
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.5, September 2013

25

Assimilation of Four Layered Approach to NFR in

Agile Requirement Engineering

Nupur Chugh

Assistant Professor
Galgotias University, India

Aditya Dev Mishra

Assistant Professor
Galgotias University, India

ABSTRACT
In agile Requirement Engineering Techniques handling of

non-functional requirements is ill defined. Customers or

users talking about what they want the system to do normally

do not think about resources, and other quality attributes. [1]

This paper provides a solution to requirements related issues

in agile environment and proposes an approach which

integrates four layered approach to NFR with Agile

Requirement Engineering that is helpful to improve

requirement analysis process which would help in the

prioritization of user stories. It also describes in detail the

factors that could be considered for prioritization of user

stories.

Keywords: Nonfunctional requirement, agile,

requirement engineering, user stories

1. INTRODUCTION
Requirement Engineering acts as a foundation for any

software and is one of the most important tasks. The process

of eliciting, analyzing, specifying, validating and

maintaining requirement is known as Requirement

Engineering. [8]

Right requirements produce a number of benefits such as

preventing errors, improving quality, and reducing risk

throughout software development projects. [12]

Essentially a system’s utility is determined by both its

functional requirements and its nonfunctional requirements,

such as reliability, maintainability, portability, and security.

Both functional and non-functional requirements must be

taken into consideration in the development of a quality

software system. [5] Functional requirements tell about

system’s functionality, whereas nonfunctional requirements

are quality attributes. Although the requirements engineering

community has classified requirements as either functional

or non-functional, existing agile requirement engineering

lacks the proper treatment of quality characteristics.

2. AGILE REQUIREMENT

ENGINEERING TECHNIQUES
Customer Involvement: Agile methods often assume an

“ideal” customer representative: the representative can

answer all developer questions correctly, and is empowered

to make binding decisions and makes the right decisions.

The different elicitation techniques aim to get as much

knowledge as possible from all stakeholders and resolve

inconsistencies.

Interviews: Interviews are the most common techniques to

gather requirements. Interviews provide direct and

’unfiltered’ access to the needed knowledge. It helps in

establishing relationship between developer and customers.

Prioritization: is found in all the agile approaches. The

highest priority feature is implemented in first increment that

delivers the most business value.

Modeling: In RE, models on different levels of abstraction

are used. Models are used for communication to make

customer understand the system in a better way. The models

are mostly throw-away models.

Documentation: In agile software development, creating

complete and consistent requirements documents is seen as

infeasible or at least. The scope of documentation in agile is

limited.

Validation: Review meetings and acceptance tests are used

for validation in Agile RE. Review meetings show that the

project is in target. Different kinds of review meetings are

used to present the new software.

Management: Agile methods provide a good base for

requirements management. Index cards or feature backlog

/list is used to write requirements.

The issues in Agile Requirement Engineering are:

 The requirements are evolved during time that

leads to missing requirements interface.

 Accepted technique for non-functional

requirements elicitation and management is not

provided by agile methods.

 User stories are prioritized without considering

interdependencies.

 Lack of focus on non-functional requirements. [1]

3. NON-FUNCTIONAL

REQUIREMENTS
In the area of software requirements, the term non-functional

requirements [9] have been used to refer to concerns not

related to the functionality of the software. However,

different authors characterize this difference in informal and

unequal definitions. For example, a series of such definitions

is summarized in:

a) “Describe the non-behavioral aspects of a system,

capturing the properties and constraints under which a

system must operate. “

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.5, September 2013

26

b) “The required overall attributes of the system, including

portability, reliability, efficiency, human engineering,

testability, understandability, and modifiability.”

The distinction between functionality and other qualities

makes clear to the software engineers that requirements are

meant to deal with quality and not only just single

requirement which provides benefit in the field of

requirement engineering. There are various classification

schemes present for non-functional requirements. FURPS is

a model for classifying non-functional requirements. FURPS

emphasize on various quality attributes or non-functional

requirements. [5]

Functionality: Feature set, capabilities

Usability: Human Factors, Documentation

Reliability: Accuracy, mean time to failure, frequency of

failure.

Performance: Speed, Efficiency, Throughput, Resource

consumption

Supportability: Testability, maintainability, portability,

extensibility.

The classification schemes are inconsistent with each other.

The software practitioner can chose any of the classification

scheme but he/she must know the non-functional

requirement terms such as performance, usability such that it

can be communicated with the user as well as with the

software developer so that end product will be produced as

expected.

Non-functional requirements play an important role during

requirement engineering and must be considered for

producing quality software.

3.1Four Layered Approach to NFR
Four Layered Approach includes some rules and non-

functional requirement. Four layered Approach to NFR is

used to identify the goals, sub goals and finally non-

functional requirements. The main objective of this

approach is to find out non-functional requirements that are

considered for software success. The non-functional

requirements identification process can be divided into the

four steps as follows and shown in activity diagram. [2]

Step 1: Identify the key stakeholders of the system.

Step 2: Generate the goals from Stakeholders based on

developers’ Knowledge and experience.

Step 3: Decompose the goal into sub goals.

Step 4: Identify non-functional requirements for each sub

goal.

The following rules are used in the above process.

The rules are: [2]

<Who> are the stakeholders?

<What> are the services (goals)

<What > are the sub goals of each service?

<How> the sub goals are achieved under constraints.

The layered approach has following advantages: [2]

 Cost Effective: The layered approach is the most

economical way of developing and implementing

any system.

 Rapid Application Development: The layered

Approach helps in identifying requirements in less

amount of time which leads fast application

development.

 Scalability: the layered approach scales better.

 Task Segmentation: Large components are broken

into manageable subcomponents that are easy to

develop.

 Enhanced Understanding: Layering helps in easy

testing of sub component.

Fig 1: General Architecture for Four layered Approach to Non Functional Requirements. [2]

Stakeholder 1

Stakeholder n

NFR 1

Goal 2

Goal n

Goal 1

Sub goal n

Sub goal 1

NFR 2

NFR n

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.5, September 2013

27

Identify and prioritize the user stories from the customer’s point of view.

Identify the Risks involved in each user story

Map the business needs to non-functional requirements using Four Layered Approach to NFR.

Estimate the cost and time required for each user story.

Identify and negotiate on conflicting user stories

Fig 2: User Stories Prioritization Process

4. USER STORIES PRIORITIZATION
Five key principles of Extreme Programming (XP) are

communication, simplicity, feedback, courage, and quality

work. The first framework activity of Extreme Programming

is “Planning”, in which the customer writes the user stories.

The user stories define the functionality desired for the

software. Different stakeholders have different needs. As end

user rarely has a picture of a clear system to write the user

stories, it leads to problems like requirements conflicts,

missing requirements, etc. The user stories also lack focus on

non-functional requirements. Two third of the projects fail

because of ambiguous and incomplete user requirements and

poor quality of the requirements. [11] For small to medium

organizations, appropriate requirements prioritization and

selection can increase the possibility of project success.

Requirement Prioritization is the process of making a choice

among multiple options. It is considered as important activity

in requirements engineering, as it helps the developers to

properly analyze requirements, in order to rank them

according to their business value.

The following steps have been suggested for prioritization of

user stories that lay focus on non-functional requirements.

The non-functional requirements may be handled in

requirement specification and may help in development of

quality software.

STEP 1: Identify and prioritize the user stories from the

customer’s point of view: The user stories are identified and

prioritized on the basis of business value. The agile teams

distinguish between “must have” and “nice to have”

requirements. This is achieved by frequent communication

with customers.

STEP 2: Identify the Risks involved in each user story:

The risk exposure may be calculated for each user story. Risk

exposure is calculated on the basis of probability of a risk and

its impact.

STEP 3: Map the business needs to non-functional

requirements using Four Layered Approach to NFR: The

business needs identified by customers may be mapped into

non-functional requirements using four layered approach. The

goals given by different stakeholders are analyzed and

partitioned into sub goals that are further analyzed for

identification of non-functional requirements.

STEP 4: Estimate the cost and time required for each user

story: The cost and time required for each user story is

estimated. The estimation may be based on historical data.

STEP 5: Identify the conflicting user stories: Identify the

user stories from developer’s view conflicting with the one

from customer’s view. The user stories that are conflicting

have to be negotiated by communicating with the customers.

5. CONCLUSION
The success of software depends on whether the customer is

satisfied and it’s all requirements have been met by the

software. The paper has proposed an approach to improve the

requirement analysis by considering nonfunctional

requirements that plays an important role in software success.

The Four layered approach to NFR have been integrated with

Agile Requirement engineering which increases the

probability of acceptance of software and helps in rapid

development of software.

6. REFERENCES
[1] Waleed Helmy, Amr Kamel and Osman Hegazy,

“Requirements Engineering Methodology in Agile

Environment”, International Journal of Computer

Science Issues, Vol. 9, Issue 5, No 3, September 2012

[2] A. Ananda Rao and M.Gopichand, “Four Layered

Approach to Non-Functional Requirements Analysis”,

International Journal of Computer Science Issues, Vol. 8,

Issue 6, No 2, November 2011

[3] Frauke Paetsch, Dr. Armin Eberlein, Dr. Frank Maurer,

“Requirements Engineering and Agile Software

Development”, Proceedings of the Twelfth IEEE

International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE’03)

[4] Saravana. K.M, G. N. Basavaraj, Rajkumar, Dr. A.

Kovalan, “ Case Study On Agile User Stories

Prioritization Using Imaginative Standard”, International

Journal of Engineering Research and Applications

(IJERA), Vol. 2, Issue 5, September- October 2012

[5] Lawrence Chung1 and Julio Cesar Sampaio do Prado

Leite, “On Non-Functional Requirements in Software

Engineering”, Springer-Verlag Berlin Heidelberg 2009

[6] Malik Qasaimeh, Alain Abran, “Extending Extreme

Programming User Stories to Meet ISO 9001 Formality

Requirements”, Journal of Software Engineering and

Applications, 2011

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.5, September 2013

28

[7] Evita Coelho, Anirban Basu, “ Effort Estimation in

Agile Software Development using Story Points” ,

International Journal of Applied Information Systems

(IJAIS), Volume 3– No.7, August 2012

[8] Dr. Sohail Asghar & Mahrukh Umar, “Requirement

Engineering Challenges in Development of Software

Applications and Selection of Customer-off-the-Shelf

(COTS) Components”, International Journal of Software

Engineering (IJSE), Volume (1): Issue (2)

[9] Naresh Kumar Nagwani, and Pradeep Singh, “An Agile

Methodology Based Model for Change-Oriented

Software Engineering”, International Journal of Recent

Trends in Engineering, Vol.1,No.1,2009, pp.128-132

[10] Chetankumar Patel, and Muthu Ramachandran,”Story

Card Based Agile Software Development”, International

Journal of Hybrid Information Technology,Vol.2, No.2,

2009,pp.125-140

[11] Veerapaneni Esther Jyothi, and K. Nageswara Rao

“Effective Implementation of Agile Practices”,

International Journal of Advanced Computer Science and

Applications, Vol. 2,No. 3, 2011, pp.41-48

[12] International Journal of Internet Computing (IJIC), ISSN

No: 2231 – 6965, Volume-1, Issue-2, 2011 34An Insight

into the Importance of Requirements Engineering.

[13] A. Eberlein, F.Maurer, F.Paetsch, “Requirements

Engieering and Agile Software Development”,

Proceedings of the Twelfth International Workshop on

Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003

[14] S. Ambler, “Agile Requirements Modeling”, 2012

available at: http://www.agilemodeling.com/essays/agile

Requirements.htm

[15] R.S Harirs and M. Cohn, “Incorporating Learning and

expected cost of Change in Prioritizing Features on Agile

Projects,” Proc. XP 2006, pp.175-180

IJCATM : www.ijcaonline.org

