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ABSTRACT 

Always technical designers choice includes algorithms, 

flowcharts, programming etc., and end users requires the 

given input and application output. Based upon this view, this 

paper focus on the advancement of the Fast Fourier Transform 

(FFT), by doing design and observing the performance 

analysis of the 32 FFT[1] and 64 point FFT, using Radix-2, 

Radix-8[17] and Split Radix algorithm. The algorithm is 

developed by Decimation-In-Time (DIT) of the Fast Fourier 

Transform (FFT), using VHDL as a design entity and 

synthesis are performed in Xilinx ISE Design Suite 13.2 

version. Using synthesis results performance analysis is done 

between 32 and 64 point Fast Fourier Transform (FFT)[16] in 

terms of speed and computational complexity. 
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1. INTRODUCTION 
Currently in the field of signal processing for 

communications, there is a rapid development evolving 

programming formats and in algorithms which act as a key in 

designing a system. Fourier Transform, Discrete Fourier 

Transform (DFT), Fast Fourier Transform (FFT)[3][7][16] are 

basis for many signal processing and communication based 

applications. It is the analysis of the signal in time and 

frequency domain. From the Fourier Transform of the discrete 

signals we can develop Discrete Fourier Transform (DFT) and 

Fast Fourier Transform (FFT).Fast Fourier Transform (FFT) 

is an efficient way to compute DFT. 

In digital signal processing frequency analysis of discrete 

signal can easily performed. In order to obtain the 

performance of such analysis we have to transform the time 

domain signal into frequency domain signal. Fast Fourier 

Transform (FFT) does not do the transformation, but just 

perform computations to evaluate Discrete Fourier Transform 

(DFT)[4] efficiently. The original computations for N-point 

DFT sequence requires N2 multiplications and N(N-1) 

additions.  

In the year 1965 J.W.Cooley and J.W.Tukey[6] developed 

FFT algorithm to reduce the computations of the Discrete 

Fourier Transform (DFT) from N2 to 
 

 
     multiplications 

and N(N-1) to N      additions.  

The FFT algorithm is also known as Cooley-Tukey algorithm. 

The pioneering work of  J.W.Cooley and J.W.Tukey[6] 

several algorithms are further developed to reduce the 

computational complexity, which includes Radix-2,[2]Radix-

4,Radix-8,Split-Radix.All these algorithms are developed on 

one method ,that is, Divide and Conquer method. 

Fast Fourier Transform (FFT) is based on decomposition and 

breaking the transform into smaller sequences and at last 

again combining into one transform. This paper proposes 

design of 32 and 64 point FFT and observing performance 

analysis of 32 and 64 point FFT using different Radix 

algorithms. By using VHDL[13] as a design entity the 

program is synthesized in Xilinx ISE Design Suite 13.2 

version. A DFT decomposes sequence of values into different 

frequency components which is useful in many fields like 

noise reduction, Digital Video Broadcasting (DVB), but 

computing the sequence directly from the definition is often 

too slow to be practical. 

The computation of DFT involves the multiplication of 

twiddle factor which is in matrix form by a complex-valued 

input vector. The N-point Discrete Fourier Transform (DFT) 

X(k) of an N-point sequence x(n) is by definition: 

X(k)=        
     

 
    

    0<n<k                    (1) 

2. RADIX-2 
The implementation of FFT can be done in Decimation-In-

Time FFT (DITFFT) [1][9][17] and Decimation-In-Frequency 

FFT (DIFFFT) algorithm. Both of the algorithm has same 

computational complexity but differ in input and output 

computational arrangement.  The name Radix-2[1][2] is called 

due to its base is equals to 2 and the representation is 2M, 

where M represents the index/stage and its value is always a 

positive integer. The representation of DITFFT is as follows: 

In Radix-2 algorithm the DFT computation sequence is split 

into even and odd-half parts. The Radix-2 DITFFT is derived 

by rewriting the equation (1) as: 

 =       
  

       +       
  

                                  

=        
   

 

 
  

   +          
       

 

 
  

                 (2) 
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Figure 1: signal flow graph of 64 point Radix-2 FFT 

To find the number of butterfly stages required to compute N 

length sequence is M=    
 , and  

 

 
 butterfly operations are 

computed in each stage. Therefore there are 5 butterfly stages 

and 16 butterfly operations for each stage are computed to 

produce 32 point FFT [1]. Similarly, 6 butterfly stages and 32 

butterfly operations for each stage are computed to produce 

64 point FFT.Figure1 shows the signal flow graph 

representation of 64 point FFT. To compute the DIT-FFT 

sequence the given input should be in shuffled (bit reversal) 

order and output represents in normal order. 

3. RADIX-8 
Radix-8[7][17] is another FFT algorithm which was surveyed 

to improve the speed of functioning by reducing the 

computation; this can be obtained by changing to base to 

8.For a same number if base increases the power will reduce. 

In this paper the number of stages are reduced to 75% since 

N=   N=  ) that is; only 2 stages. The following will 

explains the functioning of Radix-8 and how the 

computational complexity is reduced. 

3.1. Functioning of Radix-8 Algorithm  

By using the FFT algorithm the computational complexity 

reduces to      
 , where r represents the Radix-r FFT[7]. The 

Radix-r FFT can easily derived from DFT by decomposing 

the N point DFT into a set of recursively related r-point 

transform and x(n) is powers of r. In Radix-8 algorithm the r 

is 8.The DIT Radix-8 FFT recursively partitions a DFT into 

eight quarter-length DFTs of groups of every eighth sample. 

The outputs of these shorter FFTs are reused to compute many 

outputs, which greatly reduce the total computational cost. 

The Radix-8 Decimation-In-Time and Decimation-In-

Frequency Fast Fourier Transform (FFTs) gain their speed by 

reusing the results of smaller, intermediate computations to 

compute multiple DFT frequency outputs. The Radix-8 

Decimation-In-Time algorithm rearranges the DFT equation 

into eight parts: sums over all groups of every eighth discrete-

time index n=[0,8,16,.....N-8], n=[1,9,17,...N-

7],n=[2,10,18,....N-6], n=[3,11,19.....N-5],n=[4,12,20,...N-4], 

n=[5,13,21....N-3],n=[6,14,18....N-2], n=[7,15,19....N-1],(This 

works only when the FFT length is multiple of eight). Simply, 

as in the Radix-2 DITFFT, further mathematical manipulation 

shows that the length-N DFT can be computed as the sum of 

the outputs of four length-n/8 DFTs, of the even-indexed and 

odd-indexed discrete-time samples, respectively, where all the 

time samples are multiplied by so-called twiddle factors 

  
 =   

    

 
 
,  

  ,   
  ,      

    

The following equations illustrate Radix-8 DIT-FFT, which 

the N-point input sequence splits into eighth subsequence’s, 

x(8n), x(8n+1), x(8n+2) ,...x(8n+7), n=0,1,...
 

 
  . Equation 

(1) can be written as follows: 

X(k)=        
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The basic operation of Radix-8 butterfly is shown in the 

following figure. 

 

 

 

 

 

Figure 2: Basic structure of Radix-8 FFT. 

Figure 3 depicts a 64-point Radix-8 FFT using the butterfly 

symbol shown in figure 2 to represent mathematical 

operations. 

 

Figure 3:-Signal flow graph of 64 point FFT using Radix-8 

The above diagram represents 64-point Radix-8 DITFFT 

butterfly diagram in which we have only 2 stages, the internal 

RTL views are as shown below: 

Radix-8 

butterfly FFT 
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Figure 4:- RTL view for 64 Point FFT 

 

Figure 5:-RTL view for 32 Point FFT 

 

4. SPLIT-RADIX 
The split-Radix [10] FFT investigates whether the 

computational cost of the FFT can be further reduced by 

combining two or more different radices, resulting in a Split-

Radix algorithm. In, as with Radix-2 FFT case, the DFT 

operation is split into odd-half and even-half parts. In this 

paper the Split-Radix algorithm is of 32 point is split as 

8/4.The even components are decomposed into 8k and odd 

components are decomposed into 4k+1 frequency 

components. Repeating this process for half and quarter 

length DFTs gives the Split-Radix FFT algorithm. 

X(k)=       
   

    

 
    

           0<n<k 

=        
     

 

 
  

   +          
       

 

 
  

    

=        
     

 

 
  

   +  
         

     
 

 
  

                   (4)                 

By decimating the input vector in time index into two subsets 

as expressed in equation (5),(6) and calculating with twiddle 

factors                          

 

   
    

 

=  
 . 

                    m=0,1,....
 

 
                        (5) 

    (n)=            m=0,1,....
 

 
                     (6) 

After these problem subsets are solved by the Split-Radix 

algorithms recursively, the solution to the original sequence of 

length N can be obtained according to equation (4). The RTL 

view of 32 point Split-Radix is shown in below figure 5. 

5. SOFTWARE USED 
The goal of the VHDL [13] synthesis is to create a design that 

implements the required functionality and matches the 

designer’s constraints in speed, area and power. The 32 Point 

FFT[1][14] and 64 point FFT Proposed in this paper is been 

simulated using Xilinx ISE Design Suite 13.2 with device 

family as Vertex 6 lower power (XC6VLX130TL),Package 

FF784 and with speed -1L.  

6. SIMULATION RESULTS 
The vertex 6 device utilization summary for 32 and 64 point is 

shown below table 1 and 2. 

Table 1: Device utilization summary for 32 point FFT 

using Radix-2 Algorithm. 

Device Utilization Summary for 32 Point FFT using Radix-2 

Algorithm 

Logic Utilization Available used Utilization 

No. of Slice LUTs 46560 18253 39% 

No. of Fully Used 

LUTFFT Pairs 

18253 0 0% 

 

No. of Bonded IOBs 240 2560 1066% 

No.of DSP48EIs 288 148 51% 
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Table 2: Device utilization summary for 32 point FFT 

using Split-Radix Algorithm. 

Device utilization summary for 32 point FFT using Split –

Radix Algorithm. 

Logic 

Utilization 

Available Used Utilization 

No. of Slice 

LUTs 

46560 22120 47% 

No. of Fully 

Used LUTFFT 

pairs 

22120 0 0% 

No. Of 

Bonded IOBs 

240 2560 1066% 

No. Of 

DSP48EIs 

288 160 55% 

 

Table 3: Time delay of 32 point FFT 

32 Point 

Parameter Radix-2 Split-Radix 

Minimum Delay(ns) 21.526 21.153 

Total Real Time to 

XST Completion 

162.00ns 137.00ns 

Total Real Time to 

CPU Completion 

162.03ns 136.30ns 

             

                    Table 4: Time delay of 64 point FFT 

64 Point 

Parameter Minimum Delay(ns) 

Radix-2 39.618 

Radix-8 19.973 

Split-Radix 24.795 

The performance analysis of 32 and 64 point FFT are shown 

in below figure. 

 

Figure 6: Performance analysis of 32 point FFT 

 

 

Figure 7: Performance analysis of 64 point FFT 

7. CONCLUSION 

In this Paper, the design of 32 and 64 point FFT using Radix-

2, Radix-8, and Split-Radix algorithms are performed, and the 

performance analysis with all the three algorithms are done 

using Minimum Delay(ns) as parameter and their synthesis 

and simulation results are shown by Xilinx synthesis tool on 

vertex .The test bench wave forms are displayed by using 

Xilinx ISE Design Suite 13.2. Further, the performance 

analysis can also be done by taking various parameters into 

consideration for different or same number of points. 
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