArray_1)sizeof(que =+offset

offset);1,ueryArray_gpu1.map(q

_1);t_1D_Arraysizeof(hos =+offset

offset);ay_1,ost_1D_Arrgpu1.map(h

0; =offset

ntext();gpu1.setCo

;mBlocks,1)hKernel(nugpu0.launc

ds,1,1);e(numThreaetBlockSizgpu0.FuncS

fset);SetSize(ofgpu0.Param

Length);ry_proteinsizeof(que=offset+

offset);inLength,uery_protegpu0.map(q

ryArray);sizeof(que =+offset

offset);ueryArray,gpu0.map(q

_0);t_1D_Arraysizeof(hos =+offset

offset);ay_0,ost_1D_Arrgpu0.map(h

0; =offset

{

) argv **char argc,int (main int

...

}

…

;mBlocks,1)hKernel(nugpu1.launc

ds,1,1);e(numThreaetBlockSizgpu1.FuncS

Compared to default multi-GPU implementation,

GPUWorker-DyManD implementation gets better

performance because it has the advantage of using both

GPUWorker and DyManD. The performance gain obtained

for this implementation over default implementation is around

3.5x.

4. EXPERIMENTAL RESULTS
In this section the performance of GPUWorker-DyManD

implementation of Smith-Waterman algorithm is evaluated on

two GPUs. The execution timings of this implementation is

compared with default multi-GPU implementation.

The performance baseline is an Intel(R) Xeon(R) node

clocked at 2.67GHz with 12 MB of L3 cache. This has 2

sockets and each socket has 6 cores present on it. Overall, it

can run 12 threads in parallel. This is a node with Fermi

architecture containing two Tesla M2050 GPUs.

In both the implementations, the input database containing

protein sequences is divided among multiple devices and

sequence matching is done on each of the devices. The

optimization of CPU-GPU communication is performed by

DyManD functionality called from GPUWorker interface and

GPUWorker multi-threading model provides simultaneous

execution of kernels on different devices. Both the

implementations are run on a node with two GPU devices for

different number of input sequences.

The optimizations that are provided by GPUWorker-DyManD

implementation over default implementation are: GPUWorker

provides concurrent execution of the algorithm on multiple

devices. Using this multi-threading model causes slight

execution overhead which is less compared to that of other

multi-threading models. DyManD provides efficient data

management and communication optimization for each GPU.

By using DyManD, manual data management which is source

of bugs and errors can be avoided. Both GPUWorker and

DyManD together give better performance and optimization

compared to default implementation.

Execution timings for both the implementations for different

number of input sequences are shown in the Table 2. From the

results obtained, few observations can be made. For smaller

input database sizes, the multi-GPU implementation consists

of more of communication and less of computation. So the

communication optimization for the input with lesser number

of sequences shows greater speed up over normal multi-GPU

implementation. As the input array size increases, even the

GPU computation increases and the overall execution time is

not completely affected by communication. So as the input

array size increases, GPUWorker-DyManD interface provides

better communication optimization but the speedup achieved

is less compared to that of smaller input sizes.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No 12, October 2013

7

Table 2: Execution timings for both the implementations

for different number of input sequences.

Number

of

Sequences

Execution time for

default multi-GPU

implementation (in

ms)

 Execution time for

GPUWorker-

DyManD multi-GPU

implementation (in

ms)

10240 3628.652 698.4473

20480 4149.405 1259.717

30720 8064.949 2342.351

40960 8183.823 2558.347

51200 8892.048 3166.526

61440 12219.5 3979.274

The comparison of execution timings for both the

implementations is shown in the figure 3. From the graph it is

observed that GPUWorker-DyManD implementation of

Smith-Waterman algorithm outperforms default

implementation when executed on two GPUs for all the input

datasets. As dataset size increases, the speedup achieved is

consistent across all the input datasets. GPUWorker-DyManD

implementation achieves on an average 3.5x performance

over default multi-GPU implementation.

Fig. 3. Smith-Waterman using GPUWorker-DyManD

5. CONCLUSIONS AND FUTURE

WORK
Smith-Waterman algorithm is a well-known sequence

matching algorithm for finding similarities in a protein

database. Several CUDA implementations of this algorithm

exist that optimize GPU computation and achieve

performance on both single GPU and multiple GPUs. For

input datasets of large sizes, multi-GPU implementation

provides better performance than single GPU implementation.

A multi-GPU implementation was proposed using

GPUWorker-DyManD interface for achieving good

performance by optimizing communication between CPU and

multiple GPUs. GPUWorker multi-threaded framework was

used for running the application on multiple GPUs and

DyManD provides efficient communication management. So

GPUWorker-DyManD interface which consists of both

GPUWorker and DyManD optimizes Smith-Waterman

algorithm on multiple GPUs. When executed on two GPUs,

GPUWorker-DyManD implementation on an average

achieves 3.5x performance for all the input data sizes.

As a part of future work, execution of Smith-Waterman can

be done on 4 or more GPUs to analyze the scalability of

GPUWorker-DyManD implementation. Along with

communication optimization between host and devices,

device-to-device communication can be utilized and

optimized by extending GPUWorker-DyManD functionality.

6. ACKNOWLEDGEMENTS
We offer this work to Bhagawan Sri Sathya Sai Baba,

Founder Chancellor of Sri Sathya Sai Institute of Higher

Learning. We acknowledge the support and guidance

provided to us in the area of CPU-GPU communication

optimization by Thomas B. Jablin, a PhD graduate from

Princeton University. This work was partially supported by

nVIDIA, Pune, grant under Professor Partnership Program

and Extreme Science.

7. REFERENCES
[1] D. M. Dang, C. Christara and K. Jackson. GPU pricing

of exotic cross-currency interest rate derivatives with a

foreign exchange volatility skew model. SSRN eLibrary,

2010.

[2] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick

P. Johnson, Stephen R. Beard, and David I. August.

Automatic cpu-gpu communication management and

optimization. In Mary W. Hall and David A. Padua,

editors, PLDI , pages 142-151. ACM, 2011.

[3] NVIDIA Corporation. CUDA C Best Practices Guide

3.2,2010.

[4] SARJAT SAHNI JUNJIE LI & SANJAY RANKA.

Pairwise sequence alignment for very long sequences on

gpu.

[5] A. Basumallik and R. Eigenmann. Optimizing irregular

shared-memory applications for distributed-memory

systems. Number 3, 2006..

[6] Thomas B. Jablin, James A. Jablin, Prakash Prabhu,

Feng Liu, and David I. August. Dynamically managed

data for cpu-gpu architectures. In Proceedings of the

Tenth International Symposium on Code Generation and

Optimization, CGO '12, pages 165{174, New York, NY,

USA, 2012. ACM.

[7] GPUWorker master/ slave multi-GPU approach.

https://devtalk.nvidia.com/default/topic/390598/gpuwork

er-master-slave-multi-gpu-approach/

IJCATM : www.ijcaonline.org

