
International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

31

Performance Analysis of Single Source Shortest Path

Algorithm over Multiple GPUs in a Network of

Workstations using OpenCL and MPI

Krishnahari Thouti
Dept. of CSE
VNIT, Nagpur

India, pin-440010

S. R. Sathe
Dept., of CSE

VNIT, Nagpur

India, pin – 440010

ABSTRACT

Graphics Processing Units (GPUs) are being heavily used in

various graphics and non-graphics applications. Many

practical problems in computing can be represented as graphs

to arrive at a particular solution. These graphs contains very

large number, up to millions pairs of vertices and edges. In

this paper, we present performance analysis of Dijkstra’s

single source shortest path algorithm over multiple GPU

devices in a single machine as well as over a network of

workstations using OpenCL and MPI. Experimental results

prove that parallel execution of Dijkstra’s algorithm has good

performance when algorithm is run over multi-GPU devices

in a single workstation as opposed to multi-GPU devices over

a network of workstations. For our experimentation, we have

used workstation having Intel Xeon 6-core Processor;

supporting hyper-threading and a total of 24 threads with

NVIDIA Quadro FX 3800 GPU device. The two GPU devices

are connected by SLI Bridge. Overall, on average we achieved

performance improvement up to an order of 10-15x.

General Terms

Parallel Computing, Parallel Algorithms

Keywords

GPU Computing; OpenCL; Multi-node GPU Cluster;

Dijkstra’s algorithm; Single source shortest path

1. INTRODUCTION
In computer science, graphs describe relationship between

various objects. Many practical problems in computing,

networking, data analysis, decision making, linear

programming, computational biology and other areas can be

modeled as graphs to solve such problems. As the size of

graph grows, complexity of problem solving becomes

enormous. Hence, it becomes necessary to utilize the

computational powers of Graphics processing Unit (GPU) [1].

Graphics Processing Unit (GPU) is a highly parallel,

multithreaded; many core processor with tremendous

computational power and very high memory bandwidth.

GPUs use aggressive multithreading so that whenever thread

is stalled, waiting for data, the thread can efficiently switch to

execute another thread. Parallel programming languages such

as Brook+ [2], NVidia’s CUDA [3], OpenCL (Open

Computing Language) [4], have been recently introduced to

help programmers in writing parallel programs to take benefit

of GPUs for high performance computing.

A graph is defined in terms of pairs of number of vertices and

edges. The time-complexity of typical sequential version of

graph algorithm is in the order of number of vertices and

edges. As the number of vertices and edges increases, graph

algorithms takes large amount of time. Graph algorithms can

harness the powers of GPU, if graph can be efficiently

expressed in terms of set of parallel and un-parallel

computations. The Parallel Boost Graph Library (ParaBGL)

[5] is a library which provides such a facility for parallel and

distributed computations. ParaBGL offers essential data

structures, algorithms and syntax for very large graphs; for

solving such large-scale graph problems in distributed and

parallel environment.

SnuCL [6] is an OpenCL framework for heterogeneous CPU-

GPU clusters with MPI [7]. SnuCL allows the application to

utilize compute devices in a compute node as if they were in

the host node. As a result, OpenCL application compiled with

SnuCL generates MPI+OpenCL kernels that can run on the

cluster without any modifications.

In this paper, we present implementation details of Dijkstra’s

single source shortest path algorithm on (i) single GPU (ii)

two GPUs on a single machine (iii) two GPUs over LAN

using OpenCL programming model, MPI library and SnuCL

framework.

The paper is organized a follows. Section 2 describes prior

work done on Dijkstra’s algorithm. A precise description

about architecture of GPU device and OpenCL programming

model is given in Section 3 and 4 respectively. In Section 5,

we review Dijkstra’s algorithm and present various parallel

version of Dijkstra’s algorithm for single GPU, dual GPUs.

Experimental results are presented in Section 6 and finally

Section 7 concludes and presents future scope.

2. RELATED WORK
There are many papers available in literature involving graph

algorithms [8, 9, 10, 11, 12, 13, 14]. Parallel shortest path

algorithm was implemented in [15] for a super-computer.

They map logical processors of machine to physical

processing nodes of supercomputer to parallelize Dijkstra’s

algorithm using Hamiltonian cycles and priority queues.

An efficient GPU implementation of parallel global path-

finding SSSP algorithm using the CUDA programming

environment is presented in [16] and they achieved very good

performance over irregular and divergent algorithms. In [17]

authors propose GPU implementation of Dijkstra’s algorithm

and they call it as Parallel Hardware-Accelerated Shortest

Path Tress (PHAST). However, PHAST only works with low

high way dimensions [18]. All pairs shortest paths algorithm

is described in [19] including single source shortest path

algorithm for large graphs using CUDA API. It describes a

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

32

shared memory cache efficient GPU implementation to solve

transitive and other properties of graphs.

Harish and Narayanan [20] accelerated large graph algorithms

on the GPU using CUDA. They computed single source

shortest path on a 10 million vertex graph in 1.5 seconds using

the NVIDIA 8800GTX GPU. In [21] authors computed

shortest paths on Graphic Processing Units. They

implemented blocked recursive elimination strategy and their

implementation runs more than two orders of magnitude faster

on an NVIDIA 8800 GPU.

An OpenCL based parallel implementation of Dijkstra’s

algorithm is implemented in [22]. It describes implementation

of the kernels that compute Dijkstra’s algorithm in parallel on

single as well as multiple GPUs available on a single

workstation. However, they do not take into consideration of

multiple GPU available over a network of workstations.

3. ARCHITECTURE OF GPU DEVICE
General Purpose Computing on Graphics Processing Units

(GPGPU) is the technique of using a GPU to solve

computational problems which are traditionally handled by

CPU. Earlier, GPU was designed only for handling

computations needed for computer graphics. GPUs are only

numeric computing engines, they may perform well for

graphical applications but in some cases may not perform well

on some tasks on which CPUs are designed to perform well.

So, the most applications will use both CPUs and GPUs,

executing the sequential parts of program (or application) on

CPU and numerically intensive parts on GPUs.

Fig 1: Architecture of NVidia Quadro FX 3800GPU

The structure of typical GPU differs from CPU structure. The

main parts of GPU are processing elements (or cores). Fig. 1

shows typical architecture of NVidia CUDA-enabled GPU

device. GPU is a two level architecture. At top level, it is

made up of array of highly threaded processors termed as

Streaming Multiprocessors (SM) and each SM contains eight

processing elements termed as Symmetric Processors (SP).

For NVidia Quadro FX 3800 GPU Device there are 24 SMs

and 192 SPs; however, the number of SMs and SPs can vary

from one generation of GPUs to another generation. Each SM

has 8,192 registers that are shared among all threads assigned

to the SM. The threads on a SM core execute in SIMD

(single-instruction, multiple data) fashion, with the instruction

unit (IU) broadcasting the current instruction to the eight SPs.

Each SP has one arithmetic unit that performs single-precision

floating point arithmetic and 32-bit integer operations.

In addition, a GPU device has up to 4GB of GDDR RAM

referred to as global memory. These are frame buffer memory

which holds video images, and texture information. The

NVidia Quadro FX 3800 GPU has several on-chip memories

that can exploit data locality and data sharing, e.g. a 64 KB

off-chip constant memory and an 8 KB single-ported constant

memory cache in each SM. If multiple threads access the

same address during the same cycle, the cache broadcasts the

address to those threads with the same latency as a register

access. In addition to the constant memory cache, each SM

has a 16 KB shared (data) memory that is either written and

reused or shared among threads. Finally, for read-only data

that is shared by threads but not necessarily to be accessed

simultaneously, the off-chip texture memory and the on-chip

texture caches exploit 2D data locality. For complete study of

this topic, refer [25, 26].

4. OPENCL PROGRAMMING MODEL
OpenCL (Open Computing Language) is an open standard

targeted for parallel programming of heterogeneous systems.

OpenCL provides an interface for handling CPU, GPU, FPGA

and various other different types of processors and

combination of these processors. OpenCL is suited for

interactive graphics applications that combine general parallel

compute algorithms with graphics rendering pipelines.

An OpenCL application consists of two parts (i) kernel –

execute on one or more OpenCL devices (ii) host program –

execute on host (CPU). The host program creates context and

is responsible for managing all the intra and inter-

communication between host and OpenCL devices through a

set of command queues.

The core of the OpenCL execution model is defined by how

the kernels execute. When a kernel is submitted for execution,

a lot of work-items (i.e. group of threads) are lunched. Work-

item is the smallest execution entity, each one executing the

same code. An index space, called as NDRange in OpenCL,

defines the work-items and how data are mapped to the work-

items. A work-item is defined in index space by global ID.

Fig 2: OpenCL Execution Model showing how global IDs,

local IDs and work-group indices are related

A group of work-items collectively form blocks of threads

called as work- groups. Work-groups are assigned a unique

work-group ID with the same dimensionality as the index

space used for the work-items. Work-items are assigned a

unique local ID within a work-group so that a single work-

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

33

item can be uniquely identified by its global ID or by a

combination of its local ID and work-group ID. The work-

items in a given work-group execute concurrently on the

processing elements of a single compute unit. Synchronization

among work-items in the same work-group is achieved by

using barriers. Work-items in different work-groups cannot

synchronize with each other.

Fig. 2 shows 2-dimensional NDRange index space showing

all work-items, their global IDs and their mapping to their

work-groups and local IDs. See [23, 24, 25, 26, 27, 28] for

more details on this topic.

5. DIJKSTRA’S SINGLE SOURCE

SHORTEST PATH ALGORITHM
Dijkstra’s algorithm finds shortest path between pair of

vertices in a graph. This algorithm is also called as single

source shortest path algorithm as one can find shortest path

from given source vertex to all vertices in graph [29, 30]

shown as Algorithm 1.

Algorithm 1: Sequential Dijkstra’s Algorithm

1. Define a graph as G = (V, E) where V is a set of

vertices and E is set of edges.

2. Define a set S of vertices whose shortest path from

source have already been determined and (V-S) be

the set of remaining vertices.

3. Define d – array of best estimates of shortest path to

each vertex and pi – array of predecessors for each

vertex.

4. Initialize d and pi.

5. Set S to empty

6. While there are still vertices in (V-S)

a. Sort the vertices in V-S according to the

current best estimates of their distance

from source,

b. Add u, the closest vertex in V-S, to S,

c. Relax all the vertices still in V-S

connected to u

The ‘Relax’ procedure updates the cost of all vertices v,

connected to vertex u, if at all there is a cheapest path to v via

u.

5.1 Single GPU Implementation
We have implemented SSSP using OpenCL. Our

implementation is based on the algorithms in [20, 22]. The

algorithm consists of two phases. In first phase, we visit

marked vertices in Mask array and calculate its cost with its

neighbor vertices. The first phase of the SSSP is shown in

Algorithm 2.

SSSP_kernel_find_neigbour_cost (Ver, Edge, Mask, Weight,

Cost, updCost, ver_cnt, edg_cnt)

{

 Ver []: Vertex array

 Edge []: Edge array

 Mask []: Boolean Mask array of size |Ver|

 Weight []: Weight array of size |Edge|

 Cost []: Cost array

 updCost []: array for storing updated cost

 ver_cnt: No. of vertices

 edg_cnt: No. of edges

 int tid = get_thread_id();

 if (Mask[tid] != 0)

 {

 Mask [tid] = 0;

 int edgeStart = Ver [tid];

 if (tid + 1 < ver_cnt)

 int edgeEnd = Ver[tid + 1]

 }

 else int edgeEnd = edg_cnt;

 for (e = edgeStart to edgeEnd)

 {

 int nid = Edge[e];

 if (updCost[nid] > Cost[tid] + Weight[e])

 updCost[nid] = Cost[tid] + Weight[e]

 }

}

Algorithm 2: Phase 1 of Dijkstra’s Algo for single GPU

The second phase of SSSP, checks whether for each vertex

cheaper cost have been determined and accordingly updates

Cost array. The second phase is shown in Algorithm 3.

SSSP_kernel_find_smaller_cost(Ver, Edge, Mask, Weight,

Cost, updCost, ver_cnt)

{

 Ver []: Vertex array

 Edge []: Edge array

 Mask []: Boolean Mask array of size |Ver|

 Weight []: Weight array of size |Edge|

 Cost []: Cost array

 updCost []: array for storing updated cost

 ver_cnt: No. of vertices

 edg_cnt: No. of edges

 int tid = get_thread_id();

 if (Cost[tid] > updCost[tid])

 {

 Cost [tid] = updCost[tid];

 Mask [tid] = 1;

 }

 updCost[tid] = Cost[tid];

}

Algorithm 3: Phase 2 of Dijkstra’s algo for single GPU

5.2 Multi-GPU Implementation
The general idea is to partition the work into equal blocks.

The partitioned blocks can be handled by the available GPUs

on the machine. The Dijkstra’s algorithm for multiple GPU

devices available on a single machine is presented in

Algorithm 4.

multi_gpu_work_load()

{

 gpu_cnt = get the no. of available gpus

 // create threads for gpus

 pthread_t gid = gpu_cnt

 // divide worload for gpus

 int gpu_work = total_work / gpu_cnt;

 //gpu_work = 0.5; // Allot 50% work to each of the GPUs

 for each of the available GPU device

 create context //gpu_context[gid]

 create graph and initialize all the parameters

associated with the graph

 // Launch all the threads for each of the available GPUs

 pthread_create(gid, dijkstra_algo(gpu_context[gid]))

 // wait for result from all gpus

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

34

 pthread_join(gid, resultst_from_gpu_context[gid]);

}

Algorithm 4: Dijkstra Algo. for multiple GPU devices on a

single machine

Algorithm for Dijkstra Algo across multiple GPU devices

over network of Workstations is presented in Algorithm 5. At

the beginning of execution, MPI process initializes and

identifies its neighboring nodes. Thereafter, it updates its

working area and accordingly defines adjacent borders for

neighboring nodes from the corresponding MPI processes.

With this information, buffer space can be allocated on

various remote GPUs. After this phase, data is transferred to

the GPU and from there on the underlying OpenCL

application works as usual.

Multi_gpu_mpi_opencl()

{

 int rank, size;

 MPI_INIT();

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 for each of the rank()

 get_node_info();

 list_gpu_devices();

 gpu_list[] = get opencl devices available on LAN /* this

uses MPI calls and SSH protocols */

 /* test gpu_list for equality first. All the GPU should be of

same configurations */

 test_gpu_list(gpu_list);

 // divide worload for gpus

 int gpu_work = total_work / gpu_list.size();

 // gpu_work = 0.5; // allot 50% work to each of the available

gpu device

 // MPI process separation

 MPI_Status s;

if (rank==0) // sender

MPI_Send(&data,1,MPI_INT,source_rank,1,MPI_COMM_W

ORLD);

if (rank!=0){

MPI_Recv(&data,1,MPI_INT,dest_rank,1,MPI_COMM_WO

RLD, &s);

MPI_Send(&data,1,MPI_INT,dest_rank,2,MPI_COMM_WO

RLD);

}

for at each node

 allocate_gpu();

 create context

 create graph and initialize all the parameters

associated with the graph

 Launch kernel_Dijkstra;

if (rank==0)

MPI_Recv(recv_data,recv_data_size,dest_rank,2,MPI_COM

M_WORLD, &s);

Merge_Result(recv_data_from_all_gpus);

MPI_Finalize();

}

Algorithm 5: Dijkstra Algo. for multiple GPU devices on

Network of Workstations

6. RESULTS AND ANALYSIS

6.1 Experimental setup
In this section, we provide detailed hardware specifications

for the CPU and GPU we have used during our experiments.

Fig 3: Architecture of our Workstation

Fig. 3 shows architecture of our workstation (host machine).

The host machine has Intel Xeon X5650 Twin CPUs running

at 2.67GHz. Each core of two processors has 32KB L1 Data

cache, 256 KB L2 cache shared between 2 threads of that

core. In addition to that, there is 12MB L3 cache shred among

all the threads.

The GPU device used in our experiment was NVidia Quadro

FX 3800. The device has 192 stream processors (cores)

running at 1204 MHz. Table 1 gives detailed GPU

specifications including the sizes of global and other memory

details.

Table 1. GPU NVidia Quadro FX 3800 Specifications

Type Number

No. of Cores 192

Max. Compute Units 24

Max. work-item Dim. 3

Max. work-item sizes 512, 512, 64

Max. work-group size 512

Global Memory size 1GB

Max. Constant Buffer Size 64 KB

Max. Constant Arguments 9

Local Memory size 16 KB

The GPU device was connected to CPU through X58 I/O Hub

PCI Express. The environment used for experimentation is

Open Suse Operating system with kernel version 2.6. OpenCL

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

35

1.1 with CUDA 4.2.1 was the primary platform used for

executing the OpenCL programs.

For multi-GPU connections, we have two cases. For the first

case, two GPUs are connected to each other via SLI Bridge.

In second case, two nodes each having identical NVidia

Quadro FX 3800 GPU, were connected over the LAN.

6.2 Experimental Results
Table 2 shows execution time for GPU kernel execution on

device. For experimentation purpose, we took various

numbers of vertices, each with degree 10 and we ran SSSP

algorithm for 100 source vertices. All the experiments were

repeated 20 times and results reported are averaged over

twenty runs.

Performance of SSSP algorithm is shown in Fig. 4. As

expected, as the number of GPUs increases, the performance

also increases. It can be seen from Figure 4 that dual-GPUs in

SLI mode gives good performance if they are available on

single workstation.

7. CONCLUSION AND FUTURE SCOPE
This paper shows that Dijkstra’s Single Source Shortest Path

algorithm can be solved efficiently using multiple GPU

devices. It can be seen from Fig. 4 that, average speedup

achieved is 3.65 when single GPU is used. As the number of

GPUs and size of the problem increases, there is cubic order

of performance improvement. In Fig. 4, for 5000000 vertices,

speedup achieved for SLI mode is 19.2, as opposed to 14.73

using MPI in non-SLI mode. MPI applications use

communication protocols and suffer from latency and

bandwidth problems. As a result, there is drop in speedup

achieved.

From the experiments we can conclude that a SLI enabled

multi-GPU system has more advantage in compute-intensive

applications than a non-SLI system.

As a future work, we are planning to investigate various

algorithms from allied fields and use different GPU

architectures from different vendors for our analysis.

Table 2. Execution Time for SSSP Algorithm (in sec)

No. of

Vertices

Sequential

Single GPU

(OpenCL)

Dual GPU

OpenCL
MPI +

OpenCL

100000 8.737 2.721 1.632 2.026

200000 19.819 5.981 2.961 3.129

300000 31.656 9.596 4.022 4.966

500000 55.16 16.799 7.377 8.135

1000000 118.557 35.931 13.325 17.232

5000000 1020.779 196.927 53.176 69.281

Fig 4: Performance of SSSP Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.9, September 2013

36

8. REFERENCES
[1] General-purpose computations using Graphics hardware,

http://www.gpgpu.org/

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fathalian,

M. Houston and P. Hanrahan, “Brook for GPUs: Stream

Computing on Graphics Hardware,” ACM Trans.Graph,

Vol.23, No.3, 2004, pp. 777-786

[3] NVIDIA CUDA, http://developer.nvidia.com/cuda/

[4] OpenCL, http://www.khronos.org/registry/cl/

[5] Parallel Boost Graph Library,

http://osl.iu.edu/research/pbgl/

[6] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah,

Gangwon Jo, and Jaejin Lee, “SnuCL: An OpenCL

Framework for Heterogeneous CPU/GPU Clusters,” ICS

’12 in Proceedings of the 26th International Conference

on Supercomputing, pp. 341 — 352, San Servolo Island,

Venice, Italy, June 2012.

[7] OpenMPI: Open Source High Performance Computing,

http://www.open-mpi.org/

[8] Jun-Dong Cho, Salil Raje, and Majid Sarrafzadeh. “Fast

Approximation Algorithms on Maxcut, K-coloring, and

K-color ordering for VLSI Applications,” IEEE

Transactions on Computers, 47(11):1253–1266, 1998.

[9] Thomas Lengauer and Robert Endre Tarjan. “A Fast

Algorithm for Finding Dominators in a Flowgraph,”

ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

[10] P. J. Narayanan. “Single Source Shortest Path Problem

on Processor Arrays,” in Proceedings of the 4th IEEE

Symposium on the Frontiers of Massively Parallel

Computing, pages 553–556, 1992.

[11] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Kruger, A. Lefohn and T. Purcell, “A Survey of General-

Purpose Computation on Graphics Hardware,” Computer

Graphics Forum 26, 1 (Mar. 2007), pp. 80–113

[12] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A

Blocked All-Pairs Shortest-Paths Algorithm,” J. Exp.

Algorithmics 8 (2003), 2.2.

[13] Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer and

Peter Sanders, “A Parallelization of Dijkstra's Shortest

Path Algorithm,” MFCS 1998, pp. 722-731

[14] Nick Edmonds, Alex Breuer, Douglas Gregor, and

Andrew Lumsdaine, “Single-Source Shortest Paths with

the Parallel Boost Graph Library,” in 9th {DIMACS}

Implementation Challenge: The Shortest Path Problem,

November 2006.

[15] G. Stefano, A. Petricola and C. Zaroliagis, “On the

implementation of parallel shortest path algorithms on a

supercomputer”, in Proc. of ISPA’06, pp. 406-417, 2006.

[16] Avi Bleiweiss, “GPU Accelerated Pathfinding,”

Graphics Hardware 2008: pp. 65-74

[17] Daniel Delling, Andrew V. Goldberg, Andreas

Nowatzyk and R. F. Werneck, “PHAST: Hardware-

Accelerated Shortest Path Trees,” IPDPS 2011, pp. 921-

931

[18] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck,

“Highway Dimension, Shortest Paths, and Provably

Efficient Algorithms,” in Proceedings of the 21st Annual

ACM–SIAM Symposium on Discrete Algorithms

(SODA’10), 2010, pp. 782–793

[19] Gary J. Katz and Joseph T. Kider Jr, “All-Pairs Shortest-

Paths for Large Graphs on the GPU,” Graphics Hardware

2008, pp. 47-55

[20] P. Harsh and P.J. Narayan, “Accelerating large graph

algorithms on the GPU using CUDA”, IEEE High

Performance Computing, 2007. vol. 4873 of Lecture

Notes in Computer Science, Springer, pp. 197–208

[21] Aydin Buluç, John R. Gilbert and Ceren Budak, “Solving

path problems on the GPU,” Parallel Computing 36(5-6):

pp. 241-253 (2010).

[22] R. Pienaar, B. Fischl, V. Caviness, N. Makris, and P. E.

Grant, “Parallelizing Dijkstra’s Single Source Shortest-

path Graph Algorithm”, Chapter 16, OpenCL

Programming Guide, Addison-Wesley Publishers, 2011.

[23] The OpenCL specifications

www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[24] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,

“Heterogeneous Computing with OpenCL”, Morgan

Kaufmann Publishers, 2011.

[25] AMD Accelerated Parallel Processing OpenCL

Programming Guide, Advanced Micro Devices, Inc.

2012. http://developer.amd.com/appsdk

[26] D. Kirk and W-m. Hwu, Programming Massively

Parallel Processors: A Hands-on Approach. Morgan-

Kaufmann Publishers, 2010.

[27] A. Munshi, B. Gaster, T. Mattson, J. Fung and D.

Ginsburg, OpenCL Programming Guide, Addison-

Wesley Publishers, 2011.

[28] M. Scarpino, “OpenCL in Action,” Manning

publications, 2011.

[29] Dijkstra’s Algorithm,

http://www.cs.auckland.ac.nz/~jmor159/PLDS210/dijkst

ra.html

[30] T. Cormen, C. Leiserson, R. Rivest and C. Stein,

Introduction to Algorithms, 3rd Edition, The MIT Press.

IJCATM : www.ijcaonline.org

http://www.gpgpu.org/
http://developer.nvidia.com/cuda/
http://www.khronos.org/registry/cl/
http://osl.iu.edu/research/pbgl/
http://www.open-mpi.org/
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://developer.amd.com/appsdk
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/dijkstra.html
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/dijkstra.html

