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ABSTRACT 

GPU parallelism for real applications can achieve enormous 

performance gain. CPU-GPU Communication is one of the 

major bottlenecks that limit this performance gain. Among 

several libraries developed so far to optimize this 

communication, DyManD (Dynamically Managed Data) 

provides better communication optimization strategies and 

achieves better performance on a single GPU. Smith-

Waterman is a well known algorithm in the field of 

computational biology for finding functional similarities in a 

protein database. CUDA implementation of this algorithm 

speeds up the process of sequence matching in the protein 

database. When input databases are large, multi-GPU 

implementation gives better performance than single GPU 

implementation. Since this algorithm acts upon large 

databases, there is need for optimizing CPU-GPU 

communication. DyManD implementation provides efficient 

data management and communication optimization only for 

single GPU. For providing communication optimization on 

multiple GPUs, an approach of combining DyManD with a 

multi-threaded framework called GPUWorker was proposed. 

Our contribution in this work is to propose an optimized 

CUDA implementation of this algorithm on multiple GPUs 

i.e., GPUWorker-DyManD which reduces the communication 

overhead between CPU and multiple GPUs. This 

implementation combines DyManD functionality with 

GPUWorker for optimizing communication. The performance 

gain obtained for the GPUWorker-DyManD implementation 

of this algorithm over default multi-GPU implementation is 

3.5x. 

Keywords 

DyManD, GPUWorker, Data Mangement, Communication 

Optimization. 

1. INTRODUCTION 
GPUs are capable of accelerating real time applications and 

can achieve performance gain of hundreds of GFLOPS. Real 

applications, rewritten to take advantage of GPUs, regularly 

achieve speedups between 4 and 100x [1]. But CPU-GPU 

communication is one of the bottlenecks that limit the 

performance gain that can be achieved by these applications. 
As a part of communication, manually managing data 

transfers between CPU and GPU is complex and error-prone. 

And cyclic communication patterns between CPU and GPU 

increases the execution latency and reduces the parallelism. 

So when applications are implemented with efficient data 

management and optimized communication, the complexities 

involved in CPU-GPU communication can be eliminated.  

 

 

 

Applications like Smith-Waterman require large databases for 

its execution and hence there is need for optimizing 

communication for such applications.  

1.1 Data Management and Communication 

Optimization 
CPU and GPU have separate memories in a typical  CPU-

GPU memory architecture. When a program executes on both 

the host and device, data needs to be transferred between CPU 

and GPU. Each processing unit efficiently access only its 

memory and for accessing data-structures outside their 

memory, the data must be explicitly copied between the 

divided CPU and GPU memories. This process of copying 

data between these memories for correct execution is called 

Communication Management [2]. But, manually managing 

this communication is laborious and error-prone. The 

complexities involved with manual transfer of correct data 

between host and device are pointer aliasing, subversive 

typecasting, handling complex structures of variable sized 

arrays and jagged arrays, handling global pointers. The 

programmer must manage buffers and manipulate pointers 

which are well-known sources of bugs. 

 
Unfortunately, not all communication management techniques 

are efficient; because typical GPU implementation consists of 

cyclic communication patterns. Cyclic communication pattern 

involves copying data from CPU to GPU memory, launching 

a GPU kernel, and copying back results from GPU to CPU 

memory. Cyclic communication patterns prevent the systems 

from efficiently parallelizing complex programs that launch 

many GPU kernels and are orders of magnitude slower than 

acyclic patterns [3]. Transforming cyclic communication 

patterns to acyclic patterns is called Optimizing 

Communication. Copying data to the GPU in the pre-header, 

spawning many GPU functions, and copying the result back to 

CPU memory in the loop exit yields an acyclic 

communication pattern. Incorrect communication 

optimization causes programs to access stale or inconsistent 

data. 

 

1.2 Smith-Waterman algorithm 
This is a most frequently used algorithm in the field of 

computational biology for implementing local sequence 

alignment in protein or nucleotide databases [4]. It identifies 

similar regions between two protein sequences or nucleotide 

sequences. This algorithm compares subsequences of all 

possible lengths and optimizes the similarity measure instead 

of trying to match the total sequence. This algorithm uses 

dynamic programming and the alignment takes place in a 2D 
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matrix where each entry represents the pairing of one 

character from each sequence. Each entry in the matrix 

contains two values: a score and a pointer. This algorithm 

consists of three basic steps: 

 

 Initialization: The first row and column of the matrix are 

initialized with zeroes. 

 Fill: All cells in the matrix are filled with scores and a 

pointer. To find the score of a cell the maximum value 

among three scores: a match score, a vertical gap and a 

horizontal score can be found. So the scores in all the three 

cells which include left cell, top cell and the diagonal cell 

are required to calculate the score in the present cell. 

 Trace-Back: This step recovers the alignment from the 

matrix. It starts from the bottom-right corner and follows 

the pointer until it reaches the top-left corner of the matrix. 

 

CUDA implementation of this algorithm is described as 

follows. Host memory is allocated for protein database and 

query arrays. Device memory is allocated for both these 

arrays and the data is transferred to the device using CUDA 

functionality. Then CUDA kernel is launched on the device 

for finding best sequence match for the query sequence from 

the database. Each thread in the kernel grid computes 

similarity score for one of the protein sequences in the 

database. Resulting score array is transferred from the device 

to host. Best score across all the threads gives the best 

sequence match for the given query. Some of the variants of 

this implementation give improved performance by 

optimizing its performance on single and multiple GPUs. 

 

For larger input database sizes, multi-GPU implementation 

gives better performance than single GPU implementation. In 

multi-GPU implementation, input protein database is divided 

between multiple devices and sequence matching is done on 

individual portions of the database. 

 

Our goal in this work is to provide an optimized multi-GPU 

implementation of Smith-Waterman algorithm by optimizing 

communication between CPU and GPUs. Several 

communication optimization techniques have been developed 

so far for providing efficient data management and 

communication optimization. The most efficient technique for 

optimizing communication between CPU and GPUs for multi-

GPU implementation of Smith-Waterman algorithm is 

proposed in this work. 

In Section 2 the existing techniques that provide 

communication management and communication optimization 

will be discussed. In section 3 the design and implementation 

of our approach for communication management for Smith-

Waterman algorithm will be discussed. Section 4 evaluates 

the performance of our approach with respect to default multi-

GPU implementation. 

 

2. RELATED WORK 
IE (Inspector - Executor) [5], CGCM (CPU - GPU 

Communication Management) [2] and DyManD 

(Dynamically Managed Data) [6] are some of the 

efficient CPU-GPU communication optimization techniques 

for GPU applications. Among all these techniques, DyManD 

implementation overcomes the limitations of other techniques 

and hence is more preferable for communication optimization. 

The implementation details, advantages and disadvantages of 

each of these techniques will be discussed here. 

 

IE performs dynamic management of data but does not 

provide communication optimization. In IE, a compiler 

creates an inspector for every parallelized region. The 

inspector loads the data needed by a parallelized region and 

transfers the data to the appropriate memory space. Parallel 

functions use this data for execution. IE is best suited for 

distributed memory clusters and not for GPUs because the 

communication is cyclic for each GPU function. When IE is 

applied to GPUs yields a whole program slowdown compared 

to sequential execution due to this cyclic communication [2]. 

 

2.1 CGCM 
CGCM is the first fully automatic system for managing and 

optimizing CPU-GPU communication. Semi-automatic 

communication techniques that are proposed earlier to CGCM 

have limited applicability and they lack optimized 

communication [2]. This technique avoids the limitations of 

IE with the help of a run-time support library and an 

optimizing compiler to automatically manage data and to 

optimize CPU-GPU communication, respectively. 

 

The run-time library is used to determine correctly and 

efficiently which bytes to transfer from host to device. For 

maintaining correctness, the run-time library copies data from 

CPU to the GPU at allocation unit granularity. An allocation 

unit is a contiguous region of memory allocated as a single 

unit. The run-time library maintains a self-balancing binary 

tree map for storing allocation units. The base and size of each 

allocation unit are stored in the map. The map is indexed by 

the base address of each allocation unit. 

 

CGCM compiler pass uses the run-time library for managing 

data transfer automatically. The compiler uses liveness 

analysis for determining values that are to be transferred to 

GPU. For each GPU function, the compiler creates a list of 

live-in values. A value is live-in if it is passed to the GPU 

function directly or if it is a global variable used by the GPU. 

For each live-in pointer to each GPU function, the compiler 

transfers data to the GPU by inserting run-time library calls. 

After the GPU function call, the compiler inserts a call for 

each live-out pointer to transfer data back to the CPU. 

 

CGCM compiler uses three  passes to optimize 

communication. All these compiler passes transform cyclic 

communication patterns to acyclic patterns. Three compiler 

passes are map promotion, alloca promotion and glue kernels. 

For the mapped data in a function or a loop, the functionality 

of Map promotion is to hoist the run-time library calls out of 

them if the data is not referenced or modified. Map promotion 

cannot hoist run-time library calls for local variables. The 

other two passes helps Map promotion in optimizing 

communication. Alloca promotion takes care of local 

variables by pre-allocating them in the stack and thus helps in 

map promotion. Glue kernels pass identifies small CPU code 

regions between two GPU functions which prevent map 

promotion and transform that region into single GPU 

function. Thus alloca promotion and glue kernels compiler 

passes improve the applicability of map promotion. 

 

Overall implementation of CGCM is shown in the figure 1[2]. 

By implementing CGCM, a whole program speedup of 5.36x 

over the best sequential CPU-only execution can be achieved. 

Though implementation of CGCM provides improved 

performance, execution of CGCM has its own limitations [2]. 

CGCM cannot be used for recursive data structures like trees, 

linked lists etc. The performance of CGCM is limited by the 
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static analysis (type inference and alias analysis) performed 

during the execution. 

 

 
Fig. 1. High Level Diagram of CGCM 

 

2.2 DYMAND 
DyManD is another fully automatic system for providing data 

management and optimizing CPU-GPU communication. It 

combines dynamic analysis from IE with efficient acyclic 

communication from CGCM [6]. Thus it addresses the 

drawbacks of both the methods. DyManD uses dynamic 

analysis and some heuristics to overcome the limitations 

caused by static analysis (type inference and alias analysis). 

For managing transfer of complex and recursive data-

structures, DyManD creates the illusion of a shared CPU-

GPU memory. DyManD ensures that every allocation unit on 

the CPU has a corresponding allocation unit on the GPU at 

the same numerical address. Thus DyManD results in 

providing direct address translation for allocation units in 

CPU to equivalent GPU locations and overcomes CGCM’s 

static type inference. 

 

For avoiding static alias analysis DyManD uses page 

protection system. Using this, DyManD transfers data from 

GPU to CPU memory only when needed. DyManD removes 

read and write privileges from the allocation units in CPU 

memory after copying them to GPU memory. If the CPU 

accesses the pages later, the program will fault, and DyManD 

will transfer the affected allocation units back to CPU 

memory, mark the pages readable and writable, and continue 

execution. Thus DyManD transfers data between GPU and 

CPU only when there is need for that data in either host or 

device and thus avoids cyclic communication to a larger 

extent. 

 

The DyManD data management and communication 

optimization system consists of three parts: a memory 

allocation system, a run-time library, and compiler passes. 

The memory allocation system transfers data between CPU 

and GPU at equivalent addresses and thus reduces the burden 

of translation from the run-time system . The run-time system 

manages data and optimizes communication at run-time. The 

compiler inserts calls to the memory allocation system and to 

the run-time library into the original program, and it generates 

DyManD compliant assembly code for the GPU. 

 

DyManD memory allocation system allocates two memory 

blocks, one on host and another on GPU. The two blocks are 

of same size and same address. Currently, there is no way to 

allocate memory at fixed GPU addresses. Therefore, it first 

allocates GPU memory normally and then uses mmap to map 

a numerically equivalent address in CPU memory. DyManD 

uses bitmasks to ensure that GPU allocations do not overlap 

with program’s static memory allocations. Static allocations 

start at low addresses so the allocation system sets a high 

address bit to avoid overlapping static and dynamic 

allocations. A bitwise mask operation before each GPU 

memory access recovers the original GPU pointer. 

 

DyManD’s run-time library manages data and optimizes 

communication. For each allocation unit, at run-time, an 

ordered map is maintained from the base address to the size 

and state. The map is used for determining the extent to which 

a pointer-sized value points to and checking if the range lies 

within an allocation unit. Allocation unit can be in any of 

three states: CPU Exclusive (CPUEx), GPU Exclusive 

(GPUEx) and Shared. All allocation units begin in the CPUEx 

state. In the CPUEx state, the CPU has exclusive access to the 

allocation unit. The Shared state signifies that a specific 

allocation unit and any other allocation units it points to 

recursively should be copied to the GPU before invoking the 

next GPU function. Shared allocation units can be accessed on 

CPU but will become GPUEx on the next GPU function 

invocation. Accesing any byte in a pro-tected allocation unit 

triggers an exception. The exception handler copies the 

allocation unit back to CPU memory and changes the state to 

Shared. State transitions using DyManD is shown in the figure 

2[6]. 

 

 
Fig.2. DyManD’s state transition diagram 

 

DyManD uses two compiler passes for optimizing 

communication dynamically: alloca promotion and glue 

kernels. Both these optimization techniques were same as 
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defined in CGCM. Thus using all these compiler passes, 

runtime library and memory allocation system, DyManD 

effciently manages and optimizes CPU-GPU communication. 

DyManD outperforms CGCM equipped with production-

quality and research grade alias analyses, achieving a whole 

program geomean speedup of 4.21x over best sequential 

execution versus geomean speedups of 2.35x and 1.28x, 

respectively, for CGCM [6]. 

3. COMMUNICATION OPTIMIZATION 

ON MULTIPLE GPUs 
The main goal of this work is to provide communication 

optimization framework for multi-GPU implementation of 

Smith-Waterman. DyManD’s implementation provided 

optimized communication on a single GPU. For providing 

communication optimization for multiple GPUs, a multi-

threaded framework called GPUWorker [7] along with 

DyManD was used. GPUWorker concurrently launches 

kernels onto multiple devices. The total overhead of running 

applications on multiple GPU’s includes communication 

overhead to each device, communication overhead between 

devices, and even overhead of using a multi-threading 

framework. As mentioned in section 2.2, DyManD is effective 

in reducing the communication overhead from host to each of 

the devices. And the overhead caused by GPUWorker 

framework is very less. Thus GPUWorker-DyManD 

implementation causes minimal execution overhead. 

3.1 GPUWorker 
GPUWorker [7] is a boost threads based multi-GPU 

framework that was originally part of HOOMD molecular 

dynamics package. It is a master/slave thread approach where 

a worker thread holds a CUDA context and the master thread 

can send messages to many slave threads. The advantages of 

this framework over other multi-threaded GPU frameworks 

are: 

 

 A single master thread can call CUDA runtime and 

kernel functions on multiple GPUs. 

 Any CUDA runtime function can be called in the worker 

thread easily with a simple syntax. 

 No performance difference from normal CUDA calls. 

 

But a minor disadvantage is that slight extra latency is added 

to synchronous calls because of OS thread scheduling. Since 

this framework has a single master thread that manages work 

from slave threads bound to different devices, the need for 

managing different GPU contexts arises. GPUWorker 

manages different contexts efficiently by binding the context 

to the corresponding threads. So any usage of GPUWorker 

functionality within a GPUWorker thread, by default executes 

within the respective context. In other multi-threaded 

frameworks different child threads are created from the main 

thread. Each thread maintains its own context and there is no 

interference from contexts of other threads. So there is no 

need of context management for these frameworks. 

 

3.2 DyManD implementation for Multiple 

GPUs  
DyManD algorithm was extended for multi-GPU 

implementation of Smith-Waterman algorithm which 

optimizes the communication overhead involved in running 

the application. The functionality of DyManD was integrated 

with that of GPUWorker, to get an interface for calling 

DyManD functionality through GPUWorker. The interface 

provided is called as GPUWorker-DyManD interface. 

 

 DyManD reduces the communication overhead from host to 

device and GPUWorker reduces overhead caused by multi-

threaded frameworks. Thus the overhead involved in running 

the application on multiple GPUs reduces significantly for the 

overall application. GPUWorker-DyManD implementation is 

done in three basic steps: Initialization, Map and Launch. All 

these steps perform the DyManD based implementation 

through GPUWorker framework. 

 

 Initialization: This step involves creating and binding a 

GPU context to the current CPU thread. It also involves 

identification of kernels from the kernel’s PTX image 

and loading them into the current context. The dynamic 

allocations that follow this initialization allocate memory 

on the corresponding device and map to an equivalent 

address in the host’s virtual memory. 

 

 Map: This is the second important step of the 

implementation. In this step the data required by the 

kernel is mapped onto GPU. Data will be in any of the 

three states: CPU, Shared or GPU. Mapping the data 

changes its state from CPU to Shared. The Shared state 

signifies that a specific allocation unit in the data and any 

other allocation units that are pointed to by this 

allocation unit recursively in the data should be copied to 

the GPU before invoking the next GPU function. 

 
 Launch: In this step the kernel is not launched 

immediately onto the device, kernel launch follows 

transfer of mapped data. Data which is in Shared state is 

identified and transferred from host to device in terms of 

basic allocation units. When transferring the data from 

host to device, read and write permissions for the 

corresponding pages are removed to prevent false 

sharing. 

 

After the kernel implementation, when the host tries to access 

this data, the action results in segmentation fault and the 

signal handler restores read or write permissions for those 

pages. The data will be updated only if the transferred data is 

modified. By transferring the data only when necessary, the 

dynamic data management ensures mostly acyclic 

communication. Thus the communication is optimized. 

Context management is a major challenge in providing 

DyManD implementation for multiple GPUs. This is 

illustrated with an example: 

 

With GPUWorker-DyManD interface, initialization is 

executed at the start of the main program as shown in the 

example code below. In the example, gpu0 creates a GPU 

context on device 0 and binds it to the main thread. When 

gpu1 GPUWorker thread is created, the current context of 

main thread gets changed to that of GPU context on device 1. 
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}

 ); malloc(… = ray_1host_1D_Ar   

); … malloc( = ray_0host_1D_Ar   

...      

);man"smithwater"swFunc1,function(&gpu1.setCU   

swFunc1; CUfunction   

es);*)imageBytdule((chargpu1.setMo   

gpu1(1);GPUWorker    

);man"smithwater"swFunc0,function(&gpu0.setCU   

swFunc0; CUfunction   

  

es);*)imageBytdule((chargpu0.setMo   

gpu0(0);GPUWorker    

{

) argv **char argc,int  (main int

 

 

When the data needs to be allocated on the devices after the 

initialization step, conflict between GPUWorker’s contexts 

arises. DyManD’s initialization binds the GPU context to the 

current thread’s context. Because of multiple contexts created 

on multiple devices, the main thread must switch between 

these GPU contexts for ensuring correct implementation. If 

this is not done the execution fails because of accessing data 

from an invalid context. Implementing the above code results 

in runtime error which indicates that the data when tried to 

transfer to the device 0 without setting its context is an invalid 

value. The output is shown in the following code. 

 

Aborted

 value.Invalid :p.59dyncuda.cp
 

 

In order to resolve this issue, context management 

functionality was added to switch between GPU contexts in 

the GPUWorker-DyManD interface. Context of the current 

thread can be set to that of GPUWorker thread using the 

functionality GPUWorker::setContext. This function binds the 

context of the GPUWorker thread to the calling thread. With 

the context management functionality of the interface, the 

modified part of the example code is as follows: 

 

}

 ); malloc(… = ray_1host_1D_Ar  

ntext();gpu1.setCo  

); … malloc( = ray_0host_1D_Ar  

ntext();gpu0.setCo  

...      

{

) argv **char argc,int  (main int 

 

 

By using the GPUWorker’s context management functionality 

and GPUWorker-DyManD interface, correct execution of 

multi-GPU applications can be ensured. The functionality of 

GPUWorker-DyManD interface used in this implementation 

is shown in the Table 1. 

 

Table 1: GPUWorker-DyManD Functionality 

Function Prototype Description 

GPUWorker( dev ) This creates a context on device 

with ordinal dev and binds it with 

the corresponding thread. 

setModule( gpuImage ) Creates a module in the current 

context and loads kernel image 

from PTX file. 

setCUfunction(gpuFunc) Loads the kernel function from 

the kernel image into the current 

module. 

setContext() Binds the GPUWorker thread’s 

context to the calling thread. 

getContext() Returns the context of 

GPUWorker’s thread to the 

calling thread. 

map() Maps the pointer from host to 

device and sets it as an argument 

for the kernel function at 

particular offset. 
ParamSetSize( gpuFunc, 

offset ) 

Sets the parameter size of the 

kernel function to be offset value. 

launchKernel( gpuFunc, 

dimx, dimy) 
Updates the device with the 

mapped data added to argument 

list, and launches the kernel 

function with the specified 

dimensions. 

init() When a signal is raised, calls a 

handler for transferring data 

2from device to host. 

 

 

3.3 GPUWorker-DyManD implementation 

of Smith-Waterman algorithm 
As mentioned in section 1.1, Smith-Waterman algorithm is 

used for finding similarities between nucleotide or protein 

sequences and return a best match for a given query sequence. 

The inputs for the algorithm are protein database and query 

protein arrays and an array containing scores for the sequence 

match is returned as output. This algorithm can be 

implemented on multiple GPUs by dividing the input data 

across multiple devices. When the algorithm uses larger 



International Journal of Computer Applications (0975 – 8887) 

Volume 80 – No 12, October 2013 

6 

databases for finding the best match for the input query 

sequence, multi-GPU implementation is useful. 

 

In GPUWorker-DyManD implementation multiple contexts 

are created for each of the devices in initialization step. Then 

input database is divided among corresponding devices and 

are accessed only in the respective contexts. Database and 

query arrays of respective contexts are mapped onto the 

devices. By switching between the GPU contexts, single 

master thread launches kernels onto different devices and 

finds a best sequence match on the divided data. Initialization 

using GPUWorker-DyManD interface is already shown in the 

example code in section 3.2. Map and Launch steps for 

GPUWorker-DyManD implementation which includes 

context management is shown below. 

 

fset);SetSize(ofgpu1.Param  

;ryArray_1)sizeof(que =+offset   

offset);1,ueryArray_gpu1.map(q 

_1);t_1D_Arraysizeof(hos =+offset   

offset);ay_1,ost_1D_Arrgpu1.map(h  

0; =offset   

ntext();gpu1.setCo  

;mBlocks,1)hKernel(nugpu0.launc  

ds,1,1);e(numThreaetBlockSizgpu0.FuncS  

fset);SetSize(ofgpu0.Param  

Length);ry_proteinsizeof(que=offset+  

offset);inLength,uery_protegpu0.map(q  

ryArray);sizeof(que =+offset   

offset);ueryArray,gpu0.map(q  

_0);t_1D_Arraysizeof(hos =+offset   

offset);ay_0,ost_1D_Arrgpu0.map(h  

0; =offset   

{

) argv **char argc,int  (main int 

...  

 

} 

…  

;mBlocks,1)hKernel(nugpu1.launc  

ds,1,1);e(numThreaetBlockSizgpu1.FuncS  

 

 

Compared to default multi-GPU implementation, 

GPUWorker-DyManD implementation gets better 

performance because it has the advantage of using both 

GPUWorker and DyManD. The performance gain obtained 

for this implementation over default implementation is around 

3.5x. 

 

4. EXPERIMENTAL RESULTS 
In this section the performance of GPUWorker-DyManD 

implementation of Smith-Waterman algorithm is evaluated on 

two GPUs. The execution timings of this implementation is 

compared with default multi-GPU implementation. 

 

The performance baseline is an Intel(R) Xeon(R) node 

clocked at 2.67GHz with 12 MB of L3 cache. This has 2 

sockets and each socket has 6 cores present on it. Overall, it 

can run 12 threads in parallel. This is a node with Fermi 

architecture containing two Tesla M2050 GPUs. 

  

In both the implementations, the input database containing 

protein sequences is divided among multiple devices and 

sequence matching is done on each of the devices. The 

optimization of CPU-GPU communication is performed by 

DyManD functionality called from GPUWorker interface and 

GPUWorker multi-threading model provides simultaneous 

execution of kernels on different devices. Both the 

implementations are run on a node with two GPU devices for 

different number of input sequences.  

 

The optimizations that are provided by GPUWorker-DyManD 

implementation over default implementation are: GPUWorker 

provides concurrent execution of the algorithm on multiple 

devices. Using this multi-threading model causes slight 

execution overhead which is less compared to that of other 

multi-threading models. DyManD provides efficient data 

management and communication optimization for each GPU. 

By using DyManD, manual data management which is source 

of bugs and errors can be avoided. Both GPUWorker and 

DyManD together give better performance and optimization 

compared to default implementation. 

 

Execution timings for both the implementations for different 

number of input sequences are shown in the Table 2. From the 

results obtained, few observations can be made. For smaller 

input database sizes, the multi-GPU implementation consists 

of more of communication and less of computation. So the 

communication optimization for the input with lesser number 

of sequences shows greater speed up over normal multi-GPU 

implementation. As the input array size increases, even the 

GPU computation increases and the overall execution time is 

not completely affected by communication. So as the input 

array size increases, GPUWorker-DyManD interface provides 

better communication optimization but the speedup achieved 

is less compared to that of smaller input sizes.  
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Table 2: Execution timings for both the implementations 

for different number of input sequences. 

Number 

of 

Sequences 

Execution time for 

default multi-GPU 

implementation (in 

ms) 

 Execution time for 

GPUWorker-

DyManD multi-GPU 

implementation (in 

ms) 

10240 3628.652 698.4473 

20480 4149.405 1259.717 

30720 8064.949 2342.351 

40960 8183.823 2558.347 

51200 8892.048 3166.526 

61440 12219.5 3979.274 

 

The comparison of execution timings for both the 

implementations is shown in the figure 3. From the graph it is 

observed that GPUWorker-DyManD implementation of 

Smith-Waterman algorithm outperforms default 

implementation when executed on two GPUs for all the input 

datasets. As dataset size increases, the speedup achieved is 

consistent across all the input datasets. GPUWorker-DyManD 

implementation achieves on an average 3.5x performance 

over default multi-GPU implementation. 

  

 
Fig. 3. Smith-Waterman using GPUWorker-DyManD 

 

5. CONCLUSIONS AND FUTURE 

WORK 
Smith-Waterman algorithm is a well-known sequence 

matching algorithm for finding similarities in a protein 

database. Several CUDA implementations of this algorithm 

exist that optimize GPU computation and achieve 

performance on both single GPU and multiple GPUs. For 

input datasets of large sizes, multi-GPU implementation 

provides better performance than single GPU implementation.  

A multi-GPU implementation was proposed using 

GPUWorker-DyManD interface for achieving good 

performance by optimizing communication between CPU and 

multiple GPUs. GPUWorker multi-threaded framework was 

used for running the application on multiple GPUs and 

DyManD provides efficient communication management. So 

GPUWorker-DyManD interface which consists of both 

GPUWorker and DyManD optimizes Smith-Waterman 

algorithm on multiple GPUs. When executed on two GPUs, 

GPUWorker-DyManD implementation on an average 

achieves 3.5x performance for all the input data sizes. 

 

As a part of future work, execution of Smith-Waterman can 

be done on 4 or more GPUs to analyze the scalability of 

GPUWorker-DyManD implementation. Along with 

communication optimization between host and devices, 

device-to-device communication can be utilized and 

optimized by extending GPUWorker-DyManD functionality. 
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