
International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

11

Parallel Algorithm for the Chameleon Clustering

Algorithm using Dynamic Modeling

 Rajnish Dashora

SCSE
VIT University,Vellore

 Harsh Bajaj
SCSE

VIT University,Vellore

 Akshat Dube
SELECT

VIT University,Vellore

Geetha Mary .A
 SCSE

VIT University,Vellore

ABSTRACT
With the increasing size of data-sets in application areas like

bio-medical, hospitals, information systems, scientific data

processing and predictions, finance analytics, communications,

retail and marketing, it is becoming increasingly important to

execute data mining tasks in parallel. At the same time,

technological advancements have made shared memory-

parallel computation machines commonly available to various

organizations and individuals. This paper analyzes a

hierarchical clustering algorithm named chameleon clustering

which is based on dynamic modeling and we propose a

parallel algorithm for the same. The algorithm utilizes the

concept of parallel processors available and hence reduces the

time to generate final clusters.

General Terms

Enhancement, Utilization, clustering, similarity, Algorithms et.

al.

Keywords

Multicore Processors; Data Mining; Cluster analysis;

Hierarchical Clustering; Chameleon; Data points; Shared

Memory; Symmetric Multiprocessing(SMP);Dynamic

Modeling; ParMetis .

1. INTRODUCTION
Cluster analysis can be used in market research, business, land

use, biology, atmospheric research, astrology, web based

applications plant observation and load analysis in power

systems. Clustering is the process of grouping elements into

classes or groups based on their similarity of constituent data.

Hierarchical form of clustering is known as Hierarchical

clustering and Agglomerative means to group the similar

datasets into one cluster.

Existing algorithm only use a static model of clustering and

not the information of individual clusters when they are

merged. CURE (Clustering Using Representatives) and other

algorithms ignore the aggregate interconnection of the item

sets of two clusters[7].As CURE uses only representative

points from each cluster and merges only the closest pair of

representative points In this way it does not consider other

points (data objects) in the clusters. However ROCK (Robust

Clustering algorithms) has an advantage over

CURE [15] as it takes the aggregate interconnectivity of the

two clusters but it ignores the information about their inter-

closeness [11] .

Chameleon clustering is an algorithm that uses dynamic

modeling in hierarchical clustering. It does not depend on user

supplied information but it automatically adapts to the internal

characteristics of the clusters being merged [3].To know the

internal characteristics it uses relative inter-connectivity and

relative closeness of the two clusters[4] .Furthermore to make

the algorithm to perform dynamically it uses the concept of K-

nearest neighboring graph as in this algorithm the

neighborhood radius of a data objects is defined by the density

of region in which the object lies.

2. RELATED WORKS
PCURE [7] is the parallel implementation of CURE which

makes an effective utilization of shared memory architecture

on small-scale symmetric multiprocessors as well as high

performance processors. PCURE uses static modeling in

hierarchical clustering [6]. The algorithm uses per cluster

information by using the index of the closest cluster in

minimum distance to it. But the maintenance of this cluster

information with larger index needs more computation time.

A parallel K-NN algorithms [2] that exist uses truncated bi-

tonic sort. This sort has nlog2(k)/4 comparisons. The

Euclidean metric takes a lot of portion of search time so this

algorithm uses CUBLA on GPUs. CUBLA [14] is a library

developed by NVIDIA for algebra calculations like dot

product, matrix manipulations, vector products etc.

The chameleon algorithm for clustering works in 3 phases.

A) Getting sparse graph for the data using.

K-Nearest Neighbour Algorithm

B) Partition the Sparse graph using multi graph partitioning

algorithms which are predefined in hMeTis Library[13] for

graph partitioning algorithms to get smaller clusters

depending upon their similarity.

C)In the third phase the algorithm merges the smaller clusters

to remove the noisy data and make the clusters with

significant size.

K-nearest neighbor is a supervised algorithm used to find

similarity between data. It assigns a class-label to data values

and then finds the ones that belong to the same class, and,

connect them with an edge.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

12

The third phase of merging of the clusters is done on the basis

of their similarity to get final clusters. Similarity is measured

with the two parameters.

i) Inter-connectivity

ii) Closeness

Inter-connectivity refers to the connection between two nodes

and closeness is defined as the similarity between two nodes

in two different clusters. Relative Inter-connectivity [3] is the

connection between two nodes of two different clusters

For the two clusters the Relative inter-connectivity and

Relative closeness is calculated using the formulas as follows

for the two clusters Ci and Cj ,

Relative inter-connectivity,

_ (,)

(_ () _ ())

2

i j

i j

Absolute IC C C
RIC

internal IC C internal IC C




Where, _ (,) i jAbsolute IC C C = sum of weights of

edges that connect
iC with

jC .

iinternal_IC(C) = weighted sum of edges that partition

the cluster into roughly equal parts.

While, internal closeness of the cluster is the average weight

of the edges in that particular cluster.

Fig 1: Chameleon Clustering

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

13

Relative closeness of two clusters is defined as

,

(,)
i j

C Ci j

EC C C

i j

ji
EC EC

i j i j

S
RC C C

CC
S S

C C C C




 

Where,

SEC {
iC ,

jC } is the average weight of edges that belong to

a cut-set of the cluster iC and
jC .

SEC iC is the average weight of edges that belong to a

minimum cut of the cluster iC

| iC | is the number of nodes in Cluster iC .

Two clusters are merged if they have high value for the

product of Relative inter-connectivity and Relative closeness.

Sometimes, a user can assign a higher priority to a particular

parameter using α.

(,) (,)i j i jRI C C RC C C 

For the two clusters if the above function holds value greater

than or equal to the threshold value for similarity then the

clusters are merged.

If α > 1 then more priority is given to Relative inter-

connectivity else if α < 1 Relative closeness gets more

priority. Essentially, in case of α=1 both of them have same

priority.

Pseudo code for merging algorithms for final clusters

1 RI – Relative inter connectivity

2 RC – Relative Closeness

3 α - user defined parameter

4 β – RI x RC

5 th – threshold value to take merging decision

6 n be number of clusters to be merge Algorithm:

7 for i=0 ... n // i and j are used for clusters

8 for j=i+1 ... n

9 merge(i,j);

10 End for // iteration j

11 End for // iteration i

Merge function used above can be implemented as

1 merge(Ci ,Cj)

2 Calculate RI for Ci and Cj

3 Calculate RC for Ci and Cj

4 Calculate β = RI α x RC

5 if β greater than or equal to th

6 merge the two clusters Ci and Cj.

7 else

8 Do not merge the two clusters

9 end if

Disadvantages of chameleon includes,

a) Complexity: Algorithm has highly complex computation

because it performs inter-connectivity and inter-closeness

between all the data objects and this leads to a high

computational complexity on a single processor.

b) It cannot recover from database corruptions.

3. PROPOSED SOLUTION
In this paper algorithm is proposed to reduce time complexity

of chameleon algorithm. The exhaustive search time on K-

Neighboring algorithm is also optimized. Parallel merging

algorithm to merge datasets based on similarity has also

distributed computation across threads. Therefore, it makes it

scalable for larger datasets and gives a highly robust

computation as one part of dataset doesn’t affect the other. It

also improves the complexity of sorting as heap sort is used.

Sorting helps to keep similar item sets together [7].

Phase 1: Parallel K-Nearest Neighbor
This algorithm reduces time complexity of analysis. It reduces

the search time by finding similar data and grouping them

together.

Given a repository it analyses data and then compares the

training data tuple with test tuple to get similarity of data

value. This metric is known as Matric. Their metric is stored

as a value of similarity between the two tested for tuple

values. For the parallel implementation following procedure is

followed:-

1) Sort the dataset based on Euclidean metric as,

 a) Keep root node as the training tuple

 b) Based on the value of Euclidean metric associated with

a tuple put it in max-heap.

2) Generate max-heap with similar data as siblings.

3) A single thread out of the thread pool searches the data

which will be in a single group and divide these data among

other threads in pool.

4) If in step 3 the number of data chunks formed out of

similarity sort is more compared to number of threads then

keep them in queue.

5) Then whenever the threads are free de-queue the elements.

6) Threads will calculate Euclidean distance between all other

data tuple and the data tuples allocated to it.

7) Find the Euclidean distance between all data tuples and

connect them to form graph.

Connect the graph by taking value of Euclidean distance from

the local variable of the thread to which that tuple was

allocated.

8) Repeat step 7 for all the different tuples.

Phase 2: Partition the sparse Graph
After getting the sparse graph from the parallel k-NN method

the graph is to be partitioned using multilevel graph

partitioning algorithms [8] (using ParMETIS - Parallel Graph

Partitioning and Fill-reducing Matrix Ordering [13]).

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

14

In the sparse graph an edge-cut between two points represents

the similarity among them more the weight of the edge cut

implies more similar the two points are.

Partition the graph such that the edge cut is minimized by

finding the minimum edge cuts and removing them from the

graph.

The above action will divide the sparse graph in smaller size

clusters on the basis of their similarity.

Phase 3: Merging the clusters to get final clustering
As the clusters obtained by the partitioning of the sparse graph

are very small and might have noisy data[9],clusters are

merged to form larger sized clusters on the basis of two

factors Relative inter-connectivity and Relative closeness of

the clusters.

Parallel algorithm for merging the clusters:

The parallel threads are being used to perform the merging of

the two clusters. Parallelism is achieved using work pool

analogy.

Here merging of two clusters on basis of their similarity is a

task or work assigned into work pool.

Work pool is the set of these independent tasks, functions or

methods which can be executed in parallel.

Threads which are not executing any process will be assigned

with a task from the pool of work. The task is of merging two

clusters, defined by the function merge(Ci , Cj).

PSEUDO CODE

Algorithm:

1 void heapsort (array_of_nos, int n)

2 {

3 buildHp(array_of_nos,n);

4 shrinkHp(array_of_nos,n);

5 }

6 void buildHp (array_of_nos,n)

7 {

8 loop the three steps bellow till all nodes are

checked;

9 chld = i-1;

10 prnt = (chld-1) / 2;

11 make maximum of children as parents

12 }

13 void shinkhp(array_of_nos,n)

14 {

15 //here each thread is assigned to a particular

parent node

16 prnt=0; //start from root

17 compare left and right child and make maximum as

parent;

18 take the max heap from each thread thereby getting

each parent node ;

19 i.e the nodes having right and left child ;

20 knowing the position of these set of nodes construct

others;

21 }

22 levelorder()

23 {

24 traverse heap in level-order by dividing these levels

to threads;

25 connect only siblings to form a graph ;

26 }

Parallel K-NN clustering with heap sorting algorithm

 Pseudo code of parallel merging algorithms for final

clusters

1 RI – Relative inter connectivity

2 RC – Relative Closeness

3 α - user defined parameter

4 β – RI x RC

5 th – threshold value to take merging decision

6 n be number of clusters to be merge

7 Algorithm :

8 for i=0 ... n // i and j are used for clusters

a. for j=i+1 ... n

i. Assign task to work pool

merge(i,j);

ii. End for // iteration j

b. End for // iteration i

Merge function used above can be implemented as

1 merge(Ci, Cj)

2 Calculate RI for Ci and Cj

3 Calculate RC for Ci and Cj

4 Calculate β = R I α x RC

5 if β greater than or equal to th

a. merge the two clusters Ci and Cj. .

6 else

a. Do not merge the two clusters

7 end if

 Pseudo code of parallel merging algorithms for final clusters

4. EXPERIMENTAL WORK AND

RESEARCH
Advantage of chameleon algorithm is that it can be easily

used to cluster two dimensional as well as three Dimensional

data sets. With regard to parallel chameleon the Experimental

work is carried out and the results are found improving the

performance as compared to the serial chameleon. This paper

compared parallel implementation with the serial chameleon

algorithm with two different data sets of 8,000 and 10,000

data points. Parallel chameleon results in the same clustering

as the serial implementation but it provides a better

performance on the processors with multi-core architecture.

Parallel chameleon is analyzed on two different processors

Intel core i5 and Intel core i7.The algorithm performed a

clustering method by distributing the points equally among

threads so as to balance the results.

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

15

Fig2: Work pool analogy for parallel chameleon.

 Fig 3: Simultaneously utilized CPUs.

The results obtained by each thread was combined to get the

whole clustering output of the given data points as shown in

Figure.The large set of data points were given as input to

check the scalability of the algorithm.

Fig 4: Data set with 8000 data points (C1).

Fig 5: Data set with 10000 data points (C2).

CPU 1 CPU 2 CPU 3 CPU 4

Elapsed

time

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

16

Fig 6: Data set with 20000 data points (C3).

Table 1: Summary of Performance analysis of parallel

chameleon.

Fig 7: Comparative analysis on different processors for the

three data sets.

For the set C1 with 8,000 data points get a speed up of

approximately 4.46 on multi-core processors analyzed as

compared to single core processor like Intel Pentium IV.

While for the set C2 with 10,000 data points we get a speed

up of approximately 2.6x on core i5 processor(with 4 threads)

while on core i7 processor(with 8 threads) the speed up is near

4.8x as compared to single core processor like Intel Pentium

IV. Also for the set C3 with 20,000 data points we get a speed

up of approximately 2.8x on core i5 processor(with 4 threads)

while on core i7 processor(with 8 threads) the speed up is near

5.0x as compared to single core processor like Intel Pentium

IV.

5. CONCLUSIONS AND FUTURE

WORKS
The parallel algorithm helps computing the data with a low

time complexity independent of size of dataset. It works on

symmetric and asymmetric multiprocessors. As openMP

handles the asymmetric loop level nested parallelism, the

algorithm gives performance gain over small scale and large

scale SMPs. Then the portioning of data, thus, is highly

reliable and parallel with the support of the in-built library.

The task construct also helps to do a set of computations to be

easily divided to threads this improves performance of

functions in the program.

Future work includes a tool to perform dynamic modelling of

hierarchical clustering in parallel .The algorithm will be

thread-independent so it will make it viable to run across

platform. The algorithm will be made in such a way that it

works both on parallel and distributed systems.

6. ACKNOWLEDGEMENTS
Our sincere thanks to all the faculty members, acquaintances

and friends who helped us bring this work across.

7. REFERENCES

[1] Hadjidoukas, P. E. & Amsaleg, L.

Parallelization of a Hierarchical Data Clustering

Algorithm Using OpenMP In Proc. the 2nd International

Workshop on OpenMP (IWOMP ’06, 2006)

[2] Garcia, V.; Debreuve, E. & Barlaud, M.

Fast k-nearestneighbor search using GPU Computer

Vision and Pattern Recognition Workshops, 2008.

CVPRW '08. IEEE Computer Society Conference on,

2008, 1-6

 [3] Karypis, G.; Han, E.-H. (S. & Kumar, V.

Chameleon: Hierarchical Clustering Using Dynamic

Modeling Computer, IEEE Computer Society Press,

1999, 32, 68-75

 [4] Sismanis, N.; Pitsianis, N. & Sun, X.

Parallel search of k-nearest neighbors with synchronous

operations.High Performance Extreme Computing

(HPEC), 2012 IEEE Conference on, 2012, 1-6

 [5] Xu, R. & Wunsch D., I. Survey of clustering algorithms

Neural Networks, IEEE Transactions on, 2005, 16, 645-

678

 [6] Maitrey, S.; Jha, C. K.; Gupta, R. & Singh, J.

Article: Enhancement of CURE Clustering Technique in

Data Mining.IJCA Proceedings on Development of

Reliable Information Systems, Techniques and Related

Issues (DRISTI 2012), 2012, DRISTI, 7-11

 [7] J. Han and M. Kamber, “Data Mining: Concepts and

Techniques”, Morgan Kaufmann.2000

 [8] Karypis, G. & Kumar, V. Parallel Multilevel Graph

Partitioning Proceedings of the 10th International

Parallel Processing Symposium, IEEE Computer Society,

1996, 314-319

Processor

Number

of

threads

Number

of Data

Points

Speed Up as

compared to

single core

processor

Intel core i5

processor

4 8000 2.0

Intel core i7

processor

8 8000 4.5

Intel core i5

processor

4 10000 2.6

Intel core i7

processor

8 10000 4.8

Intel core i5

processor

4 20000 3.1

Intel core i7

processor

8 20000 5.5

International Journal of Computer Applications (0975 – 8887)

Volume 79 – No8, October 2013

17

[9] Graph Partitioning Algorithms for Distributing Workloads

of Parallel Computations (generals exam). Bradford L.

Chamberlain. University of Washington Technical

Report UW-CSE-98-10-03, October 1998.

[10] Foti, D.; Lipari, D.; Pizzuti, C. & Talia, D. Scalable

Parallel Clustering for Data Mining on Multicomputers

Proceedings of the 15 IPDPS 2000 Workshops on

Parallel and Distributed Processing, Springer-Verlag,

2000, 390-398.

[11] K. P. Soman, Shyam Diwakar, V. Ajay, InsightInto Data

Mining: Theory and Practice, PHI Learning Pvt Ltd,

2006.

[12] Xu, X.; Jäger, J. & Kriegel; H.-P.A Fast Parallel

Clustering Algorithm for Large Spatial Databases Data

Min. Knowl. Discov., Kluwer Academic Publishers,

1999, 3, 263-290.

[13] George Karypis and Vipin Kumar A Hypergraph

Partitioning Package Version 1.5.3. Army HPC Research

Center. November 22, 1998

[14] https://developer.nvidia.com/cublas

[15] Guha, S.; Rastogi, R. & Shim, K. CURE: an efficient

clustering algorithm for large databases Proceedings of

the 1998 ACM SIGMOD international conference on

Management of data, ACM, 1

IJCATM : www.ijcaonline.org

http://www.cs.washington.edu/homes/brad/cv/pubs/degree/generals.html
http://www.cs.washington.edu/homes/brad/cv/pubs/degree/generals.html
https://developer.nvidia.com/cublas

