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ABSTRACT 

The aim of the present study is to investigate and explore the 

capability of the multilayer perceptron neural network to 

classify seismic signals recorded by the local seismic network 

of Agadir (Morocco). The problem is divided into two main 

steps, the feature extraction step and classification step . In the 
former, relevant discriminant features are extracted from the 

seismic signal based on the time and frequency domains. 

These are selected based on the analysts’ experience. In the 

latter step, a process of trial an error was  carried out to find 

the best neural network architecture. Classification results on 
a data set of 343 seismic signals  have demonstrated that the 

accuracy of the proposed classier can achieve more than 94%. 

General Terms  

Pattern Recognition, Classification. 

Keywords 

Seismic signal, classification, multilayer perceptron neural 
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1. INTRODUCTION 
Seismic waves can be produced by many types of sources. 

The latter include tectonic, quarry blast, underground nuclear 

explosions and cultural activities. These seismic waves are 

detected by seismic monitoring networks and then converted 

to digital signal and stored. The recorded signal is then treated 
and analyzed to extract essential information. The 

fundamental first step in seismic signal processing is to assign 

each detected event to a class representing the type of physical 

phenomena generating it. Such operation leads to a classified 

seismic database, which can be used in future studies. In view 
of the very high volume of data, the work conducted by 

analysts to identify the source of each detected event is 

considerable and tedious. Therefore, constructing a reliable 

automatic system for recognizing the seismogram of each 

incoming event is crucial. This problem has been faced by 
seismologists in all over the word since the introduction of 

digital seismic monitoring systems. A review of the literature 

shows that many different classification methods have been 

proposed. These methods incorporate spectral ratio of seismic 

phases [1]-[6], statistical analysis [7][8],cross-correlation [10], 
and wavelet analysis [11]. Limitation of the deterministic 

models have led to more sophisticated techniques that 

integrate artificial neural networks to implement the classifier 

(e.g.,  Falsaperla et al.,  1996 [12]; Musil and Plesinger, 1996 

[13]; Muller et al., 1999 [14]; Dowla et al., 1990 [15] ; Tiira, 
1999 [16]; Jenkins and Sereno, 2001[17]; Ursino et al., 

2001[18]; Del Pezzo et al., 2003[19]; Scarpetta et al., 2005 

[20]; Yıldırım et al, 2010 [21]).  

Recently, artificial neural networks have attracted increasing 
attentions for solving many real word problems where 

traditional techniques cannot be used or are found to be 

insufficient to describe and model the behavior of the 

problem. The power of neural networks lies in their ability to 

model extremely complex non-linear mappings, and in their 
capability to learn easily the input/output relationship directly 

from the data being modeled. On the contrary, the most 

traditional methods require a good understanding of the 

problem.  

The aim of the present study is to investigate and explore the 
capability of the multilayer perceptron (MLP) neural network 

to classify seismic signals recorded by the local seismic 

network of Agadir (Morocco). This problem is divided into 

two main steps: the first is the processing and feature 
extraction step, where the relevant characteristics of the signal 

are extracted. Six features, regularly used by analysts, were 

considered. The second is  the classification step, where a 

process of trial an error was carried out to find the best MLP 

architecture (the number of hidden neuron, activation function 
…etc) and training algorithm. To do so, many configurations 

were tested.  

Four classes are considered in this study. These are: noise 

(NS), local earthquake (LE), regional earthquake (RE) and 

quarry blast (QB). 
The rest of this paper is structured as follows. The second 

section gives a brief explanation of the features used. The 

third section describes the functioning of the MLP neural 

network classifier. The fourth section presents classification 

results and illustrates the performance of the classier. Finally, 
the fifth section reports some conclusions.  

2. DATA AND FEATURE EXTRACTION 
The data used in this work are collected by the local seismic 
network of Agadir. The latter consists of five stations 

deployed around Agadir city (M orocco). Each station consists 

of a vertical-component short-period seismometer with an 

output proportional to ground velocity. Seismic signals are 

continuously acquired and transmitted in real-time via a 
terrestrial phone line to the national database in Rabat city, 

and via a radio-frequency FM modulated to the local data 

center in Agadir city, where they are digitized and analyzed 

(Figure 1).Each detected event is recorded with the pre-event 

and post-event data in order to assure complete recording of 
seismic events. The employed detector is a power-based time 

domain trigger, whereby the power within a long time-
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window (LTA) is continuously contrasted with the power 

within its consecutive short time-window STA [22]. The 

algorithm alerts detection and triggers the recording process 
whenever the STA/LTA ratio exceeds a pre-defined threshold. 

In this manner, diverse event types are continually detected. 

In addition to earthquake events, numerous quarry blast 

seismograms are recorded on a daily basis. This is due to 

many quarries located surrounding Agadir city. Many other 
diverse seismic events are also detected. These are often 

generated by seismic sources such as wind, ocean waves and 

cultural activities (e.g.,  machinery). Typical vertical-

component seismograms of four different seismic events are 

plotted in figure 2. 

2.1 Feature extraction 
The goal behind the feature extraction step is to reduce the 

high dimentionality of each seismogram to a limited and 
relevant set of signal characteristics that are able to represent 

the maximum information existed in the seismogram. In this 

work, the feature set mostly used by seismic signal analysts  

corresponds to: 

Envelop  
The envelope similarity is a measure of similarity between the 

signal shape e of each incoming event and the reference shape 

er determined from explosion events. The envelop similarity 

Es is measured using Manhattan distance: 

 

   
              

   

      
   

 

where 

 

                      
 

z(t) is vertical component seismogram, and HT indicates the 

Hilbert Transform.  

Duration 

The duration Td is defined as the total duration in seconds of 

the event record from the P wave onset tp to the end of the 

signal tend defined as the point where the signal is no longer 

seen above the noise.  
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Fig 1. Station location map of the local seismic network of Agadir 
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Hour 

Day time event distribution reveals that quarry explosions are 
generally launched between 11:00 a.m. and 02:00 p.m and 

between 05:00 p.m and 06:00 p.m GMT. Beyond this time 

intervals, explosion are absent and the seismicity pattern 

should not be affected by this type of event. Parameter hour 

Hcan be computed as follows: 
 

H = hour+minute/60+second/3600   

 

Spectral centroid 

The Spectral centroidSc indicates the barycenter of the event 

spectrum. This measure is obtained by computing the “center 
of gravity” using the normalized amplitude of FFT envelop e 

weighted by its corresponding frequencies. 

 

   
          

   

      
   

 

 

e(i) represents the amplitude of theFFT envelop of the bin 

number i, and f(i) represents its frequency. 

Spectral length 

Spectral lengthSl of each event is estimated by 
applyingthresholds on its FFT envelop. 

 

Sl=fn-f0  

 

wheref0 and fn are the first and last selected frequency bins. 

Skewness 

Skewness is used here to characterize the degree of symmetry 

or asymmetry of an event signal around its mean. Sfor a 
roughly symmetrical signal is near zero. S of a real signal is  

given by: 

 

  

 

 
            

   

 
 

 
            

    
   

 

 

N is the number of sample in the event signal zand    its mean. 

3. CLASSIFIER STRUCTURE 

3.1 MLP Neural network 
Artificial neural network [23] involves an arrangement of 
many simple processing elements, called nodes or neurons, 

interconnected through weighted connection to 

implementcomplex non-linear mappings between inputs and 

outputs. Numerous types of neural networks exist in the 

literature. In this study, the most commonly used neural 
network, called supervised learning multilayer perceptron 

neural network, is consider. As its name indicates, it is  

composed of several layers. These are separated into input 

layer where the extracted features are received, output layer 

where the network indicates the predicted class, and hidden 
layers between the input and output layers. The input of each 

neuron in the hidden and output layers come from the outputs 

of the neurons in the precedent layers andfrom a constant 

input called the bias. Each neuron is  characterized by a vector 

of weights that multiply its input, and by an activation 
function that calculates the output of the neuron from the 

weighed sum of its inputs.Theweights, along with the network 

architecture, store the knowledge of theneural network. An 

example of a MLP neural network with two hidden layers is 

shown in figure 3. 
In order to use the MLP, it should be trained on a pair 

input/output set of data to learn to associate the inputs with 

the corresponding outputs. During the training process, each 

example in the training set is presented to the neural network, 

and a learning algorithm modifies the weights of the network 
in order to minimize the error between the desired  and 

observed outputs. Mean squared error (MSE) is a commonly 

used metric to evaluate the difference. Each evaluation of all 

examples in the training set is called an epoch. In fact, the 

goal of the network training is not to learn an exact 
representation of the training data itself, but rather to build a 

model of the process which generates the data. The 

generalization capability of the neural network can be 

estimated by predicting the class of events that are not seen 

during training. Therefore, after training, the performance and 
generalization ability of the network has to be evaluated on an 

independent set of input/output examples, called data test set. 

Fig. 2.Vertical component seismogram of four seismic events generated by different sources and recorded by the seismic 

local network of Agadir. (a) local earthquake, (b) regional earthquake, (c) quarry blast, (d) machinery. 
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3.2 Neural network structure 
The crucial and difficult task in designing a neural network is 
to determine an optimal topology that achieves  the best 

results. Indeed, the choice of the network architecture and the 

activation functions as well as the learning algorithm has a 

significant impact on the network performance, its 

generalization skills and its training duration. For example, 
the number of connections in a neural network reflects its 

ability to store information. Therefore, if a network does not 

possess enough connections, the training algorithm may never 

converge and the network may not have enough flexibility to 

capture the nonlinearities in the data. Conversely, too many 
connections (hidden neuron) can lead to an excessively long 

training time and, worse, to overfitting. When overfitting 

occurs, the network will start to model random noise in the 

data. As result, the network has learnt the training data 

extremely well, but its generalization capability for unseen 
data is poor. This highlights the need to optimize the 

complexity of the model in order to achieve the best 

generalization. 

In a classification problem, the number of neurons in the input 

layer is determined by the number of features that represent 

the signal. The number of output nodes is fixed by the number 

of classes; one output node per class. In this manner, four 
output neurones were used to represent the four classes as 

follows: LE-1000, NS-0100, QB-0010 and RE-0001. The 

appropriate number of hidden layers and the number of 

neurons required in each hidden layer as well as the activation 

functions remains an open question and problem complexity 
depending. They should be chosen in order to improve the 

classifier performance and generalization. 

It has been established that, for nearly all problems, one 

hidden layer with sigmoid activation functions and enough 

neurons is sufficient to represent any functional relationship 
between inputs and outputs [24]. However, although it is 

capable of modeling such non linear relationships, it may 

require too many hidden neurons.  

There exist several automatic methods of selecting the optimal 

architecture of a neural network such as genetic algorithms 
and adaptive processes [25][26][27]. In this study, a trial and 

error process was conducted. 
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Fig. 3. Architecture of the multilayer perceptron neural network used to classify seismic events. 
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3.3 Performance evaluation 
The performance and generalization capability of a trained 

neural network should be generally tested using a set of data 

that are not used during training. One issue that is usually 

faced when using supervised neural networks is how to split 

the available data into a separated training set and test set. In 
practice, the data can be divided depending on its quantity. 

Sufficiently large data set can be divided into three mutually 

disjoint sets using the hold out method [28].These sets are: 

training set, validation set and test set. The training set is used 

to adjust the weights of the ANN during its training process. 
The validation set is used to stop training and avoid 

overfitting the data. The test set is used to evaluate the final 

classification performance. When the amountof available data 

is limited, it may not be sufficient to be separated into three 

independent sets to train and test the network. In this situation, 
applying cross-validation and especially k-fold cross-

validation technique [28][29] is  considered more accurate and 

reliable. This technique is commonly used when comparing 

the performance of two or more supervised neural network 

models. The k-fold cross-validation consists in partitioning 
randomly the available data into k disjoint subsets (folds) of 

equal (or approximately equal) size. K iterations of training 

and testing are then performed. Within each iteration, a 

different subset of the data is used for testing whereas the 

remaining k-1 subsets are used for learning. The k test results 
are then averaged, and the model with the best outcome is  

chosen. The samples should be distributed among the k folds 

in a way that each fold contains examples from all classes. 

Given a set S of m examples, a single run of k-fold cross 

validation proceeds as follows: 

1. Arrange the examples in a random order.  

2. Divide S into k disjoint equal-sized folds (approximately 

m/k examples each.): S1, …,Sk  

For i= 1 to k do 

- Train the classier using all the examples that do not 
belong to Fold i. 

- Test the classier on all the examples in Fold i.  

- Compute the confusion matrix of the test i 

3. Return the total confusion matrix 

The network training process used the ‘early stopping’ 
mechanism [29] to avoid overtraining and to reduce training 

time. In this technique, in each iteration of k-fold cross-

validation,a potion of the training data is randomly selected to 

be used as a validation set.The idea is to evaluate the training 

and validation error simultaneously and stop the training 
process when the validation error starts increasing. The 

training error is obtained using the training set and the 

validation error is calculated using the validation set.  

Since the training process is based on optimizing the error 

function between the target and output of a neural network, 
finding the global minimum is not guaranteed as the error 

surface can include many local minima in which the algorithm 

can become stuck. To improve the result, the network should 

be trained several times with different initializations of 

weights and biases. The solution with the lowest error is then 
chosen. 

4. RESULTS AND DISCUSSION 
To choose the best classifier topology and evaluate its 
performance, a data set of 343 event seismograms was chosen 

and classified by seismic analysts. These seismograms are 

distributed among the four classes as depicted in table 1. 

 

Table 1.Distribution of seismograms in the four classes 

class LE NS QB RE 

Number of event 83 115 100 45 

 

 

After data processing, the six input features were 

extracted.Thirteen MLP neural networks of different number 

of neuron in hidden layer were created.Each configuration 

wastrained and then tested on independent data sets.To obtain 

more reliable results, the k-fold cross validation method was 
used to estimate each classifier generalization capability. To 

do so, the data were randomly split into five approximately 

equal partitions (k=5). In each partition, the classifier was 

tested after being trained using the four remaining partitions. 

Using this methodology, the process of training is repeated 5 
times, each time using a different test set chosen from the 5 

partitions until all the five sets have been used. To avoid 

overtraining, the early stopping strategy was used. After each 

epoch, the network is tested on a validation data set. The error 

produced by the network determines wether the training 
process should be stopped or continued. Figure 6 shows the 

training and validation errors for the first iteration of the 5-

fold cross-validation (i=1). As displayed in figure 6, the 

training error decreases as training continues, and the 

validation error normally deceases during the initial phase of 
training. However, when the network begins to overfit the 

data, the error on the validation set will typically begin to 

increase. The training process is stopped when the validation 

error reaches its minimum.  

For each architecture, the results of the 5 tests are averaged, 
and the model with the best outcome is selected. The 

classification result of each test is summarized in a confusion 

matrix that shows the number of correctly classified and 

misclassified events of each class. The output of the cross-

validation is the sum of the five confusion matrices. Thus it 
indicates the finale performance of the classier on the five test 

sets. The average recognition percentages  (correctly classified 

signals/total) obtained by each configuration are represented 

in figure 5. It can be seen that performance increases very  

quickly with the number of neurons in the hidden layer. The 
performance becomes stable thereafter between 4 and 7 

neurons. But, when the number of hidden neurons exceeds 7, 

the performance starts to change significantly and becomes  

unstable. In accordance with these results, the model with five 

hidden neurons was selected to be the best topology. This is 
because of the best performance achieved with a small 

standard deviation. Figure 4 illustrates the results of the 

selected model in more details. Each confusion matrix shows 

in the columns the target classes and in the rows, the predicted 

classes. The diagonal indicates agreement and the other cells  
indicate the misclassified events. 

To avoid converging to a local minimum, the network was 

trained 10 times with random initializations of weights and 

biases. The solution with the lowest error was then chosen. 

The performance of the classifier was evaluated by the 
computation of the following parameters:  

Sensitivity (Recall): It measures the ratio between the number 

of correctly classified signals of a class and the total number 

of signals of that class. Therefore, it measures the ability of 

the classifier to recognize signals of a particular class. 
Specificity: It is the ratio between the number of signals that 

were classified as not belonging to a class and the total signals  

that did not belong to that class, and thus it measures the 

ability to recognize signals that are not of a particular class.  
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LE 15 1 0 2 

NS 0 22 0 0 

QB 1 0 19 0 

RE 0 0 1 7 

 LE NS QB RE 

Test 1 

 

LE 13 0 3 0 

NS 1 23 0 0 

QB 3 0 17 0 

RE 0 0 0 9 

 LE NS QB RE 

Test 2 

 

LE 16 0 1 0 

NS 0 22 0 0 

QB 1 0 19 0 

RE 0 1 0 9 

 LE NS QB RE 

Test 3 

 

 

LE 15 0 2 0 

NS 1 23 0 0 

QB 0 0 18 0 

RE 0 0 0 9 

 LE NS QB RE 

Test 4 

 

LE 16 1 0 0 

NS 0 22 0 0 

QB 1 0 19 0 

RE 0 0 1 9 

 LE NS QB RE 

Test 5 

 

LE 75 2 6 2 

NS 2 112 0 0 

QB 6 0 92 0 

RE 0 1 2 43 

 LE NS QB RE 

Total 

 

 

 

 

Fig. 4. Confusion matrix of the five tests for the chosen five hidden neurons MLP. The columns correspond 

to the target classes, and the rows correspond to the predicted classes 
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Fig. 5. Mean performance and standard deviation as a function of the hidden unit numbers. The arrow indicates the 

result of the selected 5 hidden-neuron layer. 

Fig. 6. Training and validation errors of the best selected classifier (5 neurons in the hidden layer)in  the first test run as 
a function of the training epoch number.The training process is stopped when the validation error starts to increase 

(epoch= 50). 
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 Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) Error (%) 

LE 90,36 96,15 88,24 94.75 5.25 

NS 97,39 99,12 98,25 98.54 1.46 

QB 92,00 84,95 93,88 95.92 4.08 

RE 95,55 98,99 93,48 98.54 1.46 

 

 

Accuracy (Exactitude): It measures the ratio of correctly 

classified signals to the total signals. 

Error: It measures the ratio between the incorrectly classified 
signals to the total signals.  

Precision:It measures the ratio between the number of 

correctly classified signals of a class and the total number of 

signals assigned to that class.Therefore, it represents the 

capability of the classifier to not include signals of other 
classes in the considered class.  

These parameters were extracted from the final confusion 

matrix (figure 4) and are presented in Table 2 for each class. 

As shown in Table 2, the specificity of the classifier is better 

than its sensitivity except for the class QB. The class NS 
posses the highest value of sensitivity and specificity  as well 

as precision. The classifier is more able to recognize the 

signals of the classes RE and NS than the classes LE and QB. 

The accuracy of the classifier is generally good.  

 The performance of the MLP neural network is found to be 
satisfactory and we think that this system may be made more 

accurately by increasing the variety and number of input 

features.  

5. CONCLUSION 
In this work, the performance of a MLP neural network for 

classifying seismic signals  recorded by the local seismic 

network of Agadir was examined. Based on a set of signals  

used for evaluation, it was demonstrated that the MLP 
classifier is able to identify the class of each signal with an 

acceptable accuracy. However, the classifier is considered as a 

black box for seismologists and the results cannot be 

interpreted. Moreover, due to the small size of the data used, 

the generalization capability of the classifier should not be 
trusted. Thus, the proposed method is not yet being employed 

in the monitoring system. Future work is oriented first at 

performing a deep analysis of signals  of each class in order to 

extract more efficient discriminant features. A second concern 

is to design ‘an online’ classification system that is able to 
integrate expert knowledge and improve the classification 

results. 
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