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ABSTRACT
The fuzzy commitment scheme is one of most popular biometric
cryptosystems that aim at securing cryptographic keys using bio-
metrics. Because of the high recognition accuracy exhibited by the
iris, iris-based fuzzy commitment schemes, among other modali-
ties, provide the most practical performance rates. Unfortunately,
existing iris-based fuzzy commitment schemes do not incorporate
noise masks, generated along with iris-codes to highlight unwanted
regions of the iris, because there is no way to know the mask of
the decoding iris sample in advance. Therefore, the decoding ac-
curacy of iris-based fuzzy commitment schemes is much less than
the recognition accuracy of the underlying iris recognition system.
This paper presents an iris-based fuzzy commitment scheme that
uses the noise mask of the encoding iris sample at both encoding
and decoding stages. Experimental results show that the proposed
scheme provides a remarkable improvement in the decoding accu-
racy of iris-based fuzzy commitment schemes.
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1. INTRODUCTION
Recent advances in biometric technology paved the way for the
emergence of several new applications other than the traditional
application of personal authentication/identification. Providing se-
cure management of cryptographic keys is one of such applications.
Systems that employ biometric traits to secure cryptographic keys
are often called biometric cryptosystems [13]. The Fuzzy Commit-
ment Scheme (FCS) [8] is one of the most popular biometric cryp-
tosystems that has been applied successfully to iris [2, 7, 9, 12, 15],
fingerprint [10], and face [1] biometrics. FCS binds cryptographic
keys, encoded using Error Correction Codes (ECC), to binary bio-
metric feature vectors using simple XOR operation.

Due to the high recognition accuracy exhibited by iris biometric
[5], iris-code based FCSs provide higher performance rates, com-
pared to FCSs applied to other biometric characteristics. Besides,
unlike other biometric traits from which real-valued feature vec-
tors are extracted, iris-codes are binary feature vectors extracted
from iris texture using the standard iris recognition algorithm of
Daugman [3]. That is, the FCS can be applied directly to iris-codes
whereas an extra binarization step, that may cause information loss,
is required before it can be applied to other biometric traits.

In Daugman’s approach to iris recognition, in addition to the iris-
code, a corresponding noise mask of the same size is generated
to designate unwanted regions of the iris such as eyelids, eye-

Fig. 1. Illustration of the Fuzzy Commitment Scheme.

lashes, and specular highlights. Incorporating masks of enrolment
and authentication iris samples in the matching process improves
the recognition accuracy significantly [4]. However, incorporating
those masks in iris-code based FCSs would introduce implementa-
tion difficulty because only the enrolment iris sample is available
at the time of encoding (key binding) [6]. As a result, current iris-
based FCSs [2, 7, 9, 12, 15] do not use masking information neither
at encoding nor at decoding phases and hence the decoding accu-
racy of such schemes is much less than the recognition accuracy of
the underlying iris recognition system.

This paper proposes an iris-code based FCS that benefits from noise
masks and hence improves the decoding (key release) accuracy. In
this scheme, the noise mask of the enrolment iris sample is em-
ployed at both encoding and decoding stages. Experimental results
show that the decoding accuracy of the proposed scheme, which in-
corporates a single noise mask, outperforms the decoding accuracy
of FCS implementation that does not employ any masks.

The rest of this paper is organized as follows: a brief review of
the FCS is given in Sect. 2. The proposed scheme is explained in
Sect. 3. Experimental results are presented in Sect. 4 and Sect.5
concludes the paper.

2. FUZZY COMMITMENT SCHEME
Figure 1 shows an illustration of the FCS. As illustrated in the fig-
ure, the FCS requires a biometric template, t, to be represented as
a binary string. Hence, a non-binary template need to be binarized
via an optional binarization module into a binary template, tb, be-
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Fig. 2. Genuine and imposter distributions. (a) incorporating noise masks, (b) without noise masks (iris-codes only), and (c) incorporating noise masks of the
enrolment samples only.

fore the FCS can be applied. For iris-codes, tb is identical to t since
iris-codes are binary by default. On enrolment, the cryptographic
key K, that we want to secure using the biometric templates, is en-
coded using an appropriate ECC(s) into a codeword C of length
n = ‖tb‖. Both the binary template and the encoded key are then
XORed to produce a biometrically secured key Kbio, also called a
biometric key, as follows:

Kbio = C ⊕ tb (1)

Furthermore, the hash value of the random key H(K) is computed
and stored along with the biometric key in a central storage or a
user-specific token.

At the time of verification, a binary template t
′
b is extracted from a

live biometric sample captured from the person being verified and
XORed with the stored biometric key to obtain a possibly corrupted
codeword C ′:

C ′ = t′b ⊕Kbio (2)

The obtained codeword is decoded using the ECC(s) employed on
enrolment to get the verification key K ′. Finally, the hash value
of the recovered key, H(K ′), is computed using the same hashing
function employed on enrolment and compared to the stored hash
value, H(K). Only if the two hash values are identical, the key is
released; otherwise, the authentication process fails.

3. FCS FOR MASKED IRIS-CODES
Iriscode is a binary representation of discriminative features ex-
tracted from an iris image. Thus, the similarity between any two
iriscodes, A and B, of length n can be measured simply using the
normalized Hamming distance as follows:

dH =
‖(A⊕B)‖

n
, (3)

where ⊕ denotes XOR and ‖ · ‖ the norm of the binary vector.
Typically, iris images include unwanted regions such as eyelashes,
eyelids, specular reflections, etc. Therefore, a corresponding binary
noise mask, of the same size as the iris-code, is generated in addi-
tion to the iris-code to highlight those noisy regions. Hence, the
similarity between iris-codes taking into account their correspond-
ing noise masks can be measured as follows [4]:

dH =
‖(A⊕B) ∩MaskA ∩MaskB‖

‖MaskA ∩MaskB‖
, (4)

where ∩ denotes the AND operation and MaskA and MaskB are
the binary masks corresponding to iris-codes A and B, respectively.

Incorporating noise masks in the matching process improves the
recognition accuracy significantly. We demonstrate this experimen-
tally using CASIA-IrisV3-Interval iris database [14] and the open
source iris recognition system described in [11]. This database con-
tains 2639 8-bit grey scale images, with a resolution of 320 × 280
pixels, collected from 395 different classes (eyes) of 249 subjects.
Because the adopted iris recognition system cannot derive iris-
codes correctly from poor quality images in this database, we ex-
cluded erroneous iris samples and used a dataset of 2422 samples
from 393 irises in our experiments. Figures 2(a) and 2(b) show
the Hamming distance distributions for comparisons between iris-
codes generated from same and different irises with and without
noise masks respectively. These figures show clearly that employ-
ing masks provides much better separability between genuine and
imposter distributions.

Because masking information of the decoding sample is not avail-
able a priori (at the encoding stage) iris-based FCSs do not incorpo-
rate noise masks. In this paper, we show that using the noise mask
of only the enrolment sample at both encoding and decoding stages
can improve the decoding accuracy of iris-based FCSs. The Ham-
ming distance between a pair of iris-codes, A and B, incorporating
only the noise mask of A is:

dH =
‖(A⊕B) ∩MaskA‖

‖MaskA‖
, (5)

Figure 2(c) shows same and different Hamming distance distribu-
tions computed using Eq. (5). Although the separability between
the two distributions is not as good as in the case of using masks
of both the encoding and decoding iris codes (Fig. 2(a)), it is much
better than the case where no masks are used at all (Fig. 2(b)). Obvi-
ously, this is due to the fact that masks generated from the same iris
sample are more similar than masks generated from different irises.
For CASIA-IrisV3-Interval iris database, we found that, using the
above-mentioned setup, the average similarity between masks of
same irises is 88.57% while the average similarity between masks
of different irises is 35.14%. This implies that using the mask of the
encoding sample at both encoding and decoding stages in iris-based
FCSs, instead of doing without any masking information, would
improve the decoding accuracy of such schemes significantly.

The proposed iris-based FCS is illustrated in Fig.3. Similar to ex-
isting iris-based FCS implementations, the proposed scheme is a
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Fig. 3. Proposed iris-based FCS

two-factor scheme. At the encoding stage, an iris sample is cap-
tured from the user and both of the iris-code and noise mask are
derived from that sample employing the standard iris recognition
system proposed by Daugman [3]. Masking information is added
to iris features information, represented by the generated iris-code,
by ANDing it with the noise mask. Since the noise mask of the
encoding sample will be employed at the decoding stage, it must
be stored in a user-specific token or card as depicted in Fig. 3. At
the same time, the cryptographic key K, to be committed by the
masked iris-code, is prepared by the appropriate ECC(s) to obtain
an encoded key of the same size as the iris-code. Finally, the com-
mitment step is carried out by XORing the encoded key and the
masked iris-code. The result of this step is a biometrically secured
key which is stored along with the ECC(s) information and the hash
value H(K) of the original key in the user-specific storage. At the
decoding stage, an iris sample is acquired, from the user who asks
for releasing the key, and iris-code is generated from that sample.
The masked version of this sample is obtained by ANDing it with
the noise mask of the encoding sample which can be retrieved from
the user-specific storage. Once the masked iris-code is obtained, it

is XORed with the biometrically secured key and the result is de-
coded using the stored ECC information to obtain the EC decoded
key K ′. At the last step of the decoding stage the hash value of
the k′ is computed, using the same hashing function employed at
the encoding stage, and compared to the hash value of the original
key. If both values are identical, the decoded key K ′ is released for
further processing; otherwise, the key release process fails.

4. EXPERIMENTS AND DISCUSSION
To evaluate the improvement in decoding accuracy after masking
out noisy bits of the enrolment iris sample, we follow the well-
known iris-based FCS implementation of Hao et al. [7]. This sys-
tem was tested on a small private set of ideal iris images (70 classes,
with 10 samples from each class). Experiments in this paper are
carried out on the publicly available CASIA-v3-Interval iris dataset
that consists of 2639 8-bit gray scale images, with a resolution of
320 × 280 pixels, collected from 395 different classes (eyes) of
249 subjects. It is therefore not expected to match the performance
reported by Hao et al. However, since our concern here is to com-
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pare the decoding accuracy of FCS implementation for masked and
unmasked iris-codes, it is not critical to match their reported per-
formance for unmasked iris-codes. As mentioned in the previous
section, iris-codes are generated using the open source MATLAB
implementation for iris recognition provided in [11]. This imple-
mentation generates 9600-bit iris codes, together with their corre-
sponding 9600-bit noise masks.

At enrolment, a masked iris-code is obtained from each iris-code
via ANDing it with its corresponding noise mask and a crypto-
graphic key K of length l is encoded using the two-layer ECC
scheme, described in [7], into an np(= 9600)-bit codeword c.
This concatenated ECC scheme combines Hadamard and Reed-
Solomon ECCs to deal with background and burst errors in iris
codes, respectively. In the first layer, bits in K are divided into kRS

blocks of k-bit each. This set of blocks is then represented as a
message of kRS symbols over F2k and encoded into a codeword of
nRS symbols using a (nRS , kRS , tRS) Reed-Solomon(R-S) code
with a correction capacity tRS = (nRS − kRS)/2. In the second
layer, each of the resulting nRS symbols is represented as a k-bit
binary word and encoded into a 2k−1 bit codeword using a (2k−1,
k, 2k−2) Hadamard code. Such Hadamard code is generated from a
Hadamard matrix of order k− 1 and can correct up to 2k−3 − 1 er-
roneous bits in each codeword. The following equation shows how
the size np of the final encoded key and the parameters of both
Hadamard and R-S codes are related:

np = nRS × 2k−1 (6)

For instance, a 40-bit key can be encoded into a 9600-bit codeword
via encoding it using the R-S(75,5), to get a 8×75 = 600-bit code-
word and then encoding each 8-bit chunk in this codeword using the
(128, 8, 64) Hadamard code to obtain the final 75 × 128 = 9600-
bit codeword. In our experiments, the (128, 8, 64) Hadamard code
is found to give the best correction results for background errors.
Thus, the correction capacity of the implemented ECC scheme de-
pends only on the R-S parameters, nRS and kRS . The lowest cor-
rection capacity is obtained when nRS = kRS (i.e., only Hadamard
encoding is employed). In other words, the correction capacity in
this case would not exceed 25% of the encoded codeword, since
the correction capability of sole Hadamard coeds is up to 25%. On
the other hand, the correction capacity of the overall ECC scheme
increases as the difference between nRS and kRS increases. Bio-
metrically secured keys are then obtained by XORing the obtained
encoded key with each masked iris-code.

At verification, the intra-user decoding accuracy is evaluated us-
ing leave-one-out cross-validation strategy. For each class, only one
sample is considered as the enrolment sample and its noise mask is
used to generate masked codes for the remaining iris samples for
that class. Each verification iris-code is then XORed with the bio-
metric key generated using the enrolment sample and the obtained
result is decoded using ECCs employed at enrolment. Verification
templates are shifted circularly up to 10 bits in both directions, to
account for misalignment, and the above procedure is repeated af-
ter each shift. The overall process is repeated for other iris samples
of the same class. On the other hand, to evaluate the inter-user de-
coding accuracy, each iris-sample for each class is treated as the
enrolment sample and matched against all samples from all other
classes.

Table 1 shows the experimental results obtained using different
R-S codes. The results show that, for unmasked iris-codes based

Table 1. Experimental results
Masked iris-codes Unmasked iris-codes

Key length FRR(%) FAR(%) FRR(%) FAR(%)

376 R-S (75, 47) 28.0103 0.0755 75.5297 0
360 R-S (75, 45) 25.0258 0.1149 72.9845 0
344 R-S (75, 43) 22.5323 0.1554 70.9302 0
328 R-S (75, 41) 19.8708 0.2110 68.3592 0
312 R-S (75, 39) 17.7132 0.2832 65.7235 0
296 R-S (75, 37) 15.8140 0.3849 60.5814 0
280 R-S (75, 35) 13.6176 0.5249 57.9845 0
264 R-S (75, 33) 11.7054 0.7898 55.2196 0
248 R-S (75, 31) 11.1628 0.9392 54.6512 0
232 R-S (75, 29) 9.8837 1.1026 49.9871 0
216 R-S (75, 27) 7.5581 1.5095 49.1990 0.0002
200 R-S (75, 25) 6.1886 1.8783 43.5142 0.0002
184 R-S (75, 23) 5.5297 2.2352 41.1499 0.0009
168 R-S (75, 21) 4.7416 2.7877 37.9716 0.0009
152 R-S (75, 19) 4.0310 3.3951 39.4961 0.0016
136 R-S (75, 17) 3.4109 4.1903 32.7778 0.0027
120 R-S (75, 15) 3.2946 4.9674 30.0388 0.0031
104 R-S (75, 13) 2.4806 6.4259 27.2093 0.0040
88 R-S (75, 11) 2.1964 6.5220 25.1034 0.0062

72 R-S(75,9) 1.8734 8.0896 21.6408 0.0147
56 R-S(75,7) 1.2274 11.4554 16.0207 0.0548
40 R-S(75,5) 1.0207 13.7854 12.5969 0.0914

FCS implementation, the false acceptance rates (FARs) are gen-
erally low (< 1%) and they decrease as key length increases. On
the other hand, the false rejection rates (FRRs) are high (> 12%
for 40-bit key) and they increase as key length increases. These re-
sults are expected because all the imposter Hamming distances, in
case of unmasked iris-codes, are higher than 30% which is beyond
the correction capacity of the employed ECC scheme. Also, many
genuine Hamming distances are high (4669 comparisons > 30%)
because masking information are not used. This makes correct key
decoding for such genuine iris samples not possible even for short
key sizes. For masked iris-codes based implementation, both gen-
uine and imposter Hamming distance distributions are shifted to the
left, as shown in Fig. 2(c). This resulted in an increase in FARs and
a decrease in FRRs. As shown in Table.1, as key lengths increase,
the correction capacity decreases and hence the FARs decrease and
the FRRs increases.

Generally speaking, although the FARs in case of unmasked iris-
codes is low, practical FRRs could not be obtained even for short
keys. On the other hand, practical FRRs and FARs were obtained
for long enough key lengths when masking information of the en-
rolment iris sample was employed. However, we should assume
that the masking information are known to attackers and hence the
key sizes shown in Table. 1, in case of masked iris-codes, do not
reflect the actual security of the committed key. Therefore, the av-
erage number of noisy bits in an iris-code was computed for the
adopted iris dataset. We found that approximately 20% of bits in
an iris-code are noisy and should be masked out. That is, the actual
key lengths that can be secured using the ECC parameters shown
in Table.1, for the case of masked iris-codes only, are 0.8 of the
lengths shown in the table.
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It should also be noted that the disclosure of noise masks to attack-
ers may affect users’ privacy. However, this effect may not be crit-
ical because of two reasons. First, because these masks designate
unwanted regions such as eyelid and eyelashes that are common in
any iris image, they look similar in most of iris images. Second,
since users enrol in different applications using different iris sam-
ples, iris masks cannot be identical for the same user. Rather, they
differ due to the changing conditions of the acquisition process.

5. CONCLUSION
This paper presented an iris-based fuzzy commitment scheme
which, unlike other existing iris-based fuzzy commitment schemes,
incorporates noise information in the commitment process. Be-
cause the noise mask of the decoding iris sample cannot be avail-
able in advance, the noise mask of the encoding sample is employed
at both encoding and decoding stages. Experimental results showed
that the decoding accuracy of the proposed scheme outperforms ex-
isting iris-based fuzzy commitment schemes that do not use noise
information.
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Bernadette Dorizzi. Cancelable iris biometrics and using er-
ror correcting codes to reduce variability in biometric data. In
IEEE Int Conf on Computer Vision and Pattern Recognition
(CVPR’09) Workshops, pages 120–127, 2009.

[10] Peng Li, Xin Yang, Hua Qiao, Kai Cao, Eryun Liu, and
Jie Tian. An effective biometric cryptosystem combining fin-
gerprints with error correction codes. Expert Syst. Appl.,
39(7):6562–6574, 2012.

[11] Libor Masek and Peter Kovesi. Matlab source code for a bio-
metric identification system based on iris patterns. The School
of Computer Science and Software Engineering, The Univer-
sity of Western Australia, 2003.

[12] Christian Rathgeb and Andreas Uhl. Systematic construction
of iris-based fuzzy commitment schemes. In Proc of the 3rd
Int Conf on Biometrics (ICB’09), pages 940–949, 2009.

[13] Christian Rathgeb and Andreas Uhl. A survey on biometric
cryptosystems and cancelable biometrics. EURASIP J. Infor-
mation Security, 2011:3, 2011.

[14] The Chinese Academy of Sciences, CASIA Iris Image
Database. http://www.cbsr.ia.ac.cn/IrisDatabase.

[15] Sheikh Ziauddin and Matthew N. Dailey. Robust iris ver-
ification for key management. Pattern Recognition Letters,
31(9):926–935, 2010.

5

 http://www.cbsr.ia.ac.cn/IrisDatabase

	Introduction
	Fuzzy Commitment Scheme
	FCS for Masked Iris-Codes
	Experiments and Discussion
	Conclusion
	References

