
International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

25

Design and Performance Analysis of 32 and 64 Point

FFT using Multiple Radix Algorithms

K.Sowjanya

Department of E.C.E, UCEK
JNTUK, Kakinada

Andhra Pradesh, India.

Leela Kumari Balivada

Department of E.C.E, UCEK
JNTUK, Kakinada

Andhra Pradesh, India.

ABSTRACT

Always technical designers choice includes algorithms,

flowcharts, programming etc., and end users requires the

given input and application output. Based upon this view, this

paper focus on the advancement of the Fast Fourier Transform

(FFT), by doing design and observing the performance

analysis of the 32 FFT[1] and 64 point FFT, using Radix-2,

Radix-8[17] and Split Radix algorithm. The algorithm is

developed by Decimation-In-Time (DIT) of the Fast Fourier

Transform (FFT), using VHDL as a design entity and

synthesis are performed in Xilinx ISE Design Suite 13.2

version. Using synthesis results performance analysis is done

between 32 and 64 point Fast Fourier Transform (FFT)[16] in

terms of speed and computational complexity.

General Terms

Decimation -In-Time (DIT), Fast Fourier Transform (FFT),

VHDL

Keywords

Radix-2, Radix-8, Split-Radix, Synthesis.

1. INTRODUCTION
Currently in the field of signal processing for

communications, there is a rapid development evolving

programming formats and in algorithms which act as a key in

designing a system. Fourier Transform, Discrete Fourier

Transform (DFT), Fast Fourier Transform (FFT)[3][7][16] are

basis for many signal processing and communication based

applications. It is the analysis of the signal in time and

frequency domain. From the Fourier Transform of the discrete

signals we can develop Discrete Fourier Transform (DFT) and

Fast Fourier Transform (FFT).Fast Fourier Transform (FFT)

is an efficient way to compute DFT.

In digital signal processing frequency analysis of discrete

signal can easily performed. In order to obtain the

performance of such analysis we have to transform the time

domain signal into frequency domain signal. Fast Fourier

Transform (FFT) does not do the transformation, but just

perform computations to evaluate Discrete Fourier Transform

(DFT)[4] efficiently. The original computations for N-point

DFT sequence requires N2 multiplications and N(N-1)

additions.

In the year 1965 J.W.Cooley and J.W.Tukey[6] developed

FFT algorithm to reduce the computations of the Discrete

Fourier Transform (DFT) from N2 to

 multiplications

and N(N-1) to N additions.

The FFT algorithm is also known as Cooley-Tukey algorithm.

The pioneering work of J.W.Cooley and J.W.Tukey[6]

several algorithms are further developed to reduce the

computational complexity, which includes Radix-2,[2]Radix-

4,Radix-8,Split-Radix.All these algorithms are developed on

one method ,that is, Divide and Conquer method.

Fast Fourier Transform (FFT) is based on decomposition and

breaking the transform into smaller sequences and at last

again combining into one transform. This paper proposes

design of 32 and 64 point FFT and observing performance

analysis of 32 and 64 point FFT using different Radix

algorithms. By using VHDL[13] as a design entity the

program is synthesized in Xilinx ISE Design Suite 13.2

version. A DFT decomposes sequence of values into different

frequency components which is useful in many fields like

noise reduction, Digital Video Broadcasting (DVB), but

computing the sequence directly from the definition is often

too slow to be practical.

The computation of DFT involves the multiplication of

twiddle factor which is in matrix form by a complex-valued

input vector. The N-point Discrete Fourier Transform (DFT)

X(k) of an N-point sequence x(n) is by definition:

X(k)=

 0<n<k (1)

2. RADIX-2
The implementation of FFT can be done in Decimation-In-

Time FFT (DITFFT) [1][9][17] and Decimation-In-Frequency

FFT (DIFFFT) algorithm. Both of the algorithm has same

computational complexity but differ in input and output

computational arrangement. The name Radix-2[1][2] is called

due to its base is equals to 2 and the representation is 2M,

where M represents the index/stage and its value is always a

positive integer. The representation of DITFFT is as follows:

In Radix-2 algorithm the DFT computation sequence is split

into even and odd-half parts. The Radix-2 DITFFT is derived

by rewriting the equation (1) as:

 =

 +

=

 +

 (2)

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

26

Figure 1: signal flow graph of 64 point Radix-2 FFT

To find the number of butterfly stages required to compute N

length sequence is M=
 , and

 butterfly operations are

computed in each stage. Therefore there are 5 butterfly stages

and 16 butterfly operations for each stage are computed to

produce 32 point FFT [1]. Similarly, 6 butterfly stages and 32

butterfly operations for each stage are computed to produce

64 point FFT.Figure1 shows the signal flow graph

representation of 64 point FFT. To compute the DIT-FFT

sequence the given input should be in shuffled (bit reversal)

order and output represents in normal order.

3. RADIX-8
Radix-8[7][17] is another FFT algorithm which was surveyed

to improve the speed of functioning by reducing the

computation; this can be obtained by changing to base to

8.For a same number if base increases the power will reduce.

In this paper the number of stages are reduced to 75% since

N= N=) that is; only 2 stages. The following will

explains the functioning of Radix-8 and how the

computational complexity is reduced.

3.1. Functioning of Radix-8 Algorithm

By using the FFT algorithm the computational complexity

reduces to
 , where r represents the Radix-r FFT[7]. The

Radix-r FFT can easily derived from DFT by decomposing

the N point DFT into a set of recursively related r-point

transform and x(n) is powers of r. In Radix-8 algorithm the r

is 8.The DIT Radix-8 FFT recursively partitions a DFT into

eight quarter-length DFTs of groups of every eighth sample.

The outputs of these shorter FFTs are reused to compute many

outputs, which greatly reduce the total computational cost.

The Radix-8 Decimation-In-Time and Decimation-In-

Frequency Fast Fourier Transform (FFTs) gain their speed by

reusing the results of smaller, intermediate computations to

compute multiple DFT frequency outputs. The Radix-8

Decimation-In-Time algorithm rearranges the DFT equation

into eight parts: sums over all groups of every eighth discrete-

time index n=[0,8,16,.....N-8], n=[1,9,17,...N-

7],n=[2,10,18,....N-6], n=[3,11,19.....N-5],n=[4,12,20,...N-4],

n=[5,13,21....N-3],n=[6,14,18....N-2], n=[7,15,19....N-1],(This

works only when the FFT length is multiple of eight). Simply,

as in the Radix-2 DITFFT, further mathematical manipulation

shows that the length-N DFT can be computed as the sum of

the outputs of four length-n/8 DFTs, of the even-indexed and

odd-indexed discrete-time samples, respectively, where all the

time samples are multiplied by so-called twiddle factors

 =

,

 ,
 ,

The following equations illustrate Radix-8 DIT-FFT, which

the N-point input sequence splits into eighth subsequence’s,

x(8n), x(8n+1), x(8n+2) ,...x(8n+7), n=0,1,...

 . Equation

(1) can be written as follows:

X(k)=

 +

+

 +

+

+

 +

+

=

+

+

+

+

+

+

+

 (3)

The basic operation of Radix-8 butterfly is shown in the

following figure.

Figure 2: Basic structure of Radix-8 FFT.

Figure 3 depicts a 64-point Radix-8 FFT using the butterfly

symbol shown in figure 2 to represent mathematical

operations.

Figure 3:-Signal flow graph of 64 point FFT using Radix-8

The above diagram represents 64-point Radix-8 DITFFT

butterfly diagram in which we have only 2 stages, the internal

RTL views are as shown below:

Radix-8

butterfly FFT

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

27

Figure 4:- RTL view for 64 Point FFT

Figure 5:-RTL view for 32 Point FFT

4. SPLIT-RADIX
The split-Radix [10] FFT investigates whether the

computational cost of the FFT can be further reduced by

combining two or more different radices, resulting in a Split-

Radix algorithm. In, as with Radix-2 FFT case, the DFT

operation is split into odd-half and even-half parts. In this

paper the Split-Radix algorithm is of 32 point is split as

8/4.The even components are decomposed into 8k and odd

components are decomposed into 4k+1 frequency

components. Repeating this process for half and quarter

length DFTs gives the Split-Radix FFT algorithm.

X(k)=

 0<n<k

=

 +

=

 +

 (4)

By decimating the input vector in time index into two subsets

as expressed in equation (5),(6) and calculating with twiddle

factors

=
 .

 m=0,1,....

 (5)

 (n)= m=0,1,....

 (6)

After these problem subsets are solved by the Split-Radix

algorithms recursively, the solution to the original sequence of

length N can be obtained according to equation (4). The RTL

view of 32 point Split-Radix is shown in below figure 5.

5. SOFTWARE USED
The goal of the VHDL [13] synthesis is to create a design that

implements the required functionality and matches the

designer’s constraints in speed, area and power. The 32 Point

FFT[1][14] and 64 point FFT Proposed in this paper is been

simulated using Xilinx ISE Design Suite 13.2 with device

family as Vertex 6 lower power (XC6VLX130TL),Package

FF784 and with speed -1L.

6. SIMULATION RESULTS
The vertex 6 device utilization summary for 32 and 64 point is

shown below table 1 and 2.

Table 1: Device utilization summary for 32 point FFT

using Radix-2 Algorithm.

Device Utilization Summary for 32 Point FFT using Radix-2

Algorithm

Logic Utilization Available used Utilization

No. of Slice LUTs 46560 18253 39%

No. of Fully Used

LUTFFT Pairs

18253 0 0%

No. of Bonded IOBs 240 2560 1066%

No.of DSP48EIs 288 148 51%

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

28

Table 2: Device utilization summary for 32 point FFT

using Split-Radix Algorithm.

Device utilization summary for 32 point FFT using Split –

Radix Algorithm.

Logic

Utilization

Available Used Utilization

No. of Slice

LUTs

46560 22120 47%

No. of Fully

Used LUTFFT

pairs

22120 0 0%

No. Of

Bonded IOBs

240 2560 1066%

No. Of

DSP48EIs

288 160 55%

Table 3: Time delay of 32 point FFT

32 Point

Parameter Radix-2 Split-Radix

Minimum Delay(ns) 21.526 21.153

Total Real Time to

XST Completion

162.00ns 137.00ns

Total Real Time to

CPU Completion

162.03ns 136.30ns

 Table 4: Time delay of 64 point FFT

64 Point

Parameter Minimum Delay(ns)

Radix-2 39.618

Radix-8 19.973

Split-Radix 24.795

The performance analysis of 32 and 64 point FFT are shown

in below figure.

Figure 6: Performance analysis of 32 point FFT

Figure 7: Performance analysis of 64 point FFT

7. CONCLUSION

In this Paper, the design of 32 and 64 point FFT using Radix-

2, Radix-8, and Split-Radix algorithms are performed, and the

performance analysis with all the three algorithms are done

using Minimum Delay(ns) as parameter and their synthesis

and simulation results are shown by Xilinx synthesis tool on

vertex .The test bench wave forms are displayed by using

Xilinx ISE Design Suite 13.2. Further, the performance

analysis can also be done by taking various parameters into

consideration for different or same number of points.

REFERENCES
[1] Asmita Haveliya, “Design and simulation of 32-point

FFT using Radix-2 Algorithm for FPGA

Implmentation”,2012 second International conference on

Advanced Computing and Communication Technologies.

[2] sneha N.Kherde, Meghana Hasamnis, “ Efficient Design

and Implementation of FFT”, International Journal of

Engineering science and Technology(IJEST),

ISSN:0975-5462 NCICT Special Issue Feb 2011.

21.526

21.153

20.9

21

21.1

21.2

21.3

21.4

21.5

21.6

Minimum

Delay(ns)

32-Point

Radix-2

Split-

Rdaix(8/4)

39.618

19.973
24.795

0
5

10
15
20
25
30
35
40
45

Radix-2 Radix-8 Split-
Radix

Minimum

Dealy(ns)

64-Point

International Journal of Computer Applications (0975 – 8887)

Volume78– No.1, September 2013

29

[3] Ahmed Saeed,M.Elabably, G.abdelfadeel and

M.I.Eladawy, “Efficient FPGA implementation of

FFT/IFFT Processor”, international journal of circuits

and signal processing,Issue3,Volume3,2009.

[4] Alam V.Oppenhem, Ronald W.Schaler with John R.back

, Discrete Time Signal Processing, second Edition.

[5] B.Parhami, Computer Arithmetic, Algorithms and

Hardware Designs, 1999.

[6] James W.Cooley and John W.Tukey, An Algorithm for

the Machine Calculation of Complex Fourier Series.

[7] Saad Bouguezel, M.Omair Ahmad, “Improved Radix-4

and Radix-8 Algorithms”, IEEE Department of Electrical

and Computer Engineering Concordia University 1455

de Maisenneuve Blvd west Montreal, P.q.,Canada.

[8] Ali saidi, “Decimation in Frequency FFT Algorithm”,

Motorola Applied Research, Paging and Wireless Data

Group Boynton Beach.

[9] Wei-Hsin chang and Truong Q.Nguyen fellow IEEE,

“On the Fixed point Accuracy Analysis of FFT

Algorithms”,IEEE Transactions ON Signal Processing,

Vol. 56, No. 10, Oct 2008.

[10] Jesus Gracia, Juan A. Michell, Gustavo Ruiz, Angel M.

Burón, Dept. de Electrónica y Computadores, Facultad

de Ciencias, Univ. de Cantabria, Avda, “FPGA

realization of a Split Radix FFT processor”, Los Castros

s/n, 39005 Santander, SPAIN.

[11] HardwareDescriptionLanguage.URL:

http://en.wikipedia.org/wiki/Hardware_description_langu

age.

[12] Very High Speed Integrated Circuit Hardware

Description Language URL: http://electrosofts.com/vhdl/

[13] Peter J. Ashenden, The Designer’s Guide to VHDL,

Second Edition.

[14] N. Weste, M. Bickerstaff, T. Arivoli, P.J. Ryan, J. W.

Dalton, D.J.Skellern", and T.M. Percivalt “A 50Mhz

16Point-FFT processor for WLAN applications”.

[15] Rizalafande Che Ismail and Razaidi Hussin ”High

Performance Complex Number Multiplier Using Booth-

Wallace Algorithm” School of Microelectronic

Engineering Kolej University Kejuruteraan Utara

Malaysia.

[16] Bergland, G. D. "A Guided Tour of the Fast Fourier

Transform." IEEE Spectrum 6, 41-52, July 1969.

[17] “Design of a radix-8/4/2 FFT processor for OFDM

Systems”, Jungmin Park ,Computer Engineering ,Iowa

State University.

IJCATM : www.ijcaonline.org

