
 International Journal of Computer Applications (0975 – 8887)

Volume 79 – No5, October 2013

 1

Design of a Reverse Engineering Model (A Case

Study of COBOL to Java Migration)

Aditya Trivedi Ugrasen Suman
School of Computer Science & IT- DAVV School of Computer Science & IT- DAVV

Devi Ahilya Vishwavidyalaya, Indore Devi Ahilya Vishwavidyalaya, Indore

ABSTRACT
With the progress of the software technology, the existing

legacy systems are becoming obsolete and unable to satisfy

the customer needs and expectations. Most of the legacy

systems designed using COBOL, as it is a programming

language. On the other hand, today Java widely used

programming language for designing systems. The Java is

pure object-oriented, where as the COBOL is procedure

oriented programming language. The legacy systems

designed earlier needs the huge amount of maintenance.

The programmers of these legacy systems are now getting

old moving into the retirement. After that, for people

maintaining legacy systems it will be more difficult because

keep up these legacy systems needs expertise in the

programming language. Therefore, it is necessary to

propose a framework to migrate existing legacy COBOL

systems to object-oriented Java platform. The advantages of

this migration process are that the upholding of the system

running in the different organizations will be easier than the

legacy COBOL systems.

General Terms
Reverse Engineering, Forward Engineering, Reengineering,

Legacy Systems, XML, XML Schema Definition,

Keywords
Legacy code to Object Oriented code, COBOL to Java,

Migration of COBOL to Java, Legacy System Migration.

1. INTRODUCTION
 Nowadays, several government departments, private

institutes, firms etc. are getting computerized and digital. If,

we look few years back with the context of developing

those software systems on which these departments and

firms process their data based on some programming

language. In fact, all the software systems today based on

programming languages, but due to continuous evolution of

programming languages are in trend. Programming

languages and constructs are moving towards the

continuous improvement in their features. The software

system used these programming languages are specific to a

user. Many software systems used procedural programming

language (COBOL, PASCAL and FORTRAN etc). The

scenario has changed now a day and the new programming

constructs in trend (object-oriented programming). This

research, based on the reverse engineering of the legacy

systems to the object oriented system. The reason behind

this migration is, shifting from old technology to new

technology, by the programmers. So, the old programmers

and the programming languages are getting obsolete. Thus,

the softwares based on these procedural languages are

difficult to keep up. But, these softwares not turned out.

This software's do consistently and efficiently. The large

amount of data stored and processed by these softwares.

Thus, the migration needed of the data and the software

from one structure to another. This research is just to give

an architectural approach to migrate in the context of

COBOL systems to Java through XML. Java is an easy and

yet prevailing object-oriented programming language. It

developed to give platform-independency.

We are proposing an approach, which convert COBOL

program to XML schema and this equivalent schema

converted to equivalent UML diagrams. Finally, this

diagrams used in forward engineering process and

generated Java classes as a target language. XML schema

chosen as the intermediate result because XML is flexible

and compatible with other software and hardware

environment. Ultimately, this scheme first, reverse

engineers the COBOL code and finds the domain model.

Now, forward engineering process applied on domain

model to generate equivalent target programming language.

One of the difficulties associated with this software re-

engineering projects is that the program source code

invariably stored in plain text format. This format does not

imitate the fundamental structure of the program. So, the

software re-engineering or code migration tools needed to

discover this structure. This paper sees the sights of the

prospects of accepting XML format to represent program

structure for software systems.

The growth of the object-oriented languages and the

component technologies, give more robust and maintainable

software systems. On the other hand, the decline in the

number of programmers fluent in languages such as PL/IX,

which make it highly desirable to migrate the legacy

software systems. Thus, their need a tool, which migrates.

The fact, program source code typically stored as a plain

text, means the structure of the code hidden. The

specialized tools required to show this structure. XML is an

ideal format to represent program structure. There is a

wealth of XML related tools to aid in visualization, analysis

and transformation of code.

Most people refer to the Unified Modelling Language as

UML. The UML is an international industry standard

graphical notation for describing software analysis and

designs. In UML, U stands for unified because UML is a

standardization and unification of available modelling

notations of Booch, Jacobson, Rumbaugh, among others.

Re-engineering is the process to identify the domain models

from one source code and redesign the system into target

code. For example, legacy systems migrated to new object-

oriented systems. It is the combination of the both process

(reverse engineering and forward engineering) with a little

change of ∆ in the identified domain model, from the source

code. Reverse engineering is the process to generate the

domain model from the source code. The forward

 International Journal of Computer Applications (0975 – 8887)

Volume 79 – No5, October 2013

 2

engineering is the process to redesign the target system

from this domain models.

2. RELATED WORK
There are several migration projects working in this area for

migrating COBOL source code to Java. In year 2010, an

industrial report on migration project often airport

management system [1] presented. A set of tools described

which used to transform a million lines of COBOL code

into Java. Remain disadvantage of this migration project is

the size of the resulting Java code amounted to three times

as much as the original COBOL code. This explained by the

following facts.

In generating the Java code, each COBOL procedural

statement mapped to one or more Java statements. Thus,

alone from the procedural code there is an increase of circa

50% in the number of statements. For instance the GOTO

translated to an Assign and a Return. On the data side each

data declaration converted to a set and a get method on the

character array of the static object. Each such method has

three statements. – An Entry, an Assign and a Return. So,

there are three Java statements for each COBOL

declaration. This expansion is partly compensated by fact

that only the data items used accessed, but including the

first assignment there are still 6 to 8 Java statements for

every referenced COBOL data field.

The author proposes an approach for migration strategy

through a toolkit implemented which automatically

decompose the legacy software to find the software

components encapsulated in different wrappers and creating

new programs. The biggest problem met in re-engineering

tool that we must carry out data flow analysis algorithms.

The performances of the data flow analysis algorithms for

identifying the interfaces of the new programs are

satisfactory, also considering that the tool does not need any

human interaction.[2]

The next work that will involve the toolkit for the next

wrapping and incremental translation phases of the method.

In fact, each identified object has encapsulated into an

object wrapper. The wrapper will implements the

connection through which newly developed objects access

legacy resources. The long-term goal is the re-

implementation of selected legacy object. Just, the objects

whose reimplementation cost-effective replaced,, while the

other legacy objects stay in use in their original form.

An automated COBOL to Java translation presented that

allows for incremental migration and does not guarantee

complete functional equivalence of the generated code with

the first program [3]. In this article, an automated approach

presented for source-to-source translation of COBOL

applications into Java. We demonstrated conversion

method, which aimed for producing more maintainable

code in comparison with other approaches for language

conversion. In some cases the programs produced with this

approach are not functionally equivalent to the original

ones, An algorithmic approach to reverse engineering of

procedural systems to object-oriented platform presented

which uses domain models of the procedural languages to

represent it at a very higher level of abstraction in the form

of abstract syntax tree[4]. The reverse engineering process

starts with internal source code representation of the

procedural system for system understanding and analysis.

The internal representation based on XML as a portable

source code representation that use a procedural language

domain models. The abstract syntax tree used to find the

structural relationships among data items. The syntactical

structure of the language domain models map to the XML

DTD. The procedure begins with identifying candidate

classes by analyzing global data structures and function

formal limits in a single source code file. The same

procedure repeated for multiple source files in a project that

results a complete object-oriented model.

A transformation process and tool C2O
2 COBOL to Object-

Oriented for analyzing COBOL applications presented [5].

The tool is capable of identifying classes and their

relationships with a process of understanding and

refinement in which COBOL data structures analyzed,

aggregated, and simplified semi automatically. The tool can

support different re-engineering methods. It used on a large

application such as the software for managing all libraries

of the University of Florence.

A framework is presented to migrate systems written in

procedural code into an object-oriented platform [6]. The

software analysis based on the portable XML source code

representation that uses a domain model and so, maps the

entities of the programming language domain model to a

DTD. The XML document effectively corresponds to an

AST and has a standard structure and API. Also consider

that such an XML based representation of the source code

thought of as first step towards CASE tool interoperability.

In this paper [7], overviews of research on reverse

engineering XML schemas into UML diagrams. A

conversion and transformation process presented.

Converting a XML schema into a graphical form i.e. UML.

UML constructs used to form a UML pattern are predefined

in UML. This makes the resulting UML diagram simpler

and generally understandable. The transformation process

includes all building blocks of XML schema [8].

A method for reverse engineering XML documents based

on three-level-model and uses a class diagram of UML [9].

Conceptual model maximizes understandably of semantic

concepts by user's knowledge of UML, but not XML

schema. The middle level model addresses the range of

XML schema concepts, such that any XML schema can be

expressed in UML.

3. PROPOSED WORK
We are proposing a model, which based on the reverse

engineering process. This model transfers, source code

(COBOL) to target code (Java). In this, XML used as a

midway source code representation.

Our objectives are to define a reverse engineering model to

migrate COBOL code to Java code, to map COBOL

structure to XML schema/DTD, to map XML schema/DTD

to equivalent domain model, to generate Java code through

forward engineering.

There are several tools and strategies exist to transform

COBOL source code into Java code. The problem with

legacy COBOL systems is that after the five present five

programmers go into retirement there will be no one left to

keep up them. These problems associated with the fact that

it is necessary to propose a framework to migrate legacy

COBOL system to Java platform. Migration of COBOL or

legacy system to Java platform is not new anymore. Several

approaches proposed for migration. The code generated

from these frameworks is three times larger than the code

originally in legacy systems. In this project, we propose a

re-engineering process framework for legacy COBOL

 International Journal of Computer Applications (0975 – 8887)

Volume 79 – No5, October 2013

 3

system to Java code migration, with XML is as the

intermediate language.

3.1 Proposed Framework
This research based on reverse engineering of COBOL

source code and to identify the equivalent UML models.

This UML models then converted into target Java code

through forward engineering. The Figure 1 shows the

proposed framework consists of following parts: COBOL

file, COBOL to XML, XML to equivalent domain model,

domain model to Java file. This discussed in the subsequent

subsections.

The Figure 1 shows the model to migrate COBOL source

code to target Java code. COBOL source files or COBOL

copybook files are the first input to this model, towards

COBOL to XML part. This COBOL to XML converts

COBOL file to equivalent XML schema (XSD)/DTD

(Document Type Definition). This XML schema definition

file then transferred to generate its equivalent domain

model, which generates the UML model for given XML

schema. These two sub-processes COBOL to XML and the

equivalent domain model logically treated as the part of the

reverse engineering. The output of this reverse engineering

process is the domain model equivalent to COBOL source

files. This output from reverse engineering process then

used as the input to generate the target Java code in the next

phase, which logically treated as the forward engineering

phase of the whole migration process. The code generated

from this phase is the target code from COBOL source

code. There are several migration models are available for

migrating COBOL to Java. Figure 1 shows this process.

Fig 1: Framework for COBOL to Java migration

The re-engineering process is the collection of reverse

engineering and forward engineering process, with change

∆ in the artifacts of reverse engineering phase. Figure 2

shows the re-engineering process adopted in this project.

Conceptually, the COBOL procedural structure converted

into XML tree, which in trn reverse engineered into domain

model or UML model. This UML model, forward

engineered into the object-oriented structure, which is the

target object-oriented system. The process of re-engineering

is the process to analyze a subject system and develop a

completely new system.

3.2 Migration Process

There are four steps to migrate:

 Conversion of COBOL source code to XML.

 For XML, identified in the previous step,

DTD/Schema produced. DTDs/Schemas

used to validate the XML source.

 DTD/Schema then reverse engineered into

the equivalent domain models.

 Forward engineering from domain model to

the target Java code.

The Figure 3 shows the conceptual model for the

framework. The diagram shows the process of reverse

engineering and forward engineering. Thus, the

transformation of the COBOL source code to domain model

is the reverse engineering process. The remaining process,

from domain model to Java target code is forward

engineering.

Fig 2: Conceptual Model for the Migration Process

3.3 Mapping XML schema to Domain

Model
The mapping of XML Schema and domain model is done

with the following domain model constructs; Table 1 shows

the generic domain model constructs. The research on XML

Schema to UML reverse engineering is less than the DTD

to UML due to various reasons, such as the fact that DTDs

have been used much longer than XML Schemas and thus

most of the reverse engineering works have only

concentrated on the conversion of DTDs to UML diagrams.

Another reason may be that the reverse engineering target

may not be UML diagrams but some other high level

models.

 International Journal of Computer Applications (0975 – 8887)

Volume 79 – No5, October 2013

 4

Table1 . Mapping of XML Sche ma to UML

ele ments

4. IMPLEMENTATION AND RESULTS
On the basis of our experiments the COBOL program

executed and results shown. Target Java classes generated

for the COBOL program. COBOL program with result

shown in snapshot 1.

Snapshot 1 COBOL file output

Java classes generated for the COBOL program shown in

the snapshot 2. With the tool we used for experiments

generated the target Java classes for domain models we

provide as input.

Snapshot 2 Java classes

The proposed model is successfully generating the Java

code from COBOL file. It can be extend for the large

applications.

XML Schema

UML

Element

Element complex type, with ID

attributes, and key

Class

Abstract element and complex

type, with ID attribute

Abstract

class

Subelement of class complex type Attribut

e

Attribute of the corresponding

element

Stereoty

pe

Element without attributes Package

Reference element with, IDREF

attribute referencing the

associated class and keyref for

type safety (key/ keyref

references)

Association,

aggregation

Association class element and an

additional IDREF references to

association class element and a

keyref in the corresponding

reference elements in the

associated classes

Association

class

Extension of the reference

element, keyref and key of target

class with the qualified attributes

Qualifie

d

associati

on

Reference element, with

subordinate class elem. (hierarch.

rel.)

Composition

Complex type of subclass is

defined as an extension of the

complex type of superclass

Generalization

Currently not mapped Association

constraint

Association element with IDREF

references to all associated classes

(resolution of the n-ary

association)

n-ary

associati

on

 International Journal of Computer Applications (0975 – 8887)

Volume 79 – No5, October 2013

 5

Table 2. Comparison with other tools

5. CONCLUSION
In this project, re-engineering process activities examined,

which uses various phases that aid in re-engineering project

development. Also, we present a model for the reverse

engineering of procedural platform into the object-oriented

platform. We considered COBOL as a procedural language

and Java as an object-oriented language. Starting with

COBOL source code (internal source code), to represent the

procedural system, for system analysis, in reverse

engineering process. XML is portable, the internal

representation given by XML source code that uses a

procedural language domain models. This XML validated

by the produced XML DTD/Schema. This XML Schema

mapped to generate the equivalent domain model. The

domain models based on the generic domain model

constructs for XML schema to UML mapping. Forward

engineering applied on this domain model to generate the

target Java code. Thus, the procedural system re-engineered

this way can improve the quality factors (maintainability,

competence and flexibility).

6. REFERENCES

[1] Harry M. Sneed, “Migration from COBOL to Java: A

Report from the field”, 26th IEEE International

Conference on Software Maintenance in Timisoara,

Romania, 2010.

[2] Carmine Albanese, Thierry Bodhuin, Enrico

Guardabascio & Maria Tortorella, “A Toolkit

for Applying a Migration Strategy: a Case Study”,

Proceedings of the sixth European Conference on

Software Maintenance and Reengineering, 2002 IEEE.

[3] Maxim Mossienko, “Automtated Cobol to Java

Recycling”, Proceedings of the Seventh European

Conference On Software Maintenance And

Reengineering, 2003 IEEE.

[4] Dr. Ugrasen Suman & Dr. Maya Ingle, “Reverse

Engineering of Procedural Systems: An Algorithmic

Approach”, International Journal of Computer Science

& Information Technology(IJCSIT), Serial

Publications, NewDelhi, January-June 2008.

[5] A. Fantechi, P. Nesi, E.Somma, “Object Oriented

Analysis of COBOL”. 1997 IEEE

[6] Ying Zou, Kostas Kontogiannis, “A Framework for

Migrating Procedural Code to Object Oriented

Platforms”.

[7] Augustian Yu, Robert Steele, “An Overview of

Research on Reverse Engineering XML Schemas into

UML Diagrams” Proceedings of the third international

conference on information technology and

applications(ICITA’05), 2005 IEEE.

[8] Flora Dilys Salim, Rosanne Price, Shonali

Krishnaswamy, Maria Indrawan, “UML

Documentation Support for XML Schema”,

Proceedings of the 2004 Australian Software

Engineering conference (ASWEC’04), 2004, IEEE.

[9] Yang Weidong, Gu Ning, Shi Baile, “Reverse

Engineering XML”, Proceedings of the 2004

Australian Software Engineering conference

(ASWEC’04), 2004, IEEE.

[10] Koopa COBOL Parser Generater.

[11] DTDGenerater “dtdgen 7.0”

[12] Eclipse JEE-JUNO

[13]Eclipse-Galileo Modelling Framework.

IJCATM : www.ijcaonline.org

