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ABSTRACT 

Incompressible viscous fluid flow through a porous medium 

between two infinite parallel plates with moving upper plate 

in a rotating system has been studied here. The exact solution 

of the governing equation for the velocity field has been 

obtained by using Laplace and finite Fourier sine 

transformations in series form in terms of Mittage-Leffler 

function. It can be found that the fluid velocity decreases with 

the increasing values of fractional calculus parameter α and 

the permeability of the porous medium K. It can be also 

observed that the fluid velocity increases with the higher 

values of the viscosity of the porous medium. The dependence 

of the velocity field on fractional calculus parameters as well 

as material parameters has been illustrated graphically. 

Keywords: Caputo operator; Generalised Oldroyed-B              

fluid; Laplace transformation: Finite Fourier sine transformation; 

porous medium. 

1. INTRODUCTION 
In fluid dynamics the study of non-Newtonian fluid flow 

through porous medium has applications in different fields 

such as purification of crude oil, petroleum industry, polymer 

technology, electrostatic precipitation, irrigation, sanitary 

engineering, food industry etc. The flow behavior of non-

Newtonian fluids cannot be described by Newtonian fluid 

model. For this reason various types of constitutive equations 

have been proposed and Oldroyed-B fluid model is one of 

them that has some success in describing non-Newtonian 

fluids. In recent years fractional calculus approach is found to 

be quite flexible in describing the viscoelastic fluids. In the 

approach the time derivative of integer order in the 

constitutive equation is replaced by Caputo fractional calculus 

operator. Charyulu and Ram [1] have investigated laminar 

flow of an incompressible micro polar fluid between two 

parallel plates with porous lining. Fetecau et al [2] have 

studied unsteady flow of a second grade fluid between two 

side walls perpendicular to a plate. Ganapathy [3] have 

studied oscillatory Couette flow in a rotating system. Jana     

et al [4] have studied unsteady flow of viscous fluid through a 

porous medium bounded by a porous plate in a rotating 

system. Khan et al [5] discussed exact solutions for some 

oscillating flows of a second grade fluid with a fractional 

derivative model. Rajagopal [6] investigated unsteady 

unidirectional flows of a non-Newtonian fluid. Tan et al. [7] 

discussed exact solution for unsteady couette flow of the 

generalized second grade fluid. Wenchang et al [8] have 

studied unsteady flows of viscoelastic fluid with the fractional 

Maxwell model between two parallel plates. 

In present work we have studied the viscoelastic flow of a 

generalized Oldroyed-B fluid through porous medium 

between two infinite parallel plates in a rotating system. Here 

we have used fractional calculus approach in finding exact 

solution for the velocity field by replacing the time derivative 

of integer order with Caputo Fractional calculus operator. The 

exact solutions for the velocity fields are obtained by utilizing 

the integral transformations in series form in terms of 

Mittage-Leffler function. We have focused on the behavior of 

the velocity fields with change in values of porosity parameter 

and fractional calculus parameters.  

2. CONSTITUTIVE AND GOVERNING 

EQUATION 
The constitutive relation involving the Cauchy Stress tensor T 

in a homogeneous and incompressible Oldroyed-B fluid with 

fractional calculus model can be proposed as 

            
   

   
       

  

   
                 

where     is the hydrostatic pressure, I  is the identity tensor, λ 

is the time of relaxation,    is the time of retardation, μ is the 

coefficient of viscosity of the fluid, S is the extra stress tensor, 

α and β are the fractional calculus parameters, V  is the fluid 
velocity,            is the Rivlin-Erickson tensor. 

   

   
   

                                                   

 
   

   
   

 
                                                   

  
  and   

 
 are Caputo fractional calculus operators of order α 

and β respectively defined by 

   
       

 

       
                      
 

 

 

        Where       is the Gamma Function.  

We choose a Cartesian co-ordinate system with x-axis along 

the lower plate in the direction of the flow, y-axis normal to 

the plates and z-axis perpendicular to the xy-plane.                                    

We assume the velocity field of the form 

                                                                            (4)       

where        and        are the velocity components in the 

x- and z-coordinate directions that are taken along the 

direction of the parallel plates and normal to the xy-plane 

respectively. Further we assume the stress of the form   

                                                                                    (5)                             
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Substituting the Equations (4) and (5) in Equation (1) and 

taking account the initial condition                we 

get the following Equations 

                      
             

 
 
       

  
                   

                    
             

 
  
       

  
                       

with                                      

The equations of motion are given by 

                    
  

  
 

 

  
         

   

 
                               

       

                    
  

  
 

 

  
         

   

 
                                 

where          are viscosity of the porous medium, fluid 

density, viscosity of the fluid and permeability of the porous 

medium respectively. 

Eliminating     between the Equations (6) and (8) we get the 

following governing equation 

      
  
  

  
         

 
 
   

   
 

                                                
       

   

  
                 (10)   

Again eliminating    between the Equations (7) and (9) we 

get the following governing equation 

      
  
  

  
         

 
 
   

   
 

                                                  
       

   

  
                  

  
 

 
  is the kinematic viscosity. 

3. FORMULATION OF THE PROBLEM 
Let us consider the unsteady flow of a generalized    

Oldroyed-B fluid through a porous medium bounded by two 

infinite parallel plates in a rotating system. The plates and the 

fluid are initially at rest and at     the entire system begins 

to rotate with angular velocity   about the y-axis and at the 

same time the upper plate moves with constant velocity    in 

the x-direction. We take the velocity field of the form 

             where u, w are the velocity components along 

the x-direction and perpendicular to xy-plane respectively. 

The governing equations are  

      
  
  

  
         

 
 
   

   
 

                                                 
       

   

  
                 

and                 
  

  

  
         

 
 
   

   
 

                                               
       

   

  
                    

with the boundary conditions  

                                                   

               and                                        (14) 

   and initial conditions  

                                                                  

Combining the Equations (12) and (13), we have 

      
  
  

  
         

 
 
   

   
 

                                         
  

  
       

                                         

where                                              (17) 

subject to the boundary and initial conditions 

                                              for  t > 0 

                                                                                

We introduce the non-dimensional variables 

                             
 

 
    

 

  
    

   

 
                               

Then the Equation (16) can be written in terms of non-

dimensional variables as  

        
  

          

   
        

    
 
 
           

    
 

                     
 

       
  

  
         

                           

      where     
  

 
 
 

   
    

  

 
 
 

    
  

    
    are non-

dimensional variables. 

Dropping the asterisk sign we get the dimensionless 

governing equation as 
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                                      where   
 

  
     

  

  
  is complex 

constant 

The dimensionless boundary and initial conditions are 

                                              for  t > 0 

                                                                                 

Multiplying both sides of the Equation (21) by          and 

then integrating with respect to y from 0 to 1 and using the 

boundary conditions (22a) we get the following equation 

      
  

 

  
                

 
            

                                               
                     

where         is the finite Fourier sine transformation of  

        defined by 

               
 

 

                            

Taking Laplace transformation of both sides of Equation (23) 

and using           we get  

         
          

                           
   

 

                                                                                             (24) 

Where          is the Laplace transformation of         

defined by                        
 

 
, ‘s’ is the Laplace 

transform parameter. 

In order to avoid the lengthy calculation of contour integration 

and residues we rewrite the Equation (24) in series form as the 

following 

         
       

  
 
 

 
  

     

              

 

   

 

         
      

          

  

  
   

 
      

          
  

   

   

   

   

 

         
       

      
      

  
     

        

 

   

 
  

        

 

   

 

 
  

  
   

 
  

        
  

           

      
      

 

   

                   

Inserting   
 

       
  

  
  and using the binomial theorem 

we get from the Equation (25) 

         
       

  
 
 

 
  

     

              

 

   

 

  
      

          

  

  
   

 
      

          

   

   

   

   

 

 
       

      
      

  

   
 

  

        
 
  

  
 
   

     

 

   

 

                                                    
  

 
     

  

 
  

  
     

        

 

   

 
  

        

 

   

  

  
   

 
  

        

 

   

 

 
           

      
      

  

   
 

  

        
 
  

  
 
   

     

 

   

 

                                                    
  

 
     

  

 
                      

Now we have an important Laplace transformation of the 

Mittage-Leffler function 

                
            

      

         

 

 

            

Where         is the Mittage-Leffler function 

    
       

  

   
         

        

            

 

   

         

Taking inverse Laplace transformation we get from the 

Equation(26)  
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Taking inverse Fourier sine transformation of the Equation 

(29) and comparing the real and imaginary parts of both sides 

of the resulting equation we get 

           
     

  
         

     

              

 

   

 

   

 

                
      

          

  

  
   

 
      

          

   

   

   

   

 

    
  

   
 

  

        
 
  

  
 
   

     

 

   

                

  
 

                                                  
   

    
         

  

 
 

   
     

  
         

     

        

 

   

 

   

 
  

        

 

   

 

  
  

  
   

 
  

        

 

   

  

   
 

  

        
 
  

  
 
   

     

 

   

 

 
          

  
           
   

    
        

  

 
            

         
     

  
         

     

              

 

   

 

   

 

          
      

          

  

  
   

 
      

          

   

   

   

   

 

 
  

   
 

  

        
 
  

  
 
   

     

 

   

                

  
 

                                      
   

    
         

  

 
 

   
     

  
         

     

        

 

   

 

   

 
  

        

 

   

 

 
  

  
   

 
  

        

 

   

  

   
 

  

        
 
  

  
 
   

     

 

   

 

          
          

  
           
   

    
        

  

 
        

The non-dimensional shear stresses at the stationary plate 

(   ) due to the primary and secondary flows is given by    

        
  

  
 
   

 

           
     

              

 

   

 

   

 

             
      

          

  

  
   

 
      

          

   

   

   

   

 

 
  

   
 

  

        
 
  

  
 
   

     

 

   

                

  
 

                              
   

    
         

  

 
     

  

 
  

         
     

        

 

   

 

   

 
  

        

 

   

 

   
  

  
   

 
  

        

 

   

  

   
 

  

        
 
  

  
 
   

     

 

   

 

   
          

  
           
   

    
         

                                 
  

 
     

  

 
                  

Separating the real and imaginary parts of both sides of the 

Equation (32) we get the shear stress components due to the 

primary and secondary flows at the stationary plate     as 
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4.  RESULTS AND DISCUSSION 
Figure 2 depicts the behavior of the primary velocity 

component u against the distance from the lower plate 

measured along y-axis for different values of the fractional 

calculus parameter α. From the figure it is observed that as α 

takes higher values the flow velocity decreases and the profile 

of the velocity curve changes from parabolic slope. Figure 3 

depicts the primary velocity for three values of the rotational 

parameter  . The flow velocity u decreases with increase in   

and this is similar to the case in Figure 2. Figure 4 explains 

that the flow velocity u decreases with the increasing values 

of permeability parameter   that is porosity produces a 

resistance force in the flow field. The nature of flow patterns 

are slightly deviated from the parabolic type. Figure 5 depicts 

the velocity component u against the distance from the lower 

plate measured along y-axis for different values of the 

fractional calculus parameter β. As β increases the flow 

velocity u also increases and the nature of the velocity curves 

are more parabolic with increase in β. It is observed from the 

Figure 6 that the flow velocity u increases with the increase in 

the parameter of viscosity    The velocity field u is plotted in 

Figure 7 against distance from the lower plate at different time 

t. It is noted from the figure that the velocity field u decreases 

and the nature of flow pattern are less parabolic with increase 

in time t. Figure 8 depicts the velocity field u against y for 

different values of the kinematic viscosity υ  The flow 

velocity, u  increases with the increase in υ. It is observed 

from the Figure 9 that the secondary velocity w decreases 

with increase in the parameter α and the parabolic nature of 

the flow pattern is not effected by α.  The influence of the 

parameter β on the secondary flow velocity w is illustrated in 

Figure 10. It is seen from the figure that ‘w’ increases with the 

increase in β but the parabolic nature of the flow pattern 

remains fixed. Figure 11 depicts the shear stress    at the 

stationary plate due to primary flow ‘u’ against the kinematic 

viscosity υ for different values of the permeability parameter 

   of the porous medium. It is evident from the figure that 

shear stress    decreases with increase in  . It is observed 

from the Figure 12 that as α takes higher values the shear 

stress    decreases. Figure 13 shows the dependence of    on 

the fractional calculus parameter β. As ‘β’ takes higher values, 

the shear stress    increases. Figure 14 depicts the shear stress 

   against kinematic viscosity υ at the stationary plate due to 

the secondary flow for different values of α. It is seen from 

the figure that    decreases with the increase in α. Figure 15 

reveals that the shear stress    increases with the increase in 

the fractional calculus parameter β. 

 
Figure 2 :The velocity field u is depicted against the 

distance from the lower plate for different values of the 

fractional calculus parameter α.                 
                                    

 
Figure 3: The velocity field u is depicted against the 

distance from the lower plate for different values of 
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Figure 4: The velocity field u is depicted against the 

distance from the lower plate for different values of 

parameter of permeability                      
                                    

 
Figure 5: The velocity field u is depicted against the 

distance from the lower plate for different values of 

fractional calculus parameter                       
                                   

 
Figure 6:  The velocity field u is depicted against the 

distance from the lower plate for different values of 

viscosity parameter                          
                                 

 
Figure 7: The velocity field u is depicted against the 

distance from the lower plate at different time t.       
                                  

                

 
Figure 8: The velocity field u is depicted against the 

distance from the lower plate for different values of 

material parameter  .                   
                               

 
Figure 9: The velocity field w is depicted against the 

distance from the lower plate for different values of 

fractional calculus parameter .                
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Figure 10:  The velocity field w is depicted against the 

distance from the lower plate for different values of 

fractional calculus parameter                    
                                      

  
Figure 11: The shear stress    at the stationary plate due 

to the  primary flow is depicted against the kinematic 

viscosity ν  for different values of permeability of porous 

medium K.                              
                               

   
Figure 12: The shear stress    at the stationary plate due 

to the primary flow is depicted against the kinematic 

viscosity ν   for different values of parameter α.      
                                       

    

       
Figure 13: The shear stress    at the stationary plate due 

to the primary flow is depicted against the kinematic 

viscosity ν for different values of parameter β.         
                                     

 
Figure 14: The shear stress    at the stationary plate due 

to the secondary flow is depicted against the kinematic 

viscosity ν for different values of parameter            
                                        

 
Figure 15: The shear stress    at the stationary plate due 

to the  secondary flow is depicted against the kinematic 

viscosity ν for different values of parameter  ..    
                                     

       

5. CONCLUSION 
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in a rotating system is considered. The exact solution for the 

velocity field is obtained by utilizing Laplace and finite 

Fourier sine transformation in series forms in terms of 

Mittage-Leffler function. The influence of the fractional 

calculus parameters as well as material parameters on the 

velocity field has been illustrated graphically. Moreover the 

effects of permeability parameter   of the porous medium, 

fractional calculus parameters α and β on the shear stresses    

and    due to the primary and secondary velocity components 

respectively have been discussed graphically. 
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