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ABSTRACT
The coefficient of variation (CV ) of a population is defined as the
ratio of the population standard deviation to the population mean. It
is regarded as a measure of stability or uncertainty, and can indicate
the relative dispersion of data in the population to the population
mean. In this article, based on the upper record values, we study
the behavior of the CV of a random variable that follows a Lomax
distribution. Specifically, we compute the maximum likelihood es-
timations (MLEs) and the confidence intervals of CV based on
the observed Fisher information matrix using asymptotic distribu-
tion of the maximum likelihood estimator and also by using the
bootstrapping technique. In addition, we propose to apply Markov
Chain Monte Carlo (MCMC) techniques to tackle this problem,
which allows us to construct the credible intervals. A numerical ex-
ample based on a real data is presented to illustrate the implemen-
tation of the proposed procedure. Finally, Monte Carlo simulations
are performed to observe the behavior of the proposed methods.
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1. INTRODUCTION
The coefficient of variationcan be used to compare distributions ob-
tained with different units, such as, for example, the variability of
the weights of newborns (measured in grams) with the size of adults
(measured in centimeters). This approach has been used by several
authors to obtain the CV estimates see Pang et al. [26] and Pang
et al. [27]. The CV has long been widely used as a descriptive and
inferential quantity in several fields such as chemistry, engineer-
ing, finance, medical sciences, physics, and telecommunications.
In chemical experiments, it is often used as a yardstick of precision

of measurements; two measurement methods may be compared on
the basis of their respective CV . In finance, the CV can be used as
a measure of relative risks (Miller and Karson [24]): In clinical and
diagnostic areas, theCV is also often used as a yardstick of the pre-
cision of measurements (Reh and Scheffler [29]). In physiological
science, the CV can be applied to assess the homogeneity of bone
samples (Hamer et al.[17]). It has been used as a tool in uncertainty
analysis of fault trees (Ahn [3]) and in assessing the strength of ce-
ramics Gong and Li [13]. Many statistical procedures concerning
CV are based on the normal distribution. However, several phe-
nomena do not agree with the normality assumption due to asym-
metry or to the presence of heavy-andlight tails in the distribution
of the data. Thus, the statistical inference under normal populations
cannot be adequate in the mentioned cases.
The inverse of the coefficient of variation (1/CV ), called Sharpe’s
ratio or index, is very popular in finance as a measure of portfo-
lio performance see Knight and Satchell [19]. The wide use of this
index stems from the fact that it is an individual measure of perfor-
mance and not an equilibrium one. Since this is a ratio, Sharpe’s
index measures the slope of the indifference curve in the mean–
standard deviation space so that a higher value of this index im-
plies a higher mean–variance expected utility. For applications of
Sharpe’s ratio in the analysis of portfolio selection models and in a
market risk, see Rachev et al. [28] and Marrison [22]. For a recent
illustration of its use in insurance see, Dacorogna and Rüttener [9].
Bayesian statistical methods provide a complete paradigm for both
statistical inference and decision making under uncertainty. This
methodology allows to combine information derived from obser-
vations with information elicited from experts. The range of its
potential applicability is very wide. For example, it is particularly
useful for highly reliable components and systems where failures
in test and field operations are very rare, requiring the use of all
other information. A summary of the Bayesian activity is presented
by Berger [6].
The Lomax distribution belongs to the class of decreasing failure
rate distributions see also Chahkandi and Ganjali, [8]. Sometimes
it is called Pareto distribution of the second kind or Pareto Type-
II distribution. It was introduced by Lomax [20] as a model for
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business failure data. For its applications as lifetime distribution
and extensions, we refer to Marshall and Olkin [21]. Bryson [7] has
argued that Lomax distributions provide a very good alternative to
common lifetime distributions like exponential, Weibull, or gamma
distributions when the experimenter presumes that the population
distribution may be heavy-tailed. Details on Pareto distributions as
well as areas of application can be found in Arnold [4].
Lomax distribution has been shown to be useful for modeling and
analyzing the life time data in medical and biological sciences, en-
gineering, etc. So, it has been received the greatest attention from
theoretical and applied statisticians primarily due to its use in reli-
ability and lifetesting studies. Many statistical methodes have been
developed for this distribution, for a review of Lomax distribu-
tion see Habibullh and Ahsanullah [15], Upadhyay and Peshwani
[32] and Abd Ellah [1,2]. Agreat deal of research has been done
on estimating the parameters of a Lomax using both classical and
Bayesian techniques.
Therefore, the purpose of this paper is to develops the Bayes es-
timates and Markov Chain Monte Carlo (MCMC) techniques to
compute the credible intervals and bootstrap confidence intervals
of the coefficient of variation CV based on upper record values
from the Lomax distribution.
Let XU(1),XU(2),XU(3), ...,XU(n) be the first upper record
valuse of size n arising from a sequence {Xi} of i.i.d Lomax vari-
ables with the probability density function pdf

f(x) =αβα(x+ β)−(α+1),

x ≥ 0, α, β > 0.
(1)

and cumulative distribution function cdf

F (x) =1− βα(x+ β)−α,

x ≥ 0, α, β > 0,
(2)

where β is the scale parameter and α is the shape parameter. The
Lomax distribution has the following properties
(1) The expected value of X

E(X) =

∫ ∞
0

xf (x) dx

= αβα
∫ ∞
0

x (x+ β)−(α+1) dx

=
β

(α− 1)
, α > 1

(3)

(2) The expected value of X2

E(X2) =

∫ ∞
0

x2f (x) dx

= αβα
∫ ∞
0

x2 (x+ β)−(α+1) dx

=
2β2

(α− 1) (α− 2)
, α > 2

(4)

The theoretical coefficient of variation under the Lomax distribu-
tion is thus given by

CV =

√
E (X2)− (E (X))2

E (X)

=

√
α

(α− 2)
, α > 2.

(5)

The rest of the paper is organized as follows. In Section 2, we dis-
cuss the maximum likelihood estimations (MLEs) and the confi-
dence intervals of CV . a Parametric bootstrap confidence intervals
are discussed in Section 3. Section 4 describes MCMC for esti-
mating the empirical posterior distribution of CV and its interval
estimation. Section 5 contains the analysis of a real life data set
to illustrate our proposed method. Simulation studies are reported
in order to give an assessment of the performance of the different
estimation methods in Section 6. Finally we conclude with some
comments in Section 7.

2. MLE OF CV

This section describes the ML method for estimating CV based on
upper record values from the Lomax distribution . Let x = x

U(1)
,

x
U(2)

, ..., x
U(n)

be the first upper record values of size n from
Lomax (α, β).The likelihood function for observed record x given
by see Arnold et al. [5]

`(α, β|x) = f(xu(n))

n−1∏
i=1

f(xu(i))

1− F (xu(i))
. (6)

From Equations (1), (2), and (6), the likelihood function is given
by

`(α, β|x) = αnβα(xu(n) + β)−α
n∏
i=1

(xu(i) + β)−1. (7)

The log-likelihood function may then be written as

L(α, β|x) = log `(α, β|x)

= n logα+ α log β−

α log
(
xu(n) + β

)
−

n∑
i=1

log
(
xu(i) + β

)
,

(8)

by taking derivative in Equation (8) with respect to α, and β, and
equating each result to zero, obtained

∂L(α, β|x)

∂α
=
n

α
+ log β − log

(
xu(n) + β

)
= 0 (9)

and

∂L(α, β|x)

∂β
=
α

β
− α(

xu(n) + β
) − n∑

i=1

1(
xu(i) + β

) = 0. (10)

From (9), the ML estimate of α denoted by α̂ is

α̂ =
n

log
(
xu(n) + β

)
− log β

(11)

By substituting Equation (11) in Equation (10), we get
n

β̂
[
log
(
xu(n) + β̂

)
− log β̂

]−
n(

xu(n) + β̂
) [

log
(
xu(n) + β̂

)
− log β̂

]−
n∑
i=1

1(
xu(i) + β̂

) = 0.

(12)

Since (12) cannot be solved analytically,thus the MLestimate β̂ of
the parameter β can be obtained by solving the nonlinear likeli-
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hood Equation (12) using, for example, the Newton–Raphson iter-
ation scheme, and hence the corresponding ML estimate α̂ of the
parameter α is computed from Equation (11) as

α̂ =
n

log
(
xu(n) + β̂

)
− log β̂

, (13)

then, using the invariance property of the ML estimators, the ML
estimate of CV , denoted by ĈV , is given by

ĈV =

√
α̂

(α̂− 2)
, α̂ > 2. (14)

2.1 Asymptotic likelihood method

To find an asymptotic variance of the ML estimate ĈV , we shall
first write the observed Fisher information matrix V = (vij),
where the partial derivatives vij’s are given by

v11 =
∂L2(α, β|x)

∂α2

= − n

α2

(15)

v22 =
∂L2(α, β|x)

∂β2

= − α

β2
+

α(
xu(n) + β

)2
+

n∑
i=1

1(
xu(i) + β

)2
(16)

v12 = v21

=
∂L2(α, β|x)

∂α∂β

=
1

β
− 1(

xu(n) + β
) .

(17)

An approximate estimate of the variance-covariance matrix of
α̂ and β̂ is V−1ij |α̂,β̂ . In order to find an approximate estimate of
the variance of ĈV using the Delta method, see Greene [14], let

G
′
=

(
∂CV

∂α
,
∂CV

∂β

)
, (18)

where
∂CV

∂α
and

∂CV

∂β
are the first derivatives of the CV with

respect to the parameters α and β. The approximate asymptotic
variance of ĈV is given by

ˆV ar(ĈV ) '
[
G
′
I−1G

]
|α̂,β̂ .

The asymptotic distribution of the MLE ĈV of CV satisfies:

(ĈV − CV )/

√
ˆV ar(ĈV ) ∼ N(0, 1).

This yields that the asymptotic 100(1 − α)% confidence interval
for CV is given by

ĈV ± Z1−γ/2

√
ˆV ar(ĈV ). (19)

3. PARAMETRIC BOOTSTRAP CONFIDENCE
INTERVALS OF CV

This section discuss two confidence intervals based on the para-
metric bootstrap methods: (i) percentile bootstrap method (Boot-p)
based on the idea of Efron [10], (ii) bootstrap-t method (Boot-t)
based on the idea of Hall [16]. We illustrate briefly how to estimate
confidence intervals of CV using both methods.

1. From the original sample {x
U(1)

, x
U(2)

, ..., x
U(n)
}, compute

MLEs (α̂, β̂) of (α, β) and ĈV of CV using Equation (14).

2. Using α̂ and β̂ generate a bootstrap sample
{x∗

U(1)
, x∗

U(2)
, ..., x∗

U(n)
}. Use this sample to compute the

MLE (α̂∗, β̂∗) of (α, β) and ĈV
∗

of CV .
3. Repeat step 2, B boot times, to get parametric bootstrap esti-
mates ĈV

∗
1, . . . , ĈV

∗
B of CV .

In the following, we propose to use two types of parametric boot-
strap confidence intervals for the CV .

3.1 Boot-p

Suppose that G(z) = P (ĈV
∗
z) be the cumulative distribution

function of ĈV
∗
. Define ĈV

∗
Boot−p = G−1(z) for given z. The

approximate bootstrap 100(1 − γ)% confidence interval of CV is
given by (

ĈV
∗
Boot−p(

γ

2
), ĈV

∗
Boot−p(1−

γ

2
)
)
. (20)

3.2 Boot-t

Compute the following statistic T ∗ =

√
B(ĈV

∗
− ĈV )√

V ar(ĈV
∗
)

. For the

T ∗ values, determine the upper and lower bounds of the 100(1 −
γ)% confidence interval ofCV as follows: letH(z) = P (T ∗ ≤ z)
be the cumulative distribution function of T ∗. For a given z, define

ĈV
∗
Boot−t(z) = ĈV

∗
+B−1/2

√
V ar(ĈV

∗
)H−1(z).

The approximate 100(1− γ)% confidence interval of CV is given
by (

ĈV
∗
Boot−t(

γ

2
), ĈV

∗
Boot−t(1−

γ

2
)
)
. (21)

4. BAYES ESTIMATOR OF CV USING MCMC
This section describes Bayesian MCMC methods that have been
used to estimate the CV of Lomax distribution. The Bayesian ap-
proach is introduced and its computational implementation with
MCMC algorithms is described. The two most popular MCMC
algorithms are the Gibbs sampler, named by Geman and Geman
[11],and the M-H algorithm based on the papers by Metropolis et
al. [23] and Hastings [18]. Details of the MCMC methods can be
found in Gilks et al. [12]. Using these algorithms it is possible to
implement posterior simulation in essentially any problem which
allow pointwise evaluation of the prior distribution and likelihood
function. Gibbs sampling procedure and the M-H algorithm are
used to generate samples from the posterior density function and
in turn compute the Bayes point estimates and also construct the
corresponding credible intervals based on the generated posterior
samples.

33



International Journal of Computer Applications (0975 8887)
Volume 77 - No. 4, September 2013

By considering model (1), assume the following gamma prior den-
sities for α and β as

h1(α|a, b) =


ba

Γ(a)
αa−1 exp (−bα) if α > 0

0 if α ≤ 0.
(22)

and

h2(β|c, d) =


dc

Γ(c)
βc−1 exp (−dβ) if β > 0

0 if β ≤ 0.
(23)

Multiplying h1(α|a, b) by h2(β|c, d) we obtain the joint prior den-
sity of α and β; given by

h(α, β) =
badc

Γ(a)Γ(c)
αa−1βc−1 exp (−bα− dβ) (24)

Based on the likelihood function of the observed sample is same as
(8) and the joint prior in (24), the joint posterior density of α and β
given the data is

h∗(α, β|x) =
L(data|α, β)× h(α, β)∫∞

0

∫∞
0
L(data|α, β)× h(α, β)dαdβ

, (25)

therefore, the Bayes estimate of any function of α and β say
g(α, β), under squared error loss function is

g̃(α, β) = Eα,β|data(g(α, β))

=

∫∞
0

∫∞
0
g(α, β)L(data|α, β)h(α, β)dαdβ∫∞

0

∫∞
0
L(data|α, β)h(α, β)dαdβ

. (26)

Generally, the ratio of two integrals given by (26) can not be ob-
tained in a closed form. In this case, we use the MCMC method to
generate samples from the posterior distributions and then compute
the Bayes estimator of g(α, β) under the squared errors loss (SEL)
function. Therefore, we propose the approaches of MCMC tech-
nique to approximate (26). See, for example, Robert and Casella
[31] and Recently, Rezaei et al. [30].

4.1 MCMC technique
In this subsection we consider the MCMC method to generate sam-
ples from the posterior distributions and then compute the Bayes es-
timates of CV of the Lomax distribution under the squared errors
loss (SEL) function. A wide variety of MCMC schemes are avail-
able, and it can be difficult to choose among them. An important
sub-class of MCMC methods are Gibbs sampling and more gen-
eral Metropolis-within-Gibbs samplers. The advantage of using the
MCMC method over the MLE method is that we can always obtain
a reasonable interval estimate of the parameters by constructing the
probability intervals based on the empirical posterior distribution.
This is often unavailable in maximum likelihood estimation. In-
deed, the MCMC samples may be used to completely summarize
the posterior uncertainty about the parameters and, through a ker-
nel estimate of the posterior distribution. This is also true of any
function of the parameters, CV in particular. Suppose we wish to
give point and interval estimates for CV .
The expression for the joint posterior can be obtained up to propor-
tionality by multiplying the likelihood with the joint prior and this

can be written as

h∗(α, β) ∝ αn+a−1βα+c−1×
exp[−(bα+ dβ + α log(xu(n) + β)]×
n∏
i=1

(
xu(i) + β

)−1
,

(27)

from (27) it is clear that the posterior density function of α given β
is proportional to

h∗1(α|β) ∝ αn+a−1×
exp−α

[
b+ log(xu(n) + β)− log β

]
.

(28)

Therefore, the posterior density function of α given β, is gamma
with parameters (n+ a) and

(
b+ log(xu(n) + β)− log β

)
.

The posterior density function of β given α can be written as

h∗2(β|α) ∝ βα+c−1×

exp

[
−dβ − α log(xu(n) + β)−

n∑
i=1

log(xu(i) + β)

]
.

(29)

The posterior distribution of β given α Equation (29) cannot be
reduced analytically to well known distributions and therefore it
is not possible to sample directly by standard methods. We, em-
ploy the Metropolis-within-Gibbs method instead to sample. The
choice of the hyperparameters (a, b, c, d) are which make (29) close
to the proposal distribution and obviously more convergence of
the MCMC iteration. We propose the following MCMC algorithm
to draw samples from the posterior density functions; and in turn
compute the Bayes estimates and also, construct the corresponding
credible intervals of CV .
Algorithm 1.

1. β0 = β̂, M = nburn.
2. Generate α1 from gamma distribution h∗1(α|β).

3. Generate β1 from h∗2(β|α) using (M-H) algorithm see Metropo-
lis et al. [23].
4. Compute CV1 from (14).
5. Repeat steps 2-4 N times we obtain CV1, CV2,. . . , CVN .
6. Obtain the Bayes estimate of CV with respect to the SEL func-
tion as

Ê(CV |data) =
1

N −M

N

i=M+1
CVi. (30)

7. To compute the credible intervals of CV , order CVM+1,
CVM+2, ..., CVN as

CV(1), CV(2), ..., CV(N−M) Then the 100(1 − γ)% symmetric
credible intervals(

CV((N−M)γ/2), CV((N−M)(1−γ/2))
)
. (31)

5. ILLUSTRATIVE EXAMPLE
To illustrate the inferential procedures developed in the preceding
sections, we choose the real data set which was also used in Lawless
(1982-pp 185), these data are from Nelson [25] concerning the data
on time to breakdown of an insulating fluid between electrodes at a
voltage of 34 K. V. (minutes). The 19 times to breakdown are:

34



International Journal of Computer Applications (0975 8887)
Volume 77 - No. 4, September 2013

0.96 4.15 0.19 0.78 8.01 31.75 7.35
6.50 8.27 33.91 32.52 3.16 4.85 2.78
4.67 1.31 12.06 36.71 72.89

Therefore, we observe the upper record values from the observed
data as follows: 0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89.
Amodel suggested by engineering considerations is that, for a fixed
voltage level, time to breakdown has a Lomax distribution. Based
on these seven upper record values, we run the chain for 10 000
times and discard the first 1000 values as ‘burn-in’. When the non-
informative prior distribution is used, the joint posterior distribu-
tion of the parameters is proportional to the likelihooh function.
The Bayes point estimates and 95% credible intervals for CV are
computed. also performed a simple bootstrap procedure to gener-
ate the sampling distribution of CV based on the observed seven
upper record values. The point estimates of CV using the max-
imum likelihood method and bootstrap methods as well as 95%
bootstrap confidence interval are presented in Table 1. If we adopt
the Bayesian approach, we have the results in Table 2. The descrip-
tive statistics as well as the 95% credible interval for CV based
on the MCMC generated sample are also given in Table 2. As we
can see from the histograms of the posterior distributions of CV in
Figure 1.

Table 1. MLE and Bootstrap results of CV
Method ĈV 95% C.I. Length

MLE 1.7071 [-0.7929, 4.2071] 5.0000
Boot-p 1.9469 [1.2078, 5.1171] 3.9093
Boot-t 1.8439 [0.0896, 3.9770] 3.8874

Table 2. MCMC descriptive statistics of CV
Mean Median Mode SD
1.9667 1.7969 1.7573 1.0379

Skewness 95% C. I. Length
4.5488 [1.1282, 5.4117] 4.2835

where 95% C. I. means that 95% Credible Interval.

6. MONTE CARLO SIMULATIONS
In this section, we report some numerical experiments performed
to evaluate the behavior of the MCMC methods for different upper
record samples froma Lomax distribution, different parameter val-
ues, and different priors. Then we use MCMC method to estimate
the CV based on 10 000 samples and discard the first 1000 values
as ‘burn-in’. Thus we can construct the 95% confidence intervals.
The simulation runs then repeat N = 1000 times. We compute
the average Bayes estimates, mean squared errors (MSEs), cover-
age percentages (C.P), and the average lengths (A.L) based on N
replications.
In our present study, we set the different sample sizes n, we also,
used two sets of parameter values α = 3, β = 3.1 and α
= 4.2, β = 3.1. We used different hyperparameters (a, b, c, d),
mainly to explore their effects on the estimates of CV . First, we
used the noninformative gamma priors for both shape parameters,
(a = b = c = d = 0). Note that as the hyperparameters go
to 0, the prior density becomes inversely proportional to its argu-
ment and also becomes improper. This density is commonly used

Fig. 1. Histogram of CV

as an improper prior for parameters in the range of 0 to infin-
ity, and this prior is not specifically related to the gamma density.
Other than noninformative prior, we also used an informative prior
(a = 5, b = c = d = 0.5) for the two sets of parameter values.
The simulation results are presented in Tables 3 and 4.

Table 3. MCMC estimates of the CV
with MSE, average length of 95%

C.I and C.P when α = 3 and β = 3.1.

n Mean MSE A.L C.P
Noninformative prior

4 1.7369 0.1399 3.3707 0.993
5 1.7451 0.1398 3.4572 0.966
6 1.7544 0.1395 3.4641 0.980
7 1.7820 0.1382 3.4889 0.969
8 1.7933 0.1343 3.5198 0.978
9 1.7964 0.1316 3.5675 0.985

10 1.8168 0.1299 3.5866 0.995
12 1.7960 0.1238 3.6658 0.975
15 1.7970 0.1189 3.6797 0.960
17 1.7572 0.1014 3.7353 0.955
20 1.7418 0.0939 3.8963 0.950
22 1.7289 0.0754 3.9179 0.965
23 1.7319 0.0678 3.9421 0.970
25 1.7422 0.0564 3.9581 0.965

Informative prior
4 1.6427 0.1234 2.3413 0.994
5 1.6993 0.1224 2.3580 0.963
6 1.6741 0.1221 2.3974 0.977
7 1.7051 0.1219 2.4182 0.990
8 1.7081 0.1162 2.4231 0.995
9 1.7076 0.1124 2.4505 0.975

10 1.6813 0.0931 2.5001 0.970
12 1.7584 0.0882 2.5456 0.950
15 1.8169 0.0874 2.5645 0.940
17 1.7849 0.0823 2.5712 0.930
20 1.8106 0.0734 2.6260 0.935
22 1.8183 0.0675 2.6796 0.949
23 1.7712 0.0612 2.7506 0.960
25 1.7482 0.0458 2.7770 0.950
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Table 4. MCMC estimates of the CV
with MSE, average length of 95% C.I
and C.P when α = 4.2 and β = 3.1.

n Mean MSE A.L C.P
Noninformative prior

4 1.5712 0.1304 2.3893 0.967
5 1.5728 0.1289 2.4152 0.970
6 1.5765 0.0910 2.5231 0.966
7 1.5559 0.0883 2.5743 0.999
8 1.5622 0.0841 2.6306 0.987
9 1.5777 0.0812 2.6951 0.971

10 1.5118 0.0809 2.7107 0.980
12 1.5003 0.0799 2.7327 0.970
15 1.5121 0.0791 2.7807 0.955
17 1.5008 0.0722 2.8484 0.970
20 1.4779 0.0705 2.8883 0.960
22 1.4824 0.0686 2.9101 0.961
23 1.4928 0.0627 2.9463 0.945
25 1.4630 0.0573 2.9660 0.955

Informative prior
4 1.4445 0.0320 1.5745 0.970
5 1.4856 0.0317 1.6893 0.968
6 1.4896 0.0316 1.7103 0.956
7 1.4565 0.0313 1.7576 0.998
8 1.4533 0.0312 1.7896 0.990
9 1.4644 0.0303 1.7939 0.952

10 1.4159 0.0301 1.8167 0.995
12 1.4454 0.0277 1.8917 0.985
15 1.4169 0.0268 1.9346 0.965
17 1.4068 0.0253 1.9388 0.945
20 1.4075 0.0226 1.9750 0.965
22 1.4119 0.0220 1.9835 0.970
23 1.4118 0.0217 2.0358 0.955
25 1.4039 0.0202 2.0226 0.960

7. CONCLUSIONS
This article study the estimation of the CV of a random variable
that follows a Lomax distribution, when the available data are up-
per record values. Maximum likelihood, parametric bootstrap and
MCMC Bayes methods are proposed, to obtain point estimates, as
well as confidence intervals of the CV . We introduced illustrated
example using the observed sample of real data. We found that the
Bayes estimates cannot be obtained in explicit form. We used the
MCMC technique to compute the approximate Bayes estimates and
the corresponding credible intervals.
From results in Tables 1 and 2, we observed that most of the meth-
ods work well in general. The MCMC method provides an alter-
native method for parameter estimation of the Lomax distribution.
Indeed, the MCMC sample may be used to completely summaries
posterior uncertainty about the parameters, through a kernel esti-
mate of the posterior distribution. Bayes estimates of the unknown
parameters and then the CV can be obtained using Gibbs sampling
and the Metropolis-Hastings procedures.
A simulation study was conducted to examine the performance
of the MCMC Bayes estimators for different parameters values,
different sample size (n) and different priors. We observe that,
comparing the two Bayes estimators based on noninformative and
informative priors clearly shows that the Bayes estimators based
on informative prior perform better than the Bayes estimators
based on noninformative prior , in terms of both MSEs and the
length of the credible intervals.
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