
International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.14, September 2013

7

Comparison of Sorting Algorithms based on Input

Sequences

Ashutosh Bharadwaj
Dept. of Computer Science &

Engineering
BTKIT, Dwarahat

Almora, Uttarakhand

 Shailendra Mishra, Ph.D
Head of Dept. of

Computer Science &
Engineering

BTKIT, Dwarahat
Almora, Uttarakhand

ABSTRACT

Ordering is a very important for mankind .If anything is in

unordered then it will not easily understand by anyone but if it

is in order then it will easily understand and used by anyone.

So ordering is a very important issue in computer science

also. In computer science many programming applications use

ordering to solving a problem either it is in ascending or

descending order. In this paper we discuss four sorting

algorithms which are already existed named as Insertion Sort,

Bubble Sort, Selection Sort, Merge Sort and we design a new

sorting algorithm named as index sort also. In this paper we

check the performance and comparison of all five sorting

algorithm on the basis of increasing the no of elements in

bulk. We check how much processing time is taken by all four

sorting algorithms with Index Sort and compared them and

finding which sorting algorithm takes less time to sort the

elements like 10, 100, 1000, 10000 . If any algorithm takes

less processing time it means that it sorts the element faster

than others. The processing time of a sorting algorithm is

based on the processing speed of a Processor as well as

internal memory (RAM) used by the system.

Keywords

Insertion Sort; Bubble Sort; Selection sort; Merge Sort; Index

Sort.

1. INTRODUCTION
Sorting is a fundamental operation in computer science.

Sorting generally refers to the operation of ordering data in a

given sequence such as increasing sequence or decreasing

sequence. There are many fundamental and advance sorting

algorithms. All sorting algorithm are problem oriented means

they work well on some special problem and do not work well

for any kind of a problems. Sorting algorithms are applied on

specific kind of problems. Sorting algorithms are used for

small number of elements, some sorting algorithms are used

for large numbers, some sorting algorithms are used for

floating number of data, and some are used for repeated

values in a list. We sort data in numerical order or

alphabetical order, arranging the list either in increasing order

or decreasing order and alphabetical value like addressee key.

In this paper we discuss four sorting algorithms which are

already exist named as Insertion Sort, Bubble Sort, Selection

Sort, Merge Sort and we design a new sorting algorithm

named as index sort. In this paper we check the performance

and comparison of all five sorting algorithm on the basis of

increasing the no of elements in bulk. We check how much

processing time is taken by all four sorting algorithms with

Index Sort and compared them and finding which sorting

algorithm takes less time to sort the elements like 10, 100,

1000, 10000 . If any algorithm takes less processing time it

means that it sorts the element faster than others.

2. Sorting Algorithms

2.1 Insertion Sort
This sorting technique is used for small number of elements.

The insertion sort works like playing cards in which each card

is placed at its proper place while playing in hands of a

person. Cards are placed in an order which is also called a

sorting order .Sorting a hand of playing card is one of the real

examples of insertion sort. This algorithm first sorts the first

two elements of the array. It then inserts the third element in

its proper place in relation to the first 2 sorted elements. This

process continues until all of the remaining elements are

inserted in their proper position. Insertion sort can take

different running time to sort two input sequences of the same

size of array depending upon how nearly they already sorted.
It sorts the element of small array very fast but in sorting the

elements of big array takes very long time.

Algorithm

1. For I=2 to N

2. A [I] =item, J=I-1

3. WHILE j>0 and item<A[J]

4. A[J+1]=A[J]

5. J=J-1

6. A [J+1]=item

 Following are the procedure to sort a given set of element {8,

7, 1, 2}.

2.2 BUBBLE SORT
The sorting algorithm is affectionately named the "bubble"

sort. This sorting algorithm is perhaps one of the simplest

sorting algorithms in terms of complexity. It makes use of a

sorting method known as the exchange method. This

algorithm compares pairs of adjacent elements and makes

exchanges if necessary. The name comes from the fact that

each element "bubbles" up to its own proper position. Here is

how bubble sort would sort the integer array 8 7 1 2,It is a

simplest sorting algorithm used in computer science

algorithm. If we have 100 elements then the total number of

Data 8 7 1 2

Pass 1 7 8 1 2

Pass 2 1 7 8 2

Pass 3 1 2 7 8

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.14, September 2013

8

comparison is 10000. Obviously, this algorithm is rarely used

except in education.

Algorithm

1. For I=1 to N-1 (for pass)

2. For k=1 to N-I (for comparison)

3. If A[K]>A[K+1]

4. Swap [A(k) , A(k+1)]

Following are the procedure to sort a given set of element {8,

7, 1, 2}.

Here there are 4 elements so number of

comparison=8+7+1+2=19

And the number of pass=4-1=3.

2.3 SELECTION SORT
It is among the most intuitive of all sorts. In selection sort we

find out the smallest elements in each pass and placed it in

proper location. After that these steps are repeated until all the

list of element is sorted. This is the simplest method of

sorting. In this method, to sort the data in increasing order, the

first element is compared with all the elements. If first

element is greater than smallest element than interchanged the

position of elements. So after the first pass, the smallest

element is placed at the first position. The same procedure is

repeated for 2nd element and so on until the element of list is
sorted.

Algorithm

1. for I=1 to N-1

2. min=A [I]

3. for K=I+1 to N

4. if (min>A [I])

5. min=A [K], Loc=K

6. Swap (A [Loc],A[I])

7. Exit

Following are the procedure to sort a given set of element {8,

7, 1, 2}

2.4 MERGE SORT
The operation that combines the element of two list in a one

single sorted list is called Merging. Merging operation is used

in Merge sort for sorting an array. Merge sort is based on the

divide-and-conquer technique. We state each subproblem as

sorting a subarray A[p... r]. Initially, p = 1 and r = n, but these

values change as we recurse through subproblems. To sort

A[p ... r]:

 Divide Step- If a given array A has empty, simply return; then

it is already sorted. Otherwise it breaks A[p .. r] into two

subarrays A[p .. q] and A[q + 1 .. r], each containing about

half of the elements of A[p .. r]. That is, q is the halfway point

of A[p .. r].

Conquer Step-= Conquer by recursively sorting the two

subarrays A[p .. q] and A[q + 1 .. r].

 Combine Step- Combine the elements back in A[p .. r] by

merging the two sorted subarrays A[p .. q] and A[q + 1 .. r]

into a sorted order. By executing this step, we will introduce a

procedure MERGE (A, p, q, r). Note that the recursion

bottoms out when the subarray has just one element, so that it

is trivially sorted. Advantage of merge sort is that they are

well suited for large data set. Disadvantage of merge sort is

that At least twice the memory requirements than other sorts.

Algorithm

MERG-SORT (A, p, r)

1. IF p < r // Check for base case

2. THEN q = FLOOR[(p + r)/2] // Divide step

3. MERGE (A, p, q) // Conquer step.

4. MERGE (A, q + 1, r) // Conquer step.

5. MERGE (A, p, q, r) // Conquer step.

MERGE (A, p, q, r)

1. n1 ← q − p + 1

2. n2 ← r − q

3. Create arrays L[1 ... n1 + 1] and R[1 .. . n2 + 1]

4. For i ← 1 TO n1

5. do L[i] ← A[p + i − 1]

6. For j ← 1 TO n2

7. do R[j] ← A[q + j]

8. L[n1 + 1] ← ∞

9. R[n2 + 1] ← ∞

10. i ← 1

11. j ← 1

12. For k ← p TO r

13. do IF L[i] ≤ R[j]

14. THEN A[k] ← L[I]

15. i ← i + 1

16. ELSE A[k] ← R[j]

17. j← j + 1

Following are the procedure to sort a given set of element {7,

4, 1, 3, 2, 5, 9, 7}.

2.5 INDEX SORT
This sorting algorithm is the most simple and easy to use .This

algorithm performs working from lower index as well as

higher index and counting the elements from lower index to

higher index vice versa and fixing the elements indexes.

In this sorting algorithm first element of lower index is

checked with all smaller element with itself and if found and

count all small elements and add the lower index in count.

Data 8 7 1 2

Pass 1 7 8 1 2

 7 1 8 2

 7 1 2 8

Pass 2 1 7 8 2

 1 7 2 8

Pass 3 1 2 7 8

Data 8 7 1 2

Pass

1

1 7 8 2

Pass

2

1 2 8 7

Pass

3

1 2 7 8

Data 6 4 1 3 2 5 9 7

Pass

1

4 6 1 3 2 5 7 9

Pass

2

1 3 4 6 2 5 7 9

Pass

3

1 2 3 4 5 6 7 9

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.14, September 2013

9

Then from opposite count the sum (lower index +count) and

put it swaps the value with first element if smaller elements

are not found then fixed their position. While we taking

element from upper index we count greater elements then we

subtract from upper index and if greater element is not found

the fixed their position.

Algorithm

arraysize= n;

MyArray = rand(arraysize,1);

MyArray= [1020, 940, 80, 370, 60, 503, 40, 330, 20, 410];

low_ind=1;

up_ind=arraysize;

counter1=0;

counter2=0;

while(low_ind<up_ind)

 z=0;

for j=low_ind+1 to up_ind

if(MyArray(low_ind)>MyArray(j))

counter1=counter1+1;

end

end

if(counter1>0)

t=MyArray(low_ind);

MyArray(low_ind)=MyArray(counter1+low_ind);

MyArray(counter1+low_ind)=t;

counter1=0;

z=1;

else

low_ind=low_ind+1;

end

j=up_ind-1;

while (j>=low_ind)

if(MyArray(up_ind)<MyArray(j))

counter2=counter2+1;

end

 j=j-1;

end

if(counter2>0)

t=MyArray(up_ind);

MyArray(up_ind)=MyArray(up_ind-counter2);

MyArray(up_ind-counter2)=t;

counter2=0;

 z=1;

else

up_ind=up_ind-1;

end

end

4. PERFORMANCE ANALYSIS
Bubble Sort, Selection Sort, Merge Sort, Insertion Sort Index

Sort were applied in MATLAB and we test the random

sequence input of length 10, 100, 1000, 10000 to check the

performance. All the five sorting algorithms were executed on

machine with 32-bit Operating System having Intel(R) Core 2

Duo processor @ 2.13 GHz, 2.13 GHz and installed memory

(RAM) 2.00 GB. The times taken by the CPU at execution for

Different inputs are shown in the table. The Plot of length of

input and CPU time taken (m sec) is shown in figure. Result

shows that for all small length of input elements sequence the

performance of all the five techniques is all most same, but for

the large input element sequence Merge sort is faster than

Bubble sort, Sort and insertion Sort, Selection Sort and Index

Sort. From the results it can be concluded that Index Sort

algorithm is working well for all length of input values. It

takes less CPU time than the Insertion Sort, Bubble Sort,

Selection Sort, and Merge Sort for small inputs but for larger

inputs it takes greater time then Insertion Sort, Selection Sort,

Merge Sort but takes less time than in case of Bubble Sort.

Table 1: Processing time (m sec) for different lengths of

input sequences

Data 8 7 1 2

Pass 1 2 7 1 8

Pass 2 7 2 1 8

Pass 3 1 2 7 8

Sorting

Techniques

10 100 1000 10000

Insertion

Sort

.000012 .000208 .017085 1.51616

Bubble

Sort

.000027 .000491 .034503 2.540110

Selection

Sort

.000029 .000147 .012923 1.60680

Merge Sort .000011 .000126 .01116 1.04148

Index Sort .000012 .000128 .022339 2.348677

International Journal of Computer Applications (0975 – 8887)

Volume 78 – No.14, September 2013

10

Figure1- X axis- time (m sec) Y axis input sequence (10,

100, 1000, 10000

5. CONCLUSION AND FUTURE SCOPE
From the results it can be concluded that Index Sort algorithm

is working well for all length of input values. It takes less

CPU time than the Insertion Sort, Bubble Sort, Selection Sort

and Merge Sort for small inputs and it takes greater time in

case of Insertion sort, Selection Sort Merge sort but takes less

time than in case of Bubble Sort for larger inputs. In the future

work more effective sorting algorithm can be proposed with

running time.

6. ACKNOWLEDGMENTS
Our thanks to Dr. Shailendra Kumar Mishra (Head of

Department) of Computer Science, Principal, BTKIT

Dwarahat, for providing necessary infrastructure for the

research work and helping me to write this paper. I would also

like to thanks to all my colleagues who give me a valuable

support in writing this paper.

6. REFERENCES
[1] Comparison of Sorting Algorithms (On the Basis of

Average Case) Pankaj Sareen.

[2] A Comparison Based Analysis of Four Different Types of

Sorting Algorithms in Data Structures with Their

Performances.

[3] Min-Max Select Bubble Sorting Algorithm.

[4] CSCE 3110Data Structures & Algorithm Analysis.

[5] Assortment of different sorting algorithms. Amardeep

Singh, Monika, Vandana, Sukhnandan Kaur.

[6] Robustness versus Performance in Sorting and

Tournament Algorithms by Wilfried Elmenreich, Tobias

Ibounig, István Fehérvári.

[7] Seymour Lipschutz (2009) Data Structure with C, Schaum

Series, and Tata McGraw-Hill Education.

[8] Merge sort:- Merge sort algorithm, C. BronTechnological

Univ., Eindhoven, The Netherlands, Communications of

the ACM Volume 15 Issue 5, May 1972, ACM New

York, NY, USA .

[9] Review on sorting algorithms A comparative study on two

sorting algorithms By Pooja Adhikari.

[10] An Enhancement of Major Sorting Algorithms Jehad

Alnihoud and Rami Mansi.

[11] Introduction to Algorithms by Thomas H. Cormen,

Charles E. Leiserson, Ronald L. Rivest, fifth Indian

printing (Prentice Hall of India private limited), New

Delhi-110001

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

insertion

Bubble

Selection

Merge

Index

IJCATM : www.ijcaonline.org

