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ABSTRACT 

Graphics Processing Units (GPUs) are being heavily used in 

various graphics and non-graphics applications. Many 

practical problems in computing can be represented as graphs 

to arrive at a particular solution. These graphs contains very 

large number, up to millions pairs of vertices and edges. In 

this paper, we present performance analysis of Dijkstra’s 

single source shortest path algorithm over multiple GPU 

devices in a single machine as well as over a network of 

workstations using OpenCL and MPI.  Experimental results 

prove that parallel execution of Dijkstra’s algorithm has good 

performance when algorithm is run over multi-GPU devices 

in a single workstation as opposed to multi-GPU devices over 

a network of workstations. For our experimentation, we have 

used workstation having Intel Xeon 6-core Processor; 

supporting hyper-threading and a total of 24 threads with 

NVIDIA Quadro FX 3800 GPU device. The two GPU devices 

are connected by SLI Bridge. Overall, on average we achieved 

performance improvement up to an order of 10-15x.   
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1. INTRODUCTION 
In computer science, graphs describe relationship between 

various objects. Many practical problems in computing, 

networking, data analysis, decision making, linear 

programming, computational biology and other areas can be 

modeled as graphs to solve such problems. As the size of 

graph grows, complexity of problem solving becomes 

enormous. Hence, it becomes necessary to utilize the 

computational powers of Graphics processing Unit (GPU) [1]. 

Graphics Processing Unit (GPU) is a highly parallel, 

multithreaded; many core processor with tremendous 

computational power and very high memory bandwidth. 

GPUs use aggressive multithreading so that whenever thread 

is stalled, waiting for data, the thread can efficiently switch to 

execute another thread. Parallel programming languages such 

as Brook+ [2], NVidia’s CUDA [3], OpenCL (Open 

Computing Language) [4], have been recently introduced to 

help programmers in writing parallel programs to take benefit 

of GPUs for high performance computing.   

A graph is defined in terms of pairs of number of vertices and 

edges. The time-complexity of typical sequential version of 

graph algorithm is in the order of number of vertices and 

edges. As the number of vertices and edges increases, graph 

algorithms takes large amount of time. Graph algorithms can 

harness the powers of GPU, if graph can be efficiently 

expressed in terms of set of parallel and un-parallel 

computations. The Parallel Boost Graph Library (ParaBGL) 

[5] is a library which provides such a facility for parallel and 

distributed computations. ParaBGL offers essential data 

structures, algorithms and syntax for very large graphs; for 

solving such large-scale graph problems in distributed and 

parallel environment.   

SnuCL [6] is an OpenCL framework for heterogeneous CPU-

GPU clusters with MPI [7]. SnuCL allows the application to 

utilize compute devices in a compute node as if they were in 

the host node. As a result, OpenCL application compiled with 

SnuCL generates MPI+OpenCL kernels that can run on the 

cluster without any modifications. 

In this paper, we present implementation details of Dijkstra’s 

single source shortest path algorithm on (i) single GPU (ii) 

two GPUs on a single machine (iii) two GPUs over LAN 

using OpenCL programming model, MPI library and SnuCL 

framework.  

The paper is organized a follows. Section 2 describes prior 

work done on Dijkstra’s algorithm. A precise description 

about architecture of GPU device and OpenCL programming 

model is given in Section 3 and 4 respectively. In Section 5, 

we review Dijkstra’s algorithm and present various parallel 

version of Dijkstra’s algorithm for single GPU, dual GPUs. 

Experimental results are presented in Section 6 and finally 

Section 7 concludes and presents future scope. 

2. RELATED WORK   
There are many papers available in literature involving graph 

algorithms [8, 9, 10, 11, 12, 13, 14]. Parallel shortest path 

algorithm was implemented in [15] for a super-computer. 

They map logical processors of machine to physical 

processing nodes of supercomputer to parallelize Dijkstra’s 

algorithm using Hamiltonian cycles and priority queues.   

An efficient GPU implementation of parallel global path-

finding SSSP algorithm using the CUDA programming 

environment is presented in [16] and they achieved very good 

performance over irregular and divergent algorithms. In [17] 

authors propose GPU implementation of Dijkstra’s algorithm 

and they call it as Parallel Hardware-Accelerated Shortest 

Path Tress (PHAST). However, PHAST only works with low 

high way dimensions [18].  All pairs shortest paths algorithm 

is described in [19] including single source shortest path 

algorithm for large graphs using CUDA API. It describes a 
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shared memory cache efficient GPU implementation to solve 

transitive and other properties of graphs.  

Harish and Narayanan [20] accelerated large graph algorithms 

on the GPU using CUDA. They computed single source 

shortest path on a 10 million vertex graph in 1.5 seconds using 

the NVIDIA 8800GTX GPU. In [21] authors computed 

shortest paths on Graphic Processing Units. They 

implemented blocked recursive elimination strategy and their 

implementation runs more than two orders of magnitude faster 

on an NVIDIA 8800 GPU.  

An OpenCL based parallel implementation of Dijkstra’s 

algorithm is implemented in [22]. It describes implementation 

of the kernels that compute Dijkstra’s algorithm in parallel on 

single as well as multiple GPUs available on a single 

workstation. However, they do not take into consideration of 

multiple GPU available over a network of workstations.    

 

3. ARCHITECTURE OF GPU DEVICE 
General Purpose Computing on Graphics Processing Units 

(GPGPU) is the technique of using a GPU to solve 

computational problems which are traditionally handled by 

CPU. Earlier, GPU was designed only for handling 

computations needed for computer graphics. GPUs are only 

numeric computing engines, they may perform well for 

graphical applications but in some cases may not perform well 

on some tasks on which CPUs are designed to perform well. 

So, the most applications will use both CPUs and GPUs, 

executing the sequential parts of program (or application) on 

CPU and numerically intensive parts on GPUs. 

 

Fig 1: Architecture of NVidia Quadro FX 3800GPU 

The structure of typical GPU differs from CPU structure. The 

main parts of GPU are processing elements (or cores). Fig. 1 

shows typical architecture of NVidia CUDA-enabled GPU 

device. GPU is a two level architecture. At top level, it is 

made up of array of highly threaded processors termed as 

Streaming Multiprocessors (SM) and each SM contains eight 

processing elements termed as Symmetric Processors (SP). 

For NVidia Quadro FX 3800 GPU Device there are 24 SMs 

and 192 SPs; however, the number of SMs and SPs can vary 

from one generation of GPUs to another generation. Each SM 

has 8,192 registers that are shared among all threads assigned 

to the SM. The threads on a SM core execute in SIMD 

(single-instruction, multiple data) fashion, with the instruction 

unit (IU) broadcasting the current instruction to the eight SPs. 

Each SP has one arithmetic unit that performs single-precision 

floating point arithmetic and 32-bit integer operations. 

In addition, a GPU device has up to 4GB of GDDR RAM 

referred to as global memory.  These are frame buffer memory 

which holds video images, and texture information. The 

NVidia Quadro FX 3800 GPU has several on-chip memories 

that can exploit data locality and data sharing, e.g. a 64 KB 

off-chip constant memory and an 8 KB single-ported constant 

memory cache in each SM. If multiple threads access the 

same address during the same cycle, the cache broadcasts the 

address to those threads with the same latency as a register 

access. In addition to the constant memory cache, each SM 

has a 16 KB shared (data) memory that is either written and 

reused or shared among threads. Finally, for read-only data 

that is shared by threads but not necessarily to be accessed 

simultaneously, the off-chip texture memory and the on-chip 

texture caches exploit 2D data locality. For complete study of 

this topic, refer [25, 26]. 

 

4. OPENCL PROGRAMMING MODEL  
OpenCL (Open Computing Language) is an open standard 

targeted for parallel programming of heterogeneous systems. 

OpenCL provides an interface for handling CPU, GPU, FPGA 

and various other different types of processors and 

combination of these processors. OpenCL is suited for 

interactive graphics applications that combine general parallel 

compute algorithms with graphics rendering pipelines. 

An OpenCL application consists of two parts (i) kernel – 

execute on one or more OpenCL devices (ii) host program – 

execute on host (CPU). The host program creates context and 

is responsible for managing all the intra and inter-

communication between host and OpenCL devices through a 

set of command queues. 

The core of the OpenCL execution model is defined by how 

the kernels execute. When a kernel is submitted for execution, 

a lot of work-items (i.e. group of threads) are lunched. Work-

item is the smallest execution entity, each one executing the 

same code. An index space, called as NDRange in OpenCL, 

defines the work-items and how data are mapped to the work-

items. A work-item is defined in index space by global ID.  

 

Fig 2: OpenCL Execution Model showing how global IDs, 

local IDs and work-group indices are related 

A group of work-items collectively form blocks of threads 

called as work- groups. Work-groups are assigned a unique 

work-group ID with the same dimensionality as the index 

space used for the work-items. Work-items are assigned a 

unique local ID within a work-group so that a single work-
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item can be uniquely identified by its global ID or by a 

combination of its local ID and work-group ID. The work-

items in a given work-group execute concurrently on the 

processing elements of a single compute unit. Synchronization 

among work-items in the same work-group is achieved by 

using barriers. Work-items in different work-groups cannot 

synchronize with each other. 

Fig. 2 shows 2-dimensional NDRange index space showing 

all work-items, their global IDs and their mapping to their 

work-groups and local IDs. See [23, 24, 25, 26, 27, 28] for 

more details on this topic. 

5. DIJKSTRA’S SINGLE SOURCE 

SHORTEST PATH ALGORITHM  
Dijkstra’s algorithm finds shortest path between pair of 

vertices in a graph. This algorithm is also called as single 

source shortest path algorithm as one can find shortest path 

from given source vertex to all vertices in graph [29, 30] 

shown as Algorithm 1. 

Algorithm 1: Sequential Dijkstra’s Algorithm 

1. Define a graph as G = (V, E) where V is a set of 

vertices and E is set of edges. 

2. Define a set S of vertices whose shortest path from 

source have already been determined and (V-S) be 

the set of remaining vertices. 

3. Define d – array of best estimates of shortest path to 

each vertex and pi – array of predecessors for each 

vertex. 

4. Initialize d and pi. 

5. Set S to empty 

6. While there are still vertices in (V-S) 

a. Sort the vertices in V-S according to the 

current best estimates of their distance 

from source, 

b. Add u, the closest vertex in V-S, to S, 

c. Relax all the vertices still in V-S 

connected to u 

The ‘Relax’ procedure updates the cost of all vertices v, 

connected to vertex u, if at all there is a cheapest path to v via 

u. 

5.1 Single GPU Implementation 
We have implemented SSSP using OpenCL. Our 

implementation is based on the algorithms in [20, 22]. The 

algorithm consists of two phases. In first phase, we visit 

marked vertices in Mask array and calculate its cost with its 

neighbor vertices. The first phase of the SSSP is shown in 

Algorithm 2. 

SSSP_kernel_find_neigbour_cost (Ver, Edge, Mask, Weight, 

Cost, updCost, ver_cnt, edg_cnt) 

{ 

    Ver [ ]: Vertex array 

    Edge [ ]: Edge array 

    Mask [ ]: Boolean Mask array of size |Ver| 

    Weight [ ]: Weight array of size |Edge| 

    Cost [ ]: Cost array 

    updCost [ ]: array for storing updated cost  

    ver_cnt: No. of vertices 

    edg_cnt: No. of edges 

 

    int tid = get_thread_id(); 

    if (Mask[tid] != 0) 

    { 

        Mask [tid] = 0; 

        int edgeStart = Ver [tid]; 

        if (tid + 1 < ver_cnt) 

        int edgeEnd = Ver[tid + 1] 

    }  

    else int edgeEnd = edg_cnt; 

    for ( e = edgeStart to edgeEnd) 

   { 

           int nid = Edge[e]; 

           if (updCost[nid] > Cost[tid] + Weight[e]) 

                updCost[nid] = Cost[tid] + Weight[e] 

    } 

} 

Algorithm 2: Phase 1 of Dijkstra’s Algo for single GPU 

The second phase of SSSP, checks whether for each vertex 

cheaper cost have been determined and accordingly updates 

Cost array. The second phase is shown in Algorithm 3.  

SSSP_kernel_find_smaller_cost(Ver, Edge, Mask, Weight, 

Cost, updCost, ver_cnt) 

{ 

    Ver [ ]: Vertex array 

    Edge [ ]: Edge array 

    Mask [ ]: Boolean Mask array of size |Ver| 

    Weight [ ]: Weight array of size |Edge| 

    Cost [ ]: Cost array 

    updCost [ ]: array for storing updated cost  

    ver_cnt: No. of vertices 

    edg_cnt: No. of edges 

 

    int tid = get_thread_id(); 

    if (Cost[tid] > updCost[tid]) 

    { 

          Cost [tid] = updCost[tid]; 

          Mask [tid] = 1; 

    } 

        updCost[tid] = Cost[tid]; 

} 

Algorithm 3: Phase 2 of Dijkstra’s algo for single GPU 

 

5.2 Multi-GPU Implementation 
The general idea is to partition the work into equal blocks. 

The partitioned blocks can be handled by the available GPUs 

on the machine. The   Dijkstra’s algorithm for multiple GPU 

devices available on a single machine is presented in 

Algorithm 4.    

multi_gpu_work_load() 

{ 

    gpu_cnt = get the no. of available gpus 

    

    // create threads for gpus 

    pthread_t gid = gpu_cnt 

 

    // divide worload for gpus 

    int gpu_work = total_work / gpu_cnt; 

 

    //gpu_work = 0.5; // Allot 50% work to each of the GPUs 

 

    for each of the available GPU device 

 create context //gpu_context[gid] 

 create graph and initialize all the parameters 

associated with the graph 

 

    // Launch all the threads for each of the available GPUs 

    pthread_create(gid, dijkstra_algo(gpu_context[gid])) 

 

    // wait for result from all gpus 
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    pthread_join(gid, resultst_from_gpu_context[gid]); 

} 

Algorithm 4: Dijkstra Algo. for multiple GPU devices on a 

single machine 

 

Algorithm for Dijkstra Algo across multiple GPU devices 

over network of Workstations is presented in Algorithm 5. At 

the beginning of execution, MPI process initializes and 

identifies its neighboring nodes. Thereafter, it updates its 

working area and accordingly defines adjacent borders for 

neighboring nodes from the corresponding MPI processes. 

With this information, buffer space can be allocated on 

various remote GPUs. After this phase, data is transferred to 

the GPU and from there on the underlying OpenCL 

application works as usual.  

Multi_gpu_mpi_opencl() 

{ 

   int rank, size; 

   MPI_INIT(); 

 

   MPI_Comm_size(MPI_COMM_WORLD, &size); 

   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

   for each of the rank() 

 get_node_info(); 

 list_gpu_devices(); 

 

   gpu_list[] = get opencl devices available on LAN  /* this 

uses MPI calls and SSH protocols */ 

 

   /* test gpu_list for equality first. All the GPU should be of 

same configurations */ 

 

   test_gpu_list(gpu_list); 

 

  // divide worload for gpus 

  int gpu_work = total_work / gpu_list.size(); 

 

  // gpu_work = 0.5; // allot 50% work to each of the available 

gpu device 

   

 // MPI process separation 

 MPI_Status s; 

  

if (rank==0) // sender 

MPI_Send(&data,1,MPI_INT,source_rank,1,MPI_COMM_W

ORLD); 

 

if (rank!=0){ 

MPI_Recv(&data,1,MPI_INT,dest_rank,1,MPI_COMM_WO

RLD, &s); 

MPI_Send(&data,1,MPI_INT,dest_rank,2,MPI_COMM_WO

RLD); 

} 

 

for at each node  

 allocate_gpu(); 

 create context 

 create graph and initialize all the parameters 

associated with the graph 

 Launch kernel_Dijkstra; 

 

if (rank==0) 

MPI_Recv(recv_data,recv_data_size,dest_rank,2,MPI_COM

M_WORLD, &s); 

Merge_Result(recv_data_from_all_gpus); 

MPI_Finalize(); 

}   

Algorithm 5: Dijkstra Algo. for multiple GPU devices on 

Network of Workstations 

 

6. RESULTS AND ANALYSIS   

6.1 Experimental setup 
In this section, we provide detailed hardware specifications 

for the CPU and GPU we have used during our experiments.   

 

Fig 3: Architecture of our Workstation 

Fig. 3 shows architecture of our workstation (host machine). 

The host machine has Intel Xeon X5650 Twin CPUs running 

at 2.67GHz. Each core of two processors has 32KB L1 Data 

cache, 256 KB L2 cache shared between 2 threads of that 

core. In addition to that, there is 12MB L3 cache shred among 

all the threads. 

The GPU device used in our experiment was NVidia Quadro 

FX 3800. The device has 192 stream processors (cores) 

running at 1204 MHz. Table 1 gives detailed GPU 

specifications including the sizes of global and other memory 

details. 

Table 1. GPU NVidia Quadro FX 3800 Specifications  

Type Number 

No. of Cores 192 

Max. Compute Units 24 

Max. work-item Dim. 3 

Max. work-item sizes 512, 512, 64 

Max. work-group size 512 

Global Memory size 1GB 

Max. Constant Buffer Size 64 KB 

Max. Constant Arguments 9 

Local Memory size 16 KB 

 

The GPU device was connected to CPU through X58 I/O Hub 

PCI Express. The environment used for experimentation is 

Open Suse Operating system with kernel version 2.6. OpenCL 
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1.1 with CUDA 4.2.1 was the primary platform used for 

executing the OpenCL programs.  

For multi-GPU connections, we have two cases. For the first 

case, two GPUs are connected to each other via SLI Bridge. 

In second case, two nodes each having identical NVidia 

Quadro FX 3800 GPU, were connected over the LAN.   

6.2 Experimental Results 
Table 2 shows execution time for GPU kernel execution on 

device. For experimentation purpose, we took various 

numbers of vertices, each with degree 10 and we ran SSSP 

algorithm for 100 source vertices. All the experiments were 

repeated 20 times and results reported are averaged over 

twenty runs.  

Performance of SSSP algorithm is shown in Fig. 4. As 

expected, as the number of GPUs increases, the performance 

also increases. It can be seen from Figure 4 that dual-GPUs in 

SLI mode gives good performance if they are available on 

single workstation.  

7. CONCLUSION AND FUTURE SCOPE   
This paper shows that Dijkstra’s Single Source Shortest Path 

algorithm can be solved efficiently using multiple GPU 

devices. It can be seen from Fig. 4 that, average speedup 

achieved is 3.65 when single GPU is used. As the number of 

GPUs and size of the problem increases, there is cubic order 

of performance improvement. In Fig. 4, for 5000000 vertices, 

speedup achieved for SLI mode is 19.2, as opposed to 14.73 

using MPI in non-SLI mode. MPI applications use 

communication protocols and suffer from latency and 

bandwidth problems. As a result, there is drop in speedup 

achieved. 

From the experiments we can conclude that a SLI enabled 

multi-GPU system has more advantage in compute-intensive 

applications than a non-SLI system.  

As a future work, we are planning to investigate various 

algorithms from allied fields and use different GPU 

architectures from different vendors for our analysis. 

 
 

Table 2. Execution Time for SSSP Algorithm (in sec) 

No. of 

Vertices 

 

Sequential 

 

Single GPU 

(OpenCL) 

 

Dual GPU 

OpenCL 
MPI + 

OpenCL 

100000 8.737 2.721 1.632 2.026 

200000 19.819 5.981 2.961 3.129 

300000 31.656 9.596 4.022 4.966 

500000 55.16 16.799 7.377 8.135 

1000000 118.557 35.931 13.325 17.232 

5000000 1020.779 196.927 53.176 69.281 

 

 

Fig 4: Performance of SSSP Algorithm 
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